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Detection and characterization of chemically induced toxic effects in the nervous system
represent a challenge for the hazard assessment of chemicals. In vivo, neurotoxicological
assessments exploit the fact that the activity of neurons in the central and peripheral ner-
vous system has functional consequences. And so far, no in vitro method for evaluating
the neurotoxic hazard has yet been validated and accepted for regulatory purpose. The
micro-electrode array (MEA) assay consists of a culture chamber into which an integrated
array of micro-electrodes is capable of measuring extracellular electrophysiology (spikes
and bursts) from electro-active tissues. A wide variety of electrically excitable biological
tissues may be placed onto the chips including primary cultures of nervous system tis-
sue. Recordings from this type of in vitro cultured system are non-invasive, give label free
evaluations and provide a higher throughput than conventional electrophysiological tech-
niques. In this paper, 20 substances were tested in a blinded study for their toxicity and
dose–response curves were obtained from fetal rat cortical neuronal networks coupled
to MEAs. The experimental procedure consisted of evaluating the firing activity (spiking
rate) and modification/reduction in response to chemical administration. Native/reference
activity, 30 min of activity recording per dilution, plus the recovery points (after 24 h) were
recorded. The preliminary data, using a set of chemicals with different mode-of-actions
(13 known to be neurotoxic, 2 non-neuroactive and not toxic, and 5 non-neuroactive but
toxic) show good predictivity (sensitivity: 0.77; specificity: 0.86; accuracy: 0.85). Thus, the
MEA with a neuronal network has the potency to become an effective tool to evaluate the
neurotoxicity of substances in vitro.
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INTRODUCTION
The determination of the toxicity profile of different chemical, bio-
logical, and pharmacological compounds is outlined in the current
international testing guidelines (OECD, 1997; US EPA, 1998). An
important element of the hazard assessment is the evaluation of
potential neurotoxic effects (Crofton et al., 2004; Coecke et al.,
2006). An agent is considered neurotoxic if an alteration in the
structure or function in any part of the central and/or periph-
eral nervous system can be observed following acute or chronic
exposure, at concentrations that do not affect general viability
(Costa, 1998). A neurotoxic effect can be the direct alteration
of the neurons structure or activity or can be the result of cas-
cade effects due to glia activation and glia-neuron interactions; a
neurotoxic effect can manifest immediately or delayed after the
substance administration, it can be permanent or reversible, and it
can affect the whole nervous system as well as parts of it (Monnet-
Tschudi et al., 1997; Philbert et al., 2000; Tabakman et al., 2004;
Coecke et al., 2006).

Current directives for the evaluation of neurotoxic hazard
(OECD, 1997; US EPA, 1998) are based on in vivo studies assessing

neurophysiological,neuropathological,neurobehavioral, and neu-
rochemical endpoints (Johnstone et al., 2010). These methods are
expensive and time consuming, have a low throughput, and involve
the use of a larger amount of test substances and animals.

The need efficient testing and recent directives on animal use
for laboratory tests is pushing the development and validation
of new testing strategies based on alternative methods (Har-
tung et al., 2003, 2004), in which the use of time, materials,
and animals is reduced and refined or animal use is completely
replaced (3R).

To date, no in vitro method has been validated for the neuro-
toxicology assessment, and one of the recent and most promising
tools for neurotoxicity assessment is the measurement of elec-
trical activity using micro-electrode array (MEA) chips. This
technique is recording whole neuronal ensembles as functional
networks and provides more relevant physiological information
than other methods for electrophysiology assessment, e.g., patch
clamps. The MEA-based recordings testing techniques dates back
to the early eighties (Gross et al., 1982) and the technology behind
has been improved since then (Gross et al., 1993; Breckenridge
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et al., 1995; Potter, 2001). Today many different in vitro models
can be studied by MEA-based systems such as hippocampus slices,
primary mammalian dissociated cultures and stem cells.

Mammalian neuronal networks cultured from different brain
structures on MEA chips remain spontaneously active and stable
for many months (Gross et al., 1982; Potter and DeMarse, 2001;
Gramowski et al., 2004; Van Pelt et al., 2004a,b). Moreover, these
models respond to neurotransmitters and their blockers in a sim-
ilar way as the in vivo situation (Streit, 1993; Gramowski et al.,
2000; Keefer et al., 2001a,b; Martinoia et al., 2005). Primary cul-
tures grown on MEA chips have been used in many studies of
pharmacological and toxicological responses, and acute neurotox-
icity detection (Gross et al., 1997; Gramowski et al., 2000, 2006;
Morefield et al., 2000; Keefer et al., 2001b; Pancrazio et al., 2003; Xia
and Gross, 2003; Xia et al., 2003; Sundstrom et al., 2005; Parviz and
Gross, 2007; van Vliet et al., 2007). A very recent review (Johnstone
et al., 2010) describes the state of the art of MEA-based assays for
neurotoxicity assessment.

In this study, electrical activity measurements were evaluated
to see whether they are a reliable, accurate, and robust endpoint
for the detection of neurotoxicity and could be suitable for predic-
tive purposes in the chemical industry. To this end, 20 substances
were selected, blinded at BASF (Germany) and then sent to ETT
(Italy) to perform the test. The substances were selected according
to their neurotoxic effects in vivo: 13 substances known to be neu-
roactive, 2 non-neuroactive and non-toxic and 5 non-neuroactive
but toxic.

MATERIALS AND METHODS
CHEMICALS
For the study purpose 20 substances were selected at BASF
(Germany) and sent to ETT (Italy) to perform the blind test. Some
substances were selected according to their already known effect;
some others are completely new for the MEA-based system lit-
erature. A set of 20 chemicals with different mode-of-actions (2
non-neuroactive and not toxic, Table 1; 5 not neuroactive but toxic,
Table 2; 13 known to be neurotoxic, Table 3 substances) was pre-
pared for the blind test. In particular the following set was selected

and labeled as follows: (S1) Ibuprofen (CAS#:15687-27-1), (S2)
1,2,4-Trichlorobenzene (CAS#: 120-82-1), (S3) Trimethyltin chlo-
ride (CAS#: 1066-45-1), (S4) (2,4-Dichlorophenoxy) acetic acid
sodium salt (CAS#: 2702-72-9), (S5) p-Cresol (CAS#: 106-44-5),
(S6) Ethanol (CAS#: 64-17-5), (S7) Salicylic acid (CAS#: 69-72-7),
(S8) Mepiquat chloride (CAS#: 24307-26-4), (S11) 1,2-Propandiol
(CAS#: 57-55-6), (S13) Tetrahydroisoquinoline (THIQ; CAS#:
91-21-4), (S14) Toluene (CAS#: 108-88-3), (S15) Aniline (CAS#:
62-53-3), (S16) Nicotine (CAS#: 54-11-5), (S17) Fipronil (CAS#:
120068-37-3), (S19) Quinmerac (CAS#: 90717-03-6), (S20) Car-
baryl (CAS#: 63-25-2), (S21) Nomifensine maleate salt (CAS#:
24526-64-5), (S22) Paraquat Dichloride (CAS#: 1910-42-5), (S23)
Eugenol (CAS#: 97-53-0), (S24) Diphenhydramine hydrochloride
(CAS#: 147-24-0). The 20 substances (12 powders and 8 liquids)
were shipped in sealed amber glass vials labeled with numbers only
(numbers from 1 to 24, 4 substances were omitted from the test).
The set included 8 water soluble substances, and 12 water insol-
uble ones, which were diluted using DMSO. Each substance was
dissolved to a 100-mM stock solution and then divided in aliquots
stored at −20˚C.

CELL CULTURE
Three different rat strains, namely Wistar SPF, Sprague-Dawley,
and CD SPF/VAF F were employed to prove the reliability of
results on the same district from different animal sources. The
primary cultures of cortical neurons were prepared from fetal
day 18 rats according to previously described procedures (Chi-
appalone et al., 2006). Briefly, the cortex was dissociated through
enzymatic and mechanical dissociation (0.125% Trypsin – DNAse
I 0.025 mg/ml – BSA 0.3% solution in HBSS without calcium and
magnesium). The cells were seeded on standard 60-electrode TiN-
SiN MEA chips with internal reference (Multi Channel Systems,
Reutlingen, Germany) pre-coated with poly-D-lysine and laminin
(0.1 mg/ml diluted in sterile MilliQ water) as 50 μl droplets (1500–
2000 cells/mm2), with subsequent addition of 1 ml of medium
after the cells were attached (approximately 2 h). Cultures were
maintained in neurobasal (NB) medium supplemented with 2%
B27 and 1% Glutamax-I, and half volume of the medium was

Table 1 | Description and properties of the non-neuroactive and non-toxic substances utilized.

Chemical Legal classification of Description

acute oral toxicity in

the European Union

(ECB–JRC)1

1,2-Propandiol (S11) NO 1,2-Propandiol is used an intermediate in the chemical industry, as a solvent in pharmaceuticals and as

a food additive (E1520). In humans, pronounced toxicity was only observed at plasma concentrations

above 1 g/L (about 13 mM; Flanagan et al., 1995)

Quinmerac (S19) NO Quinmerac is a quinoline carboxylic acid that is used as a systemic herbicide. It acts as a root growth

inhibitor because it mimics the effects of supra optimal endogenous auxin concentrations (Grossmann

et al., 2001). Quinmerac has a low acute systemic toxicity with an oral LD50 above 5000 mg/kg in rats2

1http://ecb.jrc.ec.europa.eu/esis/index.php?PGM=cla
2http://www.pesticides.gov.uk/PSD_PDFs/Evaluations/177_quinmerac.pdf
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Table 2 | Description and properties of the toxic but non-neuroactive substances utilized.

Description Legal classification Description

Ibuprofen (S1) NO Ibuprofen [2-(4-isobutylphenyl) propionic acid] is a non-steroidal anti-inflammatory drug

(NSAID). It exerts its pharmacological action inhibiting the cyclooxygenase enzymes (COX).

Overdoses may cause renal toxicity, hepatotoxicity but no neurotoxicity has been described

(Nanau and Neuman, 2010)

(2,4-Dichlorophenoxy)acetic

acid (S4)

NO (2,4-Dichlorophenoxy)acetic acid is an herbicide. Target organs of mammalian toxicity are

kidneys and liver but not the nervous system (Uyanikgil et al., 2009; Tayeb et al., 2010)

Salicylic acid (S7) NO Salycilic acid is known to inhibit cyclooxygenase. High doses of salicylate lead to a pyretic effect

which is probably a direct result of the uncoupling of oxidative phosphorylation (Battaglia et al.,

2005)

An oral LD50 of 891 mg/kg body weight was reported for rats (BIOFAX Industrial Bio-Test

Laboratories, Inc., Data Sheets. Vol. 21-3/1971)

Aniline (S15) Acutely toxic by

inhalation, skin contact

and oral uptake (H301,

311, 331)

Aniline is an aromatic amine used as intermediate in the production of various chemicals. It

is linked to the onset of methhemoglobinaemia (Gelpí et al., 2002)

Paraquat dichloride (S22) Acutely toxic by

inhalation, skin contact

and oral uptake (H301,

311, 331)

Paraquat Dichloride is an herbicide. It is known to be toxic to humans, exerting acute effects

by redox cycling generating intracellular oxidative stress in the lung (Dinis-Oliveira et al., 2008)

Recently, chronic exposition to paraquat have been linked to the onset of neurotoxicity affect-

ing dopaminergic system neurons (Ossowska et al., 2006;Thrash et al., 2007), these findings

are still under discussion (Miller, 2007)

exchanged once a week. Cells were maintained at 37˚C in a
humidified atmosphere of 5% CO2 until their use.

EXPERIMENTAL LAYOUT
Experiments were carried from 25 to 54 days in vitro (DIV), when
neuronal networks are mature (Novellino and Zaldívar, 2010).
Each substance was tested at least three times and using neu-
ronal networks from different neuronal isolations. Any neuronal
network was used only once. In order to stabilize the culture con-
dition, a 50% medium change was performed 48 h before testing.
The day of the experiment the seven test dilutions (100 nM, 1 μM,
10 μM, 100 μM, 1 mM, 10 mM, 100 mM) were freshly made by
diluting the thawed mother solution into the solvent (H2O or
DMSO). The culture medium volume was checked to be 1 ml
before any experimental session.

Reagents were then introduced by the following pipetting pro-
cedure to ensure proper mixing: 200 μl of medium was removed
from the medium bath covering the networks, mixed with a small
volume (1 μl) of the reagent dilution and carefully returned to
the medium bath in order to minimize any osmotic or hydro-
dynamic stress. In case of water as solvent additional 0.9 μL of
DMSO was added to the culture medium at any administration
in order to expose any neuronal network to the same amount
of DMSO. Typically concentration–response relationships were
determined in a cumulative manner, in which the concentration of
drug present in the medium was increased in a stepwise method in
log units.

At least two recovery tests were performed for any substance
after 24 h, in particular the medium was completely changed
after the experiment, and MEA returned to the incubator for
24 h. The spontaneous activity was recorded for 30 min and

compared to the activity recorded from the same culture the
day before.

DATA RECORDINGS AND SIGNAL PROCESSING
Standard 60-electrode MEA chips (with 30 μm diameter elec-
trodes, 200 μm inter-electrode spacing with/without an integrated
reference electrode) were employed. The activity was recorded by
the MEA1060 System from Multi Channel Systems (MCS GmbH,
Reutlingen, Germany, http://www.multichannelsystems.com).
The system also included a temperature controller (TC02, MCS
GmbH) that allowed heating of the MEA chips and thus the
medium from the bottom. During recordings, cells were kept at
37˚C and in a controlled humid atmosphere (5% CO2, 20% O2

and N2) to buffer the supernatant pH (pH was 7.1 ± 0.1 during
whole experiments). The MEA chips were placed into the MEA
Amplifier (Gain 1000×) and data were recorded by the MC_Rack
software at a sampling rate of 10 kHz. A band pass digital filter (60–
4000 Hz) was applied to the raw signal in order to remove electrical
background noise. Spike trains were extracted by the MC_Rack
spike detection: if the electric signal overcomes the spike detection
threshold (i.e., 6.0 ± 0.5 times the SD of the mean square root
noise) the spike is identified and recorded.

All analyses were conducted on binned data with bin size of
60 s. Data from experimental episodes were averaged for the last
20 min over the 30-min time window of recording for each con-
centration and the network mean firing rate (MFR) was extracted
as a descriptor of the network activity level. Each time point of
the experiment was the average of the firing rate over a 60-s time
period. A stable level of spontaneous activity was required in order
to start the experiment and was considered as the reference. In gen-
eral, there is a transition period until equilibrium is achieved which
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Table 3 | Description and properties of the neurotoxic substances utilized.

Description Legal classification Description

1,2,4-Trichlorobenzene

(TCB; S2)

Harmful if swallowed (H302) Rats and mice manifested symptoms of depressed activity at lower doses

of TCB and extensor convulsions at lethal doses (IPCS, 1991). Tremors fol-

lowed by death within 20–30 days occurred in monkeys exposed orally to

174 mg/kg/day (US EPA, 1994)

Trimethyltin chloride (S3) Fatal if inhaled, in contact with skin and

if swallowed (H300, 310, 330)

Trimethyltin chloride is a potent neurotoxic agent

It produces lesions primarily in the limbic system, including those in the hip-

pocampus, fascia dentata, pyriform cortex, entorhinal cortex, and amygdaloid

nucleus (Brown et al., 1979; Bouldin et al., 1981; Chang et al., 1982; Dyer et al.,

1982; Philbert et al., 2000)

p-Cresol (S5) Toxic in contact with skin and if

swallowed (H301, 311)

p-Cresol damages the CNS if inhaled (Kavitha and Palanivelu, 2005) by various

toxic effects, like decreasing the response of activated polymorphonuclears,

inhibition of platelet activating factor synthesis by human adherent mono-

cytes and decrease of the endothelial cell response to inflammatory cytokines

(D’Hooge et al., 2003; Schepers et al., 2007)

Ethanol (S6) NO Ethanol stimulates the GABA-receptors in the nervous system and blocks the

NMDA-receptors. Therefore, high amounts of ethanol leads to programmed

cell death of the neuronal cells (Xia and Gross, 2003; Pohl-Guimaraes et al.,

2010)

Mepiquat chloride (S8) Harmful if swallowed (H302) Mepiquat chloride is a plant growth regulator that inhibits the biosynthesis of

gibberellic acid

In rats, mepiquat chloride had an acute oral LD50 of 464 mg/kg body weight.

Additionally, in an acute oral neurotoxicity study in rats the NOAEL was

100 mg/kg body weight based on observations of decreased motor activity at

doses of 300 mg/kg and above.The effect was attributed to reversible binding

of mepiquat to nicotinic and muscarinic receptors (EFSA, 2008)

Tetrahydroisoquinoline

(THIQ; S13)

NO Tetrahydroisoquinoline (THIQ) is a secondary aromatic amine. Used as inter-

mediate and formed as a metabolite. It is structurally related to several

neuroactive compounds Endogenous production of neurotoxic tetrahydroiso-

quinoline derivatives from certain drugs such as norsalsolinol is investigated

as possible cause for neurological disease (Abe et al., 2005)

Toluene (S14) Toxic effects (H 361d, 304, 373, 315,

336) including (H336) induction of

dizziness and drowsiness

Toluene is a volatile organic solvent, which is widely used in industry and a

number of commercial products. It readily crosses the blood–brain barrier

after inhalation and produces effects similar to that of sedative–hypnotics,

such as alcohol and benzodiazepines (Balster, 1998).The mechanism has not

yet been clarified. In chronic toluene abusers cerebellar dysfunction and cere-

bral and hippocampal atrophy as well as a loss of brain volume was found

(Yamanouchi et al., 1995; Kamran and Bakshi, 1998; Deleu and Hanssens,

2000; Win-Shwe and Fujimaki, 2010)

Nicotine (S16) Toxic in contact with skin and if

swallowed (H301, 310)

Nicotine is an alkaloid naturally present in members of the Solanaceae family

of plants. It acts as an agonist for nicotinic cholinergic receptors (nAChR),

which is a non-selective cation channel. (Lindstro, 1997)

Fipronil (S17) Acute toxicity by inhalation, skin contact

and if swallowed (H331, 311, 301).

Fipronil is a phenylpyrazole and used as an insecticide and akaricide. It blocks

the GABAa receptors (chloride-ion channel), which causes a hyper excitation

of the parasite

Carbaryl (S20) Acute toxicity by inhalation and if

swallowed (H332, 302)

Carbaryl is a contact insecticide from the carbamate group. It acts on the

CNS of insects by blocking the Acetylcholine esterase (AChE). This results in

the enrichment of acetylcholine at the postsynaptic membrane which causes

permanent agitation.The consequences are paralysis, apnoea, and eventually

mortality (Gupta, 2006). In mammalian models, it elicited a marked hypother-

mia and reduction in motor activity in rats when administered orally at doses

that inhibit brain AChE activity (Gordon et al., 2006)

(Continued)
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Table 3 | Continued

Description Legal classification Description

Nomifensin maleate (S21) NO Nomifensin maleate had been used as an antidepressant and anesthetic because

it blocks the dopamine reuptake in the brain at low levels (10 μM). It also induces

hemolytic anemia and was therefore removed from the market. (Kinney, 1985;

Nuwayhid and Werling, 2006; Obach and Dalvie, 2006)

Eugenol (S23) NO Eugenol is used in dentistry as a local analgesic agent.The induced sedation and

loss of consciousness in rats in a dose-dependent manner (Guenette et al., 2006).

CNS depression was also reported with acute intoxication of humans (Lane et al.,

1991)

Diphenhydramine

hydrochloride (S24)

NO Diphenhydramine hydrochlorid is a first generation antihistamine, which can pen-

etrate the blood–brain barrier. Like several other first generation antihistamines,

it is also a potent competitive antagonist of muscarinic cholinergic receptors

and furthermore is able to block the reuptake of serotonin (Sewell et al., 1985).

Diphenhydramine causes sedation, due to its histamine H1 receptor antagonism.

Table 4 | Results of the blinded test of the 20 substances.

Substance Toxicological classification MFR MFR MFR Estimated IC50 Recovery

excitation reduction total cessation

Quinmerac A

1,2-Propandiol B

2,4-D sodium salt Toxic but not neuroactive A

Ibuprofene Toxic but not neuroactive B

Salicylic acid Toxic but not neuroactive B

Paraquat Dichloride Toxic but not neuroactive B

Aniline Toxic but not neuroactive x B

Nicotine Neuroactive x B

Ethanol Neuroactive A

Toluene Neuroactive B

Mepiquat chloride Neuroactive B

1,2,4-Trichlorobenzene Neuroactive x 60 μM B

Tetrahydroisoquinoline Neuroactive x 20 μM B

p-Cresol (4-Methylphenol) Neuroactive x 1–10 μM B

Fipronil Neuroactive x x 65–90 μM B

Carbaryl (1-Naphthylmethylcarbamat) Neuroactive x x 25–65 μM A

Nomifensin maleate salt Neuroactive x x 10–20 μM A

Diphenhydramine hydrochloride Neuroactive x x 5–20 μM B

Eugenol Neuroactive x x 3–7 μM C

Trimethyltin chloride Neuroactive x x 1–10 μM C

Resume of the results obtained for the tested substances, ordered following their toxicological classification (no toxicity, toxic but not neuroactive, or neuroactive)

and their toxic potency. Effects on MFR are indicated, as well as the registered recovery (A: good recovery, B: average recovery, C: poor recovery), and a range for

the estimated IC50.

has been established by each laboratory with post hoc analysis in
previous experiments. The response during this transition time
window has not been considered for the concentration–response
analysis The percent change in firing rate at each concentration
was then determined relative to the reference spontaneous activity
period.

To determine the changes of network activity with time, mean
network spike rate of all active channels over the course of the
whole experiment were considered. For the purpose of obtain-
ing the IC50 values from the dose–response curve the changes

in MFR were considered. Plots were also used to determine the
concentration that stopped the activity completely.

CHANNEL INCLUSION/EXCLUSION CRITERION
Some simple rules were used for considering the neuronal network
and its activity acceptable. The first criterion was based on the net-
work morphology evaluation done by a trained and experienced
operator. On a regular basis during the culture time and prior
to MEA recording each chip was inspected under microscope to
check for the neuronal network morphology and growth basing
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on the presence of a dense and uniform distribution of neuronal
cells and the presence of neuronal connections on the recording
area as previously described (Hogberg et al., 2011). The second
criterion was based on the electrophysiological activity analy-
sis, and both noisy and silent channels were excluded from the
analysis. In particular during the reference activity if the sponta-
neous firing rate was lower than 10 spikes/bin (bin size of 60 s) the
channel was considered a silent channel, and if the spontaneous
firing rate was higher than 200 spikes/bin the channel was con-
sidered a noisy channel. The average of the excluded channel was
19.96 ± 0.77.

SINGLE DOSE–RESPONSE ACCEPTANCE CRITERIA
The aim of the investigation was to extract the mean effect of
the chemical on the activity of the neuronal network once the
interaction between the chemical and the neurons’ receptors had
reached the saturation phase, the CVTIME of spike rate, i.e.,
the coefficient of variation of the spike rate in time, was stud-
ied to check the stability of the neuronal network activity after
the chemical administration. The CV, in general calculated by
CV = SD/mean, was used to describe the spatiotemporal behavior
of the network activity (Keefer et al., 2001a; Gramowski et al., 2004)
and the CVTIME quantify the spatiotemporal behavior reflecting
temporal dynamics and the fundamental interactions within the
networks. The CVTIME was extracted for each channel and the
average of the CVTIME was used as a further exclusion criterion.
If the CVTIME never reached and stabilized the 20% for more
than one administration, the experiment was rejected. In average
the CVTIME reached and stabilized down the threshold by 10 min
after the chemical administration.

STATISTICAL ANALYSIS
The Igor Pro 6.1 (Wavemetrics Inc., USA) program was used for
statistical analyses. All data given are means of at least three inde-
pendent experiments ± SEM. Student’s one tail paired t -test was
performed to assess differences between basal spontaneous activity
and activity after chemical administration. Statistical significance
was indicated for P < 0.05. The averaged spike rate as a function
of the concentration was fitted to both Hill Equation and Sigmoid
Fitting tool for estimating the IC50 value.

The predictivity parameters have been calculated according to
the following formulae:

Specificity = number of true negatives/number of true
negatives + number of false positives

Sensitivity = number of true positives/number of true
positives + number of false negatives

Accuracy = correct identified analytes (positives and negatives)/
total number of analytes.

RESULTS
To assess the maturation of a neuronal network on MEA, the
spontaneous activity of a MEA chip was measured every week.
As already described (Van Pelt et al., 2005; Wagenaar et al., 2006;
Hogberg et al., 2011), at the early time point (7 DIV) only a few of
the cultures have shown spontaneous activity that was weak (few
active channels and no synchronized pattern), then the activity
increased over time and became more and more synchronized

with the typical bursting and spiking pattern of cortical neuronal
cultures at the age of 28 DIV.

At the maturation time, i.e., after 4 week of in vitro culture,
the neuronal networks exhibited spontaneous activity in their
respective media, consistent with previously reported effects (Xia
et al., 2003; Gramowski et al., 2004; Chiappalone et al., 2006;
Shafer et al., 2008).

Network spike rates ranged from (mean ± SEM) 55.06 ± 6.98
spikes/s (n = 60).

During experiments any neuronal network was exposed to
DMSO at a final concentration of 0.7%. In order to check
the DMSO induced effects, control experiments were performed
both with a one-step as well as with progressive administrations
and no effects of DMSO on spontaneous activity were recorded
(data not shown).

The tested substances were supposed to fall in three main
groups according their biological activities based on legal clas-
sification (EBC–JRC) and published in vivo and in vitro data,
namely (1) not neuroactive and not toxic, (2) toxic but not neu-
roactive, and (3) neurotoxic substances. The results obtained are
summarized in Table 4.

NOT NEUROACTIVE AND NOT TOXIC SUBSTANCES
In accordance to their in vivo data, these two substances had no
significant effect on network activity (Figure 1). 1,2 Propandiol
caused a slight increase in the firing rate at high concentrations,
but this effect is not statistically significant.

TOXIC BUT NOT NEUROACTIVE SUBSTANCES
The substances in this group had no significant effect on MFR, as
expected, at the concentrations tested, with the exception of ani-
line that presented a mild but significant progressive increase in
the MFR during the experiment (Figure 2).

NEUROACTIVE SUBSTANCES
Nine of the thirteen substances in this group showed a significant
effect on neuronal network activity (Figure 3). All the substances
that caused an MFR reduction, or its total cessation, belongs to
this group. Nicotine showed a slight increase in MFR at the maxi-
mum tested concentration. And three substances, namely ethanol,
mepiquat, and toluene, did not show a significant effect.

RECOVERY TESTS
To have an indication about the reversibility of the effects of the
substances utilized, a recovery test was performed after 24 h fol-
lowing a complete medium wash-out, and the electrical activity
compared to the basal activity recorded on the same culture the
day before. The recovery results were classified according to a three
level scale: A – good recovery (level of activity more than 70% of
the spontaneous activity recorded during the reference period the
day before); B – average recovery (level of activity between 35 and
70%); C – poor recovery (recovered activity less than 35%). Five
substances showed a good recovery (Table 4), and two of them
[Carbaryl (S20) and Nomifensine (S21)] initially showed high
neuroactivity, indicating the reversibility of their effects. TMT (S3)
and Eugenol (S23) had a poor recovery, which indicates that there
was a strong neuroactive effect that ended in cytotoxicity. For all
the other substances the recovery was average.
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FIGURE 1 | Electrical activity effects on neuronal cultures after

administration of not neuroactive and not toxic substances. Electrical
activity following administration of substances classified in the not
neuroactive and not toxic group (at the concentration indicated under the
bars) has been recorded and normalized in respect to native activity (percent

of control, indicated as 100 in the ordinate axis). All data are means of at least
three independent experiments ± SEM. Student’s one tail paired t -test was
performed to assess differences between basal spontaneous activity and
activity after chemical administration. Statistical significance was indicated by
* for P < 0.05.

FIGURE 2 | Electrical activity effects on neuronal cultures after

administration of toxic but not neuroactive substances. Electrical
activity following administration of substances classified in the toxic but not
neuroactive group (at the concentration indicated under the bars) has been
recorded and normalized in respect to native activity (percent of control,
indicated as 100 in the ordinate axis). All data are means of at least three
independent experiments ± SEM. Student’s one tail paired t -test was
performed to assess differences between basal spontaneous activity and
activity after chemical administration. Statistical significance was indicated
by * for P < 0.05.

DISCUSSION
The problem of toxicity assessment of all chemicals sold in Europe
according to the REACH regulation is particularly challenging:

a recent research (Hartung and Rovida, 2009) presented a very
critical situation. Industries are already facing the submission of
existing toxicity data and animal-testing plans for part of the “old”
chemicals because much information, such as reproductive tox-
icity, neurotoxicity, developmental neurotoxicity, etc., is missing.
Current in vivo test methods are based on behavioral and sensory
perturbations coupled with routine histopathological investiga-
tions. In spite of the empirical usefulness of these tests, they
are not always sensitive enough, and often they do not provide
information that facilitates a detailed understanding of potential
mechanisms of toxicity, thus enabling predictions. Regarding the
status of in vitro tests, they are generally not used to detect neu-
rotoxicity for prediction of hazards to human health and so far
they play a complementary role to the in vivo tests (Bal-Price et al.,
2010). Furthermore, the current in vitro test methods are far from
being capable of testing large numbers of chemicals in a short
time. High throughput and high content screening (HTS/HTC)
methods have been proposed as an integral component of future
toxicity testing strategies (Costa, 1998; Coecke et al., 2006; Lein
et al., 2007; NRC, 2007). However, they are often not designed to
assess the physiology and functionality of living neurons, which
may result in missing the effects of some chemicals and/or ham-
per the identification of toxicity pathways related to higher level
functions of the nervous system. The set up and validation of an
alternative in vitro method constitute therefore a topic of central
interest in order to reduce, refine and replace animal-testing.

So far, the MEA technique has been used in several pharmaco-
logical and toxicological studies (Gross et al., 1997; Gramowski
et al., 2000,2006; Morefield et al., 2000; Keefer et al., 2001b;
Sundstrom et al., 2005; Parviz and Gross, 2007; van Vliet et al.,
2007) and the IC50 ranges have been established in the same range
as those published for other toxicological studies and are in general
in agreement with those obtained from animal experiments (Xia
and Gross, 2003; Xia et al., 2003). However, until now MEAs were
not tested as an in vitro model for neurotoxicity testing of large
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FIGURE 3 | Electrical activity effects on neuronal cultures after

administration of neuroactive substances. Electrical activity following
administration of substances classified in the neuroactive group (at the
concentration indicated under the bars) has been recorded and normalized
in respect to native activity (percent of control, indicated as 100 in the
ordinate axis). All data are means of at least three independent
experiments ± SEM. Student’s one tail paired t -test was performed to
assess differences between basal spontaneous activity and activity after
chemical administration. Statistical significance was indicated by * for
P < 0.05.

varieties of chemicals. Comparing the results from this study with
neuronal network on MEA to published in vivo data, there were
10 substances identified as true positives, 1 as false positive, 6 true
negative and 3 false negative. Based on these data the sensitivity
of the assay was 77% and the specificity was 86%. This makes an
overall accuracy of 80% for the assay.

PARAMETERS EXTRACTION/ACTIVITY EVALUATION METHODS
Despite the large number of applications and studies related to
the use of MEA-based systems, there are still a few universally
accepted methodologies to extract information to assess neuro-
toxicity. While bursting behavior and bursting synchronization
over active channels are important criteria for verifying the matu-
ration of the in vitro neuronal network (i.e., quality of the activity),
burst parameters such as mean bursting rate, burst duration, mean
spikes in burst, etc., that were shown to provide important infor-
mation for basic research (e.g., Wagenaar et al., 2006; Novellino
et al., 2007), did not give any particular advantage for neuro-
toxicity assessment. As the burst parameters are extracted from
spike trains the accuracy and reliability were mostly the same
as the MFR (data not shown), while the computation time and
complexity were higher. Available methods are based on spike
detection algorithms that produce multi-site spike, which can be
further analyzed for spike sorting, first and higher order statis-
tics (e.g., burst analysis) and cross correlation based methods. A
recent paper from Maccione et al. (2009) demonstrated that the
accuracy of spike detection methods is quite comparable, and if
the goal of the study is not the precise timing but rather the aver-
age effects on a large binning window (e.g., 1 min of activity)
the computational requirement for accurate spike detection is not
necessary since a simple spike threshold identification provides a
simple yet sufficient method.

EFFECTS OF ADMINISTERED CHEMICALS
The results of this blinded study consistently determined the effects
for 20 chemicals based on the inhibition of spontaneous neuronal
network activity (i.e., MFR at neuronal network level). Indeed, the
estimated IC50 values for all 20 compounds were within less than
one order of magnitude. This reproducibility, despite differences in
sources of cells and age at recording, demonstrates the robustness
of MEA approaches for neurotoxicity tests. For this investigation
a wide range of concentrations have been explored, spanning
through six orders of magnitude, from 100 pM to 100 μM. The
lowest did not show significant activity variations, but have been
useful to test the robustness of the system in regard to mechani-
cal manipulation. Furthermore, given the sensibility of the system
and the explorative nature of the study, it was considered useful to
test a wide range of concentrations. The MEA-based paradigm can
be very helpful for recognizing toxic and non-toxic compounds in
a middle throughput screening assay. Although it is useful that
the assay accurately and sensitively predict the toxic range of a
substance, in case of chemical labeling and risk assessment the
most important question is whether the chemical is toxic and
which is the order of magnitude of the concentration in which
it starts being toxic. Following this approach, the estimated IC50

are indicative of the order of magnitude of the registered effects in
order to deal with the obtained results, and not meant to constitute
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a precise toxicological characterization of the analytes. Refinement
of the employed conditions is surely required for a more precise
and refined description of the action mechanism of the different
substances.

The tested substances were supposed to fall into three main
groups according their biological activities based on legal clas-
sification (EBC–JRC) and published in vivo data, namely (1)
non-neuroactive and non-toxic, (2) toxic but non-neuroactive and
(3) neuroactive substances. The substances of the first two groups
showed no detectable effect on neuronal activity in NN MEA,
with the exception of Aniline, which caused a gradual increase in
MFR. This represents the only false positive detected in this study.
The slight increase in MFR registered following 1,2-Propandiol
administration was not significant, and likely connected to unspe-
cific effects. Regarding the 13 substances classified as neuroactive
in vivo, the NN MEA assay registered nine substances causing a
significant decrease of the MFR, one substance (nicotine) giving
a significant increase at the highest concentration, and three sub-
stances, namely ethanol, mepiquat, and toluene, that showed no
significant activity.

In vitro active neuroactive substances
All the MFR reductions registered in the present paper, either com-
plete or partial, have been registered following the application
substances belonging to this group.

Trimethyltin chloride. In agreement with its high neurotoxicity,
trimethyltin chloride demonstrated the strongest action on corti-
cal network activity between the tested chemicals. The registered
behavior is in agreement with a previous study on MEAs report-
ing an EC50 of 4.3 μM for auditory cortex and 1.5 μM for spinal
cord tissue derived from mouse embryonic tissue (Gramowski
et al., 2000). Moreover, Kuramoto et al. (2011) showed in pri-
mary mouse cultures that trimethyltin toxicity is initially caused
by activation of the caspase pathway in cortical neurons, which
is in agreement with our recovery result, that show no reversible
network activity on the next day.

Nicotine. In our experiment, nicotine showed an increase of the
MFR at the highest tested concentration (100 μM). This result is
apparently in contrast with its high potency in vivo. To date, the
exact role of brain nAChRs is already a debated topic. In vivo,
nicotine effects are variable depending on the subtype and den-
sity of the different nicotinic receptors existing in the distinct
brain regions (Toledano et al., 2010). A high density of nicotine
receptors is found in the thalamus, caudate nucleus, and substan-
tia nigra (Paterson and Nordberg, 2000), composed by various
homomeric or heteromeric combinations of 12 different subunits
(Mansvelder et al., 2009). Their location in the brain is not lim-
ited to postsynaptic but also to pre-, peri-, and extra-synaptic sites
where they may modulate neuronal function by a variety of actions
(Lindstro, 1997). In particular, presynaptic nAChRs exist on sev-
eral cell populations in cortical, hippocampal, and cerebellar brain
regions (Wonnacott, 1997). Although a subset of nAChRs are post-
synaptic located on a subset of GABAergic interneurons in cortical
layer, nAChRs in cortex are mostly found on afferent terminals, in
particular from thalamic neurons (Matherate, 2004), and conse-
quently not present in cortical neuron preparations. This nAChRs

distribution in the brain may explain the slight increase of activity
at the highest concentration in NN MEA. In addition it suggests a
need to consider different brain regions in NN MEA assays.

Fipronil. The initial excitatory effect is probably caused by the
antagonist action on GABAa receptors, while the final inhibition
might be due to a neurotoxic effect that affect the generation of
spontaneous oscillatory activity of the network.

Eugenol. Eugenol showed, somehow unexpectedly, a rather strong
neuroactive action. Eugenol’s effects on sensorial peripheral nerves
have been studied, but there are few papers on its action on CNS.
In a recent report, rat neocortical and hippocampal slices, eugenol
(10–100 μM) showed inhibitory effects on elicited epileptiform
discharges and potassium-induced spreading depression (Müller
et al., 2006). Another study reported decreased population spikes
amplitude in hippocampal slices (Ardjmand et al., 2006). The
discussed findings are in accordance with our observation of a
clear-cut inhibitory effect starting at 10 μM with almost complete
cessation at 100 μM.

In vitro not-active neuroactive substances
As previously discussed, three substances belonging to the neu-
roactive group, showed no impairment of electrical activity in
our experiment.

Toluene, despite its well known neurotoxic actions, did not
show any effect in our experiments (the slight decrease of activity
at 100 pM is likely due to the mechanical manipulation rather
than a true substance-related effect). Toluene volatility could
have diminished its availability for the cultured neurons, even
if after administration MEAs have been covered with semiper-
meable caps to avoid evaporation. Indeed, a transient decrease
of network activity has been observed immediately after the
administration of the maximum concentration, but disappeared
a few minutes later (data not shown, personal observation of
the experimenter).

Regarding ethanol, it is worth noting that the maximum con-
centration of 100 μM in our tests equals a blood alcohol level
of 0.005% which does not cause pronounced effects in humans.
Accordingly, the lack of effects on neuronal network activity at
lower concentrations has previously been reported; initial inhibi-
tion was only observed at 20 mM and total activity cessation at
100 mM (Xia and Gross, 2003).

Also Mepiquat chloride had no effect on our experiments, even
if neurotoxicity has been reported in in vivo studies. The first mild
diminution in activity at the first tested concentration that results
as statistically significant is probably due to mechanical manip-
ulation. Interestingly, Mepiquat neuroactive effects are already in
part mediated by nicotinic receptor binding (EFSA, 2008), and this
could be a critical aspect to detect in cortical neurons network as
discussed for nicotine effects.

The evaluation of the effects on MFR after substance adminis-
tration is certainly informative about neuronal activity, but is not a
clear description for a neuroactive effect. A strong cytotoxic com-
pound will end in a total cessation too, by measuring the electrical
activity. Therefore it is important to test also cytotoxic markers to
be able to distinguish between neuroactive and cytotoxic effects.
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We decided to investigate in a first experiment the recovery of
the neuronal networks after a wash-out of the chemical substance
as an indicator for cytotoxicity. Some of the substances showed
absolutely no recovery (as shown, e.g., for TMT), the majority of
substances showed a moderate recovery of activity, between 35
and 70%, which makes it difficult to distinguish between incom-
plete recovery, already present chemical agent, cytotoxic actions, or
other effects related to manipulation. Multiple medium exchanges
would be required to achieve a total wash-out, especially for water
insoluble compounds, and together with different times of recov-
ery before registration could help in generating more clear data.
However, looking at a method to get information about the way
of toxicity action of different substances, we propose that other
endpoints could be more informative as an integration to electro-
physiological measurements, such as the cytotoxicity assessment
(for example by measuring the release of lactate dehydrogenase
into the culture medium), or the evaluation of the metabolic state
of the cells. The alterations of electrical activity induced by a com-
pound’s application (functional neuroactivity) is indeed often not
associated to cell death (cytotoxicity), or direct cellular physiol-
ogy impairment. This is consistent with the acute neurotoxicity
of many xenobiotics (e.g., ethanol, pyrethroids, tetrodotoxin, etc.)
that cause the organism death prior to the onset of significant
cytotoxicity in the nervous system. While not examined in these

experiments, other studies (Novellino et al., 2011) showed that the
compounds modified neuronal network activity in the absence
of cytotoxicity. The evaluation of the previously mentioned
endpoints could help in distinguishing between the different
toxic effects.

CONCLUSION
For toxicological prediction of a compound, the detection and
characterization of chemical-induced toxic effects in the central
and peripheral nervous system represents a major challenge for
employing newly developed technologies in the field of neurotox-
icity (Dunlop et al., 2008). The use of neuronal cultures growing
on MEAs innovates the field of neurotoxicity: a neuronal network
coupled to MEA represents a simplified model of the nervous
system in which the electric activity is measured in real-time
while being exposed to tested substances. The presented feasi-
bility study provides a further evidence of the potential use and
usefulness of the proposed paradigm as an alternative method for
gathering neurotoxicity information for chemical risk assessment,
especially under a chemical industry perspective. So far the assay
appears to be a reliable tool to exclude neuroactivity of chemicals
in an early screening, and therefore we shall extend the evalua-
tion of the NN MEA as a screening tool for the neurotoxic effects
of chemicals.

REFERENCES
Abe, K., Saitoh, T., Horiguchi, Y.,

Utsunomiya, I., and Taguchi, K.
(2005). Synthesis and neurotoxicity
of tetrahydroisoquinoline deriva-
tives forstudyingParkinson’sdisease.
Biol. Pharm. Bull. 28, 1355–1362.

Ardjmand, A., Fathollahi,Y., Sayyah, M.,
Kamalinejad, M., and Omrani, A.
(2006). Eugenol depresses synaptic
transmission but does not prevent
the induction of long-term potenti-
ation in the CA1 region of rat hip-
pocampal slices. Phytomedicine 13,
146–151.

Balster, R. L. (1998). Neural basis
of inhalant abuse. Drug Alcohol
Depend. 51, 207–214.

Bal-Price, A. K., Hogberg, H. T., Buzan-
ska, L., Lenas, P., van Vliet, E., and
Hartung, T. (2010). In vitro devel-
opmental neurotoxicity (DNT) test-
ing: relevant models and endpoints.
Neurotoxicology 31, 545–554.

Battaglia, V., Salvi, M., and Toninello, A.
(2005). Oxidative stress is responsi-
ble for mitochondrial permeability
transition induction by salicylate in
liver mitochondria. J. Biol. Chem.
280, 33864–33872.

Bouldin, T. W., Goines, N. D., Bagnell,
R. C., and Krigman, M. R. (1981).
Pathogenesis of trimethyltin neu-
ronal toxicity. Ultrastructural and
cytochemical observations. Am. J.
Pathol. 104, 237–249.

Breckenridge, L. J., Wilson, R. J., Con-
nolly, P., Curtis, A. S., Dow, J. A.,
Blackshaw, S. E., and Wilkinson,
C. D. (1995). Advantages of using
microfabricated extracellular elec-
trodes for in vitro neuronal record-
ing. J. Neurosci. Res. 42, 266–276.

Brown, A. W., Aldridge, W. N., Street,
B. W., and Verschoyle, R. D. (1979).
The behavioral and neuropatho-
logic sequelae of intoxication by
trimethyltin compounds in the rat.
Am. J. Pathol. 97, 59–82.

Chang, L. W., Tiemeyer, T. M., Wenger,
G. R., and McMillan, D. E. (1982).
Neuropathology of mouse hip-
pocampus in acute trimethyltin
intoxication. Neurobehav. Toxicol.
Teratol. 4, 149–156.

Chiappalone, M., Bove, M., Vato, A.,
Tedesco, M., and Martinoia, S.
(2006).Dissociatedcorticalnetworks
show spontaneously correlated
activity patterns during in vitro
development.BrainRes.1093,41–53.

Coecke,S.,Eskes,C.,Garlton, J.,Kinsner,
A., Price, A., van Vliet, E., Prieto, P.,
Boveri, M., Bremer, S., Adler, S., Pel-
lizzer, C., Wendel, A., and Hartung,
T. (2006). The value of alternative
testing for neurotoxicity in the con-
text of regulatory needs. Environ.
Toxicol. Pharmacol. 21, 153–157.

Costa, L. G. (1998). Biochemical and
molecular neurotoxicology: rele-
vance to biomarker development,

neurotoxicity testing and risk
assessment. Toxicol. Lett. 102–103,
417–421.

Crofton, K. M., Makris, S. L., Sette,
W. F., Mendez, E., and Raffaele,
K. C. (2004). A qualitative retro-
spective analysis of positive control
data in developmental neurotoxic-
ity studies. Neurotoxicol. Teratol. 26,
345–352.

Deleu, D., and Hanssens, Y. (2000).
Cerebellar dysfunction in chronic
toluene abuse: beneficial response to
amantadine hydrochloride. J. Toxi-
col. Clin. Toxicol. 38, 37–41.

D’Hooge, R., Van de Vijver, G., Van
Bogaert, P. P., Marescau, B., Van-
holder, R., and De Deyn, P. P. (2003).
Involvement of voltage- and ligand-
gated Ca2 ( channels in the neuroex-
citatory and synergistic effects of
putative uremic neurotoxins. Kidney
Int. 63, 1764–1775.

Dinis-Oliveira, R. J., Duarte, J. A.,
Sánchez-Navarro, A., Remião, F.,
Bastos, M. L., and Carvalho, F.
(2008). Paraquat poisonings: mech-
anisms of lung toxicity, clinical fea-
tures, and treatment. Crit. Rev. Toxi-
col. 38, 13–71.

Dunlop, J., Bowlby, M., Peri, R., Vasi-
lyev, D., and Arias, R. (2008). High-
throughput electrophysiology: an
emerging paradigm for ion-channel
screening and physiology. Nat. Rev.
Drug Discov. 7, 358–368.

Dyer, R. S., Walsh, T. J., Wonderlin,
W. F., and Bercegeay, M. (1982).
The trimethyltin syndrome in rats.
Neurobehav. Toxicol. Teratol. 4,
127–133.

EFSA (2008). Conclusion regarding
the peer review of the pesticide
risk assessment of the active
substance mepiquat. Scientific
Report 2008 146, 1–73. Available at:
http://www.efsa.europa.eu/en/efsajo
urnal/doc/praper_concl_sr146_mep
iquat_en_web,0.pdf?ssbinary=true

Flanagan, R. J., Braithwaite, R. A.,
Brown, S. S., Widdop, B., and de
Wolff, F. A. (1995). The Inter-
national Programme on Chemical
Safety. Geneva: Basic Analytical Tox-
icology WHO.

Gelpí, E., Posada de la Paz, M., Terracini,
B., Abaitua, I., de la Cámara, A.
G., Kilbourne, E. M., Lahoz, C.,
Nemery, B., Philen, R. M., Soldevilla,
L., and Tarkowski, S. (2002). The
spanish toxic oil syndrome 20 years
after its onset: a multidisciplinary
review of scientific knowledge.
Environ. Health Perspect. 110,
457–464.

Gordon, C. J., Herr, D., Gennings, C.,
Gennings, C., Graff, J., and McMur-
ray, M. (2006). Thermoregulatory
response to an organophosphate and
carbamate insecticide mixture: test-
ing the assumption of dose additiv-
ity. Toxicology 217, 1–13.

Frontiers in Neuroengineering www.frontiersin.org April 2011 | Volume 4 | Article 6 | 10

http://www.efsa.europa.eu/en/efsajournal/doc/praper_concl_sr146_mepiquat_en_web,0.pdf?ssbinary=true
www.frontiersin.org


Defranchi et al. MEAs as neurotoxicity sensors

Gramowski, A., Jugelt, K., Weiss, D. G.,
and Gross, G. W. (2004). Substance
identification by quantitative char-
acterization of oscillatory activity
in murine spinal cord networks on
microelectrode arrays. Eur. J. Neu-
rosci. 19, 2815–2825.

Gramowski, A., Schiffmann, D., and
Gross, G. W. (2000). Quantifica-
tion of acute neurotoxic effects of
trimethyltin using neuronal net-
works cultured on microelectrode
arrays. Neurotoxicology 21, 331–342.

Gramowski, A., Stuewe, S., Juegelt, K.,
Schiffmann, D., Loock, J., Schroeder,
O., Gross, G. W., and Weiss, D.
G. (2006). Detecting neurotoxicity
through electrical activity changes of
neuronal networks on multielectro-
deneurochips. ALTEX 23(Suppl.),
410–415.

Gross, G. W., Harsch, A., Rhoades, B.
K., and Gopel, W. (1997). Odor,
drug and toxin analysis with neu-
ronal networks in vitro: extracel-
lular array recording of network
responses. Biosens. Bioelectron. 12,
373–393.

Gross, G. W., Rhoades, B. K., Reust, D.
L., and Schwalm, F. U. (1993). Stim-
ulation of monolayer networks in
culture through thin-film indium-
tin oxide recording electrodes. J.
Neurosci. Methods 50, 131–143.

Gross, G. W., Williams, A. N., and
Lucas, J. H. (1982). Recording
of spontaneous activity with pho-
toetched microelectrode surfaces
from mouse spinal neurons in cul-
ture. J. Neurosci. Methods 5, 13–22.

Grossmann, K., Kwiatkowski, J., and
Tresch, S. (2001). Auxin herbicides
induce H(2)O(2) overproduction
and tissue damage in cleavers (Gal-
ium aparine L.). J. Exp. Bot. 52,
1811–1816.

Guenette, S. A., Beaudry, F., Marier,
J. F., and Vachon, P. (2006). Phar-
macokinetics and anesthetic activity
of eugenol in male Sprague-Dawley
rats. J. Vet. Pharmacol. Ther. 29,
265–270.

Gupta, R. C. (2006). Toxicology of
Organophosphate and Carbamate
Compounds. Amsterdam: Elsevier.

Hartung, T., Bremer, S., Casati, S.,
Coecke, S., Corvi, R., Fortaner, S.,
Gribaldo, L., Halder, M., Hoffmann,
S., Roi, A. J., Prieto, P., Sabbioni,
E., Scott, L., Worth, A., and Zuang,
V. (2003). ECVAM’s response to
the changing political environment
for alternatives: consequences of the
European Union chemicals and cos-
metics policies. Altern. Lab. Anim.
31, 473–481.

Hartung, T., Bremer, S., Casati, S.,
Coecke, S., Corvi, R., Fortaner,

S., Gribaldo, L., Halder, M., Hoff-
mann, S., Roi, A. J., Prieto, P.,
Sabbioni, E., Scott, L., Worth, A.,
and Zuang, V. (2004). A modular
approach to the ECVAM principles
on test validity. Altern. Lab. Anim. 32,
467–472.

Hartung, T., and Rovida, C. (2009).
That which must not, can not be
…. A reply to the EChA and EDF
responses to the REACH analysis of
animal use and costs. ALTEX 26,
307–311.

Hogberg, T. H., Sobanski, T., Novel-
lino, A., Weiss, D. G., van Vliet, E.,
Whelan, M., and Bal-Price, A. K.
(2011). Application of micro elec-
trode arrays (MEAs) as an emerg-
ing technology for developmental
neurotoxicity: evaluation of domoic
acid-induced effects in primary cul-
tures of rat cortical neurons. Neuro-
toxicology 32, 158–168.

IPCS. (1991). “Chlorobenzenes other
than hexachlorobenzene,” in Inter-
national Programme on Chemical
Safety. Environmental Health Cri-
teria 128 (Geneva: World Health
Organization), 252.

Johnstone, A. F., Gross, G. W., Weiss, D.
G., Schroeder, O. H., Gramowski, A.,
and Shafer, T. J. (2010). Microelec-
trode arrays: a physiologically based
neurotoxicity testing platform for
the 21st century. Neurotoxicology 31,
331–350.

Kamran, S., and Bakshi, R. (1998). MRI
in chronic toluene abuse: low sig-
nal in the cerebral cortex on T2-
weighted images. Neuroradiology 40,
519–521.

Kavitha, V., and Palanivelu, K. (2005).
Destruction of cresols by Fenton
oxidation process. Water Res. 39,
3062–3072.

Keefer, E. W., Gramowski, A., and Gross,
G. W. (2001a). NMDA receptor-
dependent periodic oscillations in
cultured spinal cord networks. J.
Neurophysiol. 86, 3030–3042.

Keefer, E. W., Norton, S. J., Boyle,
N. A., Talesa, V., and Gross, G.
W. (2001b). Acute toxicity screen-
ing of novel AChE inhibitors using
neuronal networks on microelec-
trode arrays. Neurotoxicology 22,
3–12.

Kinney, J. L. (1985). Nomifensine mal-
eate – a new 2nd-generation anti-
depressant. Clin. Pharm. 4, 625–636.

Kuramoto, N., Seko, K., Sugiyama, C.,
Shuto, M., and Ogita, K. (2011).
Trimethyltin initially activates the
caspase 8/caspase 3 pathway for
damaging the primary cultured cor-
tical neurons derived from embry-
onic mice. J. Neurosci. Res. 89,
552–561.

Lane, B. W., Ellenhorn, M. J., Hulbert, T.
V., and McCarron, M. (1991). Clove
oil ingestion in an infant. Hum. Exp.
Toxicol. 10, 291–294.

Lein, P., Locke, P., and Goldberg, A.
(2007). Meeting report: alterna-
tives for developmental neurotoxic-
ity testing. Environ. Health Perspect.
115, 764–768.

Lindstro, J. (1997). Nicotinic acetyl-
choline receptors in health and dis-
ease. Mol. Neurobiol. 15, 193–222.

Maccione, A., Gandolfo, M., Massobrio,
P., Novellino, A., Martinoia, S., and
Chiappalone, M. (2009). A novel
algorithm for precise identification
of spikes in extracellularly recorded
neuronal signals. J. Neurosci. Meth-
ods 177, 241–249.

Mansvelder, H. D., Mertz, M., and
Role, L. W. (2009). Nicotinic mod-
ulation of synaptic transmission
and plasticity in cortico-limbic cir-
cuits. Semin. Cell Dev. Biol. 20,
432–440.

Martinoia, S., Bonzano, L., Chiap-
palone, M., Tedesco, M., Marcoli, M.,
and Maura, G. (2005). In vitro cor-
tical neuronal networks as a new
high-sensitive system for biosensing
applications. Biosens. Bioelectron. 20,
2071–2078.

Metherate, R. (2004). Nicotinic acetyl-
choline receptors in sensory cortex.
Learn. Mem. 11, 50–59.

Miller, G. W. (2007). Paraquat: the
red herring of Parkinson’s disease
research. Toxicol. Sci. 100, 1–2.

Monnet-Tschudi, F., Zurich, M. G., and
Honegger, P. (1997). “Aggregate cell
cultures for neurotoxicity testing:
the importance of cell-cell interac-
tions,” in Animal Alternatives, Wel-
fare and Ethics, eds L. F. M. van
Zutphen and M. Balls (Amsterdam:
Elsevier), 641–649.

Morefield, S. I., Keefer, E. W., Chap-
man, K. D., and Gross, G. W.
(2000). Drug evaluations using neu-
ronal networks cultured on micro-
electrode arrays. Biosens. Bioelectron.
15, 383–396.

Müller, M., Pape, H. C., Speck-
mann, E. J., and Gorji, A. (2006).
Effect of eugenol on spreading
depression and epileptiform dis-
charges in rat neocortical and hip-
pocampal tissues. Neuroscience 140,
743–751.

Nanau, R. M., and Neuman, M. G.
(2010). Ibuprofen-induced hyper-
sensitivity syndrome. Transl. Res.
155, 275–293.

Novellino, A., D’Angelo, P., Cozzi, L.,
Chiappalone, M., Sanguineti, V., and
Martinoia, S. (2007). Connecting
neurons to a robot: an in vitro
bidirectional neural interface.

Comput. Intell. Neurosci. 2007,
121725.

Novellino, A., Scelfo, B., Palosaari, T.,
Price, A., Sobanski, T., Shafer, T. J.,
Johnstone, A. F. M., Gross, G. W.,
Gramowski, A., Schroeder, O., Chi-
appalone, M., Benfenati, F., Marti-
noia, S., Tedesco, M. T., Defranchi,
E., D’Angelo, P., and Whelan, M.
(2011). Development of micro-
electrode array based tests for neu-
rotoxicity: assessment of interlabo-
ratory reproducibility with neuroac-
tive chemicals. Front. Neuroeng. 4:4.
doi: 10.3389/fneng.2011.00004

Novellino,A., and Zaldívar, J. M. (2010).
Recurrence quantification analysis
of spontaneous electrophysiological
activity during development: char-
acterization of in vitro neuronal
networks cultured on multi elec-
trode array chips. Adv. Artif. Intell.
1–10.

NRC. (2007). Committee on Tox-
icity Testing and Assessment of
Environmental Agents, National
Research Council. Toxicity Testing
in the 21st Century: A Vision and a
Strategy. National Research Council;
National Academies of Science.
Washington, DC: The National
Academies Press. Available at: http://
www.nap.edu/catalog.php?record_
id=11970

Nuwayhid, S. J., and Werling, L.
L. (2006). Sigma(2) (sigma(2))
receptors as a target for cocaine
action in rat striatum. Eur. J. Phar-
macol. 535, 98–103.

Obach, R. S., and Dalvie, D. K.
(2006). Metabolism of nomifen-
sine to a dihydroisoquinolinium
ion metabolite by human myeloper-
oxidase, hemoglobin, monoamine
oxidase A, and cytochrome P450
enzymes. Drug Metab. Dispos. 34,
1310–1316.

OECD. (1997). Test Guideline No. 424:
OECD Guideline for Testing of Chem-
icals. Neurotoxicity Study in Rodents.
Available at: http://www.oecdilib
rary.org/docserver/download/fullte
xt/9742601e.pdf?expires=126089388
0&id=0000&accname=freeContent
&checksum=FA8DCD77CAB11C14
460B2CCB0B650DD6

Ossowska, K., Smialowska, M., Kuter,
K., Wieronska, J., Zieba, B., Wardas,
J., Nowak, P., Dabrowska, J., Bor-
tel, A., Biedka, I., Schulze, G., and
Rommelspacher, H. (2006). Degen-
eration of dopaminergic mesocorti-
cal neurons and activation of com-
pensatory processes induced by a
long-term paraquat administration
in rats: implications for Parkin-
son’s disease. Neuroscience 141,
2155–2165.

Frontiers in Neuroengineering www.frontiersin.org April 2011 | Volume 4 | Article 6 | 11

www.frontiersin.org


Defranchi et al. MEAs as neurotoxicity sensors

Pancrazio, J. J., Gray, S. A., Shubin,
Y. S., Kulagina, N., Cuttino, D. S.,
Shaffer, K. M., Eisemann, K., Cur-
ran, A., Zim, B., Gross, G. W.,
and O’Shaughnessy, T. J. (2003).
A portable microelectrode array
recording system incorporating cul-
tured neuronal networks for neuro-
toxin detection. Biosens. Bioelectron.
18, 1339–1347.

Parviz, M., and Gross, G. W. (2007).
Quantification of zinc toxicity using
neuronal networks on microelec-
trode arrays. Neurotoxicology 28,
520–531.

Paterson, D., and Nordberg, A. (2000).
Neuronal nicotinic receptors in the
human brain. Prog. Neurobiol. 61,
75–111.

Philbert, M. A., Billingsley, M. L., and
Reuhl, K. R. (2000). Mechanisms of
injury in the central nervous system.
Toxicol. Pathol. 28, 43–53.

Pohl-Guimaraes, F., Calaza, K. D.,
Yamasaki, E. N., Kubrusly, R. C.
C., and Reis, R. A. D. (2010).
Ethanol increases GABA release in
the embryonic avian retina. Int. J.
Dev. Neurosci. 28, 189–194.

Potter, S. M. (2001). Distributed pro-
cessing in cultured neuronal net-
works. Prog. Brain Res. 130, 49–62.

Potter, S. M., and DeMarse, T. B. (2001).
A new approach to neural cell cul-
ture for long-term studies. J. Neu-
rosci. Methods 110, 17–24.

Schepers, E., Meert, N., Glorieux,
G., Goeman, J., Van der Eycken,
J., and Vanholder, R. (2007). P-
cresylsulphate, the main in vivo
metabolite of p-cresol, activates
leucocyte free radical production.
Nephrol. Dial. Transplant. 22,
592–596.

Sewell, G., Nanry, K. P., Kennedy, J.,
Stiger, T. R., and Harmon, R. E.
(1985). Supra-additive toxic interac-
tion of nicotine with antihistamines,
and enhancement by the proconvul-
sant pentylenetetrazole. Pharmacol.
Biochem. Behav. 22, 469–477.

Shafer, T. J., Rijal, S. O., and Gross,
G. W. (2008). Complete inhibition
of spontaneous activity in neuronal
networks in vitro by deltamethrin
and permethrin. Neurotoxicology 29,
203–212.

Streit, J. (1993). Regular oscillations of
synaptic activity in spinal networks
in vitro. J. Neurophysiol. 70,
871–878.

Sundstrom, L., Morrison, B. III,
Bradley, M., and Pringle, A. (2005).
Organotypic cultures as tools
for functional screening in the
CNS. Drug Discov. Today 10,
993–1000.

Tabakman, R., Lecht, S., Sephanova,
S., Arien-Zakay, H., and Lazarovici,
P. (2004). Interactions between the
cells of the immune and nervous sys-
tem: neurotrophins as neuroprotec-
tion mediators in CNS injury. Prog.
Brain Res. 146, 387–401.

Tayeb, W., Nakbi, A., Trabelsi, M., Attia,
N., Miled, A., and Hammami, M.
(2010). Hepatotoxicity induced by
sub-acute exposure of rats to 2,4-
dichlorophenoxyacetic acid based
herbicide Désormonelourd. J. Haz-
ard. Mater. 180, 225–233.

Thrash, B., Uthayathas, S., Karup-
pagounder, S. S., Suppiramaniam,
V., and Dhanasekaran, M. (2007).
Paraquat and maneb induced neuro-
toxicity. Proc. West. Pharmacol. Soc.
50, 31–42.

Toledano, A., Alvarez, M. I., and
Toledano-Díaz, A. (2010). Diver-
sity and variability of the effects
of nicotine on different cortical
regions of the brain – therapeutic
and toxicological implications. Cent.
Nerv. Syst. Agents Med. Chem. 10,
180–206.

US EPA. (1994). 1,2,4-Trichlorobenzene.
U.S. Environmental Protection
Agency. Integrated Risk Infor-
mation System (IRIS) Online.
Cincinnati, OH: Office of Health
and Environmental Assessment,
USEPA.

US EPA. (1998). Health Effects
Guidelines OPPTS 870.6300 Devel-
opmental Neurotoxicity Study.
Available at: http://www.epa.gov/
opptsfrs/publications/Test_Guide
lines/series870.htm

Uyanikgil, Y., Ates, U., Baka, M.,
Biçer, S., Oztas, E., and Ergen,
G. (2009). Immunohistochemical
and histopathological evaluation
of 2,4-dichlorophenoxyacetic acid-
induced changes in rat kidney cor-
tex. Bull. Environ. Contam. Toxicol.
82, 749–755.

Van Pelt, J., Corner, M. A., Wolters, P.
S., Rutten, W. L., and Ramakers, G.
J. (2004a). Long-term stability and
developmental changes in sponta-
neous network burst firing patterns
in dissociated rat cerebral cortex cell
cultures on multielectrode arrays.
Neurosci. Lett. 361, 86–89.

Van Pelt, J., Wolters, P. S., Corner, M.
A., Rutten, W. L., and Ramakers,
G. J. (2004b). Long-term character-
ization of firing dynamics of spon-
taneous bursts in cultured neural
networks. IEEE Trans. Biomed. Eng.
51, 2051–2062.

Van Pelt, J., Vajda, I., Wolters, P. S.,
Corner, M. A., and Ramakers, G.
J. (2005). Dynamics and plastic-
ity in developing neuronal net-
works in vitro. Prog. Brain Res. 147,
173–188.

van Vliet, E., Stoppini, L., Balestrino,
M., Eskes, C., Griesinger, C., Soban-
ski, T., Whelan, M., Hartung,
T., and Coecke, S. (2007). Elec-
trophysiological recording of re-
aggregating brain cell cultures on
multi-electrode arrays to detect
acute neurotoxic effects. Neurotoxi-
cology 28, 1136–1146.

Xia, Y., Gopal, K. V., and Gross, G. W.
(2003). Differential acute effects of
fluoxetine on frontal and auditory
cortex networks in vitro. Brain Res.
973, 151–160.

Xia, Y., and Gross, G. W. (2003).
Histiotypic electrophysiological

responses of cultured neuronal
networks to ethanol. Alcohol 30,
167–174.

Yamanouchi, N., Okada, S., Kodama,
K., Hirai, S., Sekine, H., Murakami,
A., Komatsu, N., Sakamoto, T.,
and Sato, T. (1995). White matter
changes caused by chronic solvent
abuse. AJNR Am. J. Neuroradiol. 16,
1643–1649.

Wagenaar, D. A., Pine, J., and
Potter, S. M. (2006). An extremely
rich repertoire of bursting patterns
during the development of cortical
cultures. BMC Neurosci. 7, 11. doi:
10.1186/1471-2202-7-11

Win-Shwe, T. T., and Fujimaki, H.
(2010). Neurotoxicity of toluene.
Toxicol. Lett. 198, 93–99.

Wonnacott, S. (1997). Presynaptic nico-
tinic ACh receptors. Trends Neurosci.
20, 92–98.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 24 December 2010; paper pend-
ing published: 26 January 2011; accepted:
03 April 2011; published online: 28 April
2011.
Citation: Defranchi E, Novellino A, Whe-
lan M, Vogel S, Ramirez T, van Raven-
zwaay B and Landsiedel R (2011) Feasi-
bility assessment of micro-electrode chip
assay as a method of detecting neurotox-
icity in vitro. Front. Neuroeng. 4:6. doi:
10.3389/fneng.2011.00006
Copyright © 2011 Defranchi, Novellino,
Whelan, Vogel, Ramirez, van Raven-
zwaay and Landsiedel. This is an open-
access article subject to a non-exclusive
license between the authors and Frontiers
Media SA, which permits use, distribu-
tion and reproduction in other forums,
provided the original authors and source
are credited and other Frontiers condi-
tions are complied with.

Frontiers in Neuroengineering www.frontiersin.org April 2011 | Volume 4 | Article 6 | 12

www.frontiersin.org

	Feasibility assessment of micro-electrode chip assay as a method of detecting neurotoxicity in vitro
	Trimethyltin chloride.
	Nicotine.
	Fipronil.
	Eugenol.






<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


