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Recent adult functional magnetic resonance imaging (fMRI) studies reported that face-
sensitive cortical areas showed attenuated responses to the repeated presentation of
an identical facial image compared to the presentation of different facial images (fMRI-
adaptation effects: e.g., Andrews and Ewbank, 2004). Building upon this finding, the
current study, employing the adaptation paradigm, used near-infrared spectroscopy (NIRS)
to explore the neural basis of face processing in infants. In Experiment 1, we compared
hemodynamic responses in the bilateral temporal regions during the repeated presenta-
tion of the same face (the same-face condition) and the sequential presentation of different
faces (the different-face condition). We found that (1) hemodynamic responses in the chan-
nels around the T5 and T6 regions increased during the presentation of different faces
compared to those during the presentation of different objects; and that (2) these channels
showed significantly lower response in the same-face condition than in the different-face
condition, demonstrating the neural adaptation effect in 5- to 8-month-olds as measured
by NIRS. In Experiment 2, when faces in both the same-face and different-face conditions
were changed in viewpoint, lower hemodynamic responses in the same-face condition
were found in 7- to 8-month-olds but not in 5- to 6-month-olds. Our results suggest that
faces are represented in a viewpoint-invariant manner in 7- and 8-month-old infants.
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INTRODUCTION
Near-infrared spectroscopy (NIRS) is a non-invasive neuroimag-
ing method that measures changes in concentrations of oxyhe-
moglobin (oxy-Hb), deoxyhemoglobin (deoxy-Hb), and total-
hemoglobin (total-Hb; Villringer and Chance, 1997; Hoshi et al.,
2001). Previous studies conducting simultaneously measurement
of NIRS and functional magnetic resonance imaging (fMRI) dur-
ing the simple motor task revealed that there is a strong correlation
between signals measured with NIRS and fMRI (Toronov et al.,
2001, 2007; Strangman et al., 2002). In the recent study, Cui et al.
(2011) also showed such correlation between NIRS and fMRI sig-
nals even for cognitive task. Therefore, NIRS is reliable method to
measure the brain activation. Unlike fMRI and positron emission
tomography (PET), NIRS can record even if the subjects’ body
and brain do not remain in fixed position. Hence, NIRS makes it
possible to measure the brain activities of infants while they are
awake.

Previous developmental studies of infants using NIRS have
shown that NIRS can detect the brain activity induced by various
visual patterns (Taga et al., 2003, 2004; Kusaka et al., 2004; Karen
et al., 2008), odor stimulation (Bartocci et al., 2000), auditory

stimulation (Taga and Asakawa, 2007), and speech patterns (Pena
et al., 2003; Bortfeld et al., 2007). Furthermore, some studies have
shown the brain activity that underlies infants’ cognitive process-
ing in tasks such as the perception of objects (Baird et al., 2002;
Wilcox et al., 2005, 2008, 2009; Watanabe et al., 2010), and faces
(Otsuka et al., 2007; Carlsson et al., 2008; Grossmann et al., 2008;
Nakato et al., 2009, 2011a,b; Honda et al., 2010).

Otsuka et al. (2007) used NIRS to reveal an inter-hemispheric
difference in infants’ face processing between the presentation of
upright and inverted faces. They revealed that the presentation of
upright faces induces a greater concentration of oxy-Hb and total-
Hb in the right temporal area than the presentation of objects,
suggesting that the right hemisphere is more important than the
left for the processing of upright faces. Moreover, Nakato et al.
(2009) revealed that developmental differences in infants’ brain
activity occur during the presentation of frontal and profile views,
and suggest that the right temporal area is dominant for the pro-
file as well as the frontal view. Consistent with Otsuka et al. (2007)
and Nakato et al. (2009), more recent NIRS studies have reported
that infants’ temporal region is selectively activated by the presen-
tation of faces using facial images of facial expressions (Nakato

Frontiers in Human Neuroscience www.frontiersin.org November 2011 | Volume 5 | Article 153 | 1

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/Human_Neuroscience/10.3389/fnhum.2011.00153/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=37876&d=1&sname=MegumiKobayashi&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=15318&d=1&sname=YumikoOtsuka&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=18776&d=0&sname=SoKanazawa&name=all people
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=18775&d=0&sname=MasamiYamaguchi&name=all people
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=2713&d=1&sname=RyusukeKakigi&name=Science
mailto:oc084001@grad.tamacc.{\penalty -\@M }chuo-u.ac.jp
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Kobayashi et al. Face representation in infant brain

et al., 2011b), canonical vs. scrambled faces (Honda et al., 2010),
dynamic point-lighted facial display (Ichikawa et al., 2010), mutual
gaze vs. averted gaze (Grossmann et al., 2008), and mother’s face
vs. strangers’ faces (Carlsson et al., 2008; Nakato et al., 2011a).
These previous NIRS studies of infants showed that the temporal
area was involved in the face recognition during infancy (Otsuka
et al., 2007; Carlsson et al., 2008; Grossmann et al., 2008; Nakato
et al., 2009, 2011a,b; Honda et al., 2010; Ichikawa et al., 2010).
However, exactly which aspects of facial information are being
processed in this face-selective region remains unanswered. In the
present study, we explored the nature of facial representation in
the temporal face-sensitive region found in the previous studies
using the adaptation paradigm.

A growing number of recent adult fMRI studies have success-
fully employed the technique of fMRI-adaptation as a tool for
examining the functional properties and the nature of representa-
tion processed in a particular neural population. fMRI-adaptation
refers to the attenuation of fMRI signals to the repeated presenta-
tion of identical stimulus compared to the presentation of different
stimuli (e.g., Grill-Spector et al., 2006). Many previous studies have
reported that in the lateral occipital complex (LOC), which shows
strong activity for objects, the repeated presentation of an identical
object induced lower fMRI signals (Buckner et al., 1998; Grill-
Spector et al., 1998; Grill-Spector and Malach, 2001; Kourtzi and
Kanwisher, 2001; Ewbank et al., 2005). Recently, specific regions
of the face, the fusiform face area (FFA) and the superior tem-
poral sulcus (STS; Kanwisher et al., 1997), also showed the same
adaptation effect (Grill-Spector et al., 1999; Henson et al., 2000;
Avidan et al., 2002; Henson and Rugg, 2003; Andrews and Ewbank,
2004). That is, the brain activity that occurs during the repeated
presentation of an identical face is attenuated compared to brain
activity during the presentation of different faces. The nature of
the representation in these cortical areas was assessed by mea-
suring the recovery from the adaptation when some stimulus
properties were changed. If the fMRI signal remained adapted
despite changes in the property of the stimulus, it indicates that
the neuron is invariant to the property of the stimulus. On the
other hand, if fMRI signals recovered from the adaptation, it
means that the neuron is sensitive to the property of the stim-
ulus. Using the technique of fMRI-adaptation and assessing the
recovery from fMRI-adaptation, previous adult studies revealed
that the representation of faces in the temporal area is invariant
in translation and size (Grill-Spector et al., 1999; Andrews and
Ewbank, 2004). We contemplated that if the technique of adapta-
tion can be used in infants, it would provide a powerful tool for
assessing the functional properties of the infant brain.

As a first step in establishing the neural adaptation effect in
infants in the present study, we examined whether the adapta-
tion effect occurs in infants’ brain activity. Based on our previous
NIRS studies (Otsuka et al., 2007; Carlsson et al., 2008; Gross-
mann et al., 2008; Nakato et al., 2009, 2011a,b; Honda et al., 2010;
Ichikawa et al., 2010), we focused on the processing of faces in the
temporal regions of the infant brain. Using NIRS, we compared
infants’ brain activity in the bilateral temporal regions during the
presentation of an identical face and the presentation of different
faces. In Experiment 1, we aimed to establish the NIRS-adaptation
paradigm in infants. Using frontal facial images as stimuli, we

compared infants’ hemodynamic responses to the presentation of
five different facial images (the different-face condition) with their
responses to the repeated presentation of an identical facial image
(the same-face condition). We hypothesized that brain activity
would be attenuated for the same-face condition compared to that
of the different-face condition as a result of the adaptation effect. To
further examine the nature of facial representation using the adap-
tation paradigm, we presented faces in varying points of view in
Experiment 2. That is, we compared the hemodynamic responses
to the presentation of the same face seen from the different view-
point (the same-face condition) with that to the different faces
seen from the different viewpoint (the different-face condition).
We hypothesized that if faces are represented in a view-invariant
manner, responses to the same-face condition would be attenuated
compared to those to the different-face condition.

EXPERIMENT 1
MATERIALS AND METHODS
Participants
The final sample of Experiment 1 consisted of 12 healthy infants
aged 5–8 months (8 boys and 4 girls, mean age 179.4 days,
SD = 38.5 days). Fifteen additional infants were excluded because
of an insufficient number of available trials (less than three trials
for either the same-face or the different-face condition), crying,
failure to look at stimuli, or motion artifacts. One infant’s data
was excluded because the optimal condition for the measurement
could not be achieved due to hair interference (less than 20 intact
channels). All infants were full-term at birth and healthy at the
time of testing. The infants were recruited through newspaper
advertisements. This study was approved by the Ethical Commit-
tee of the National Institute for Physiological Sciences, and written
informed consent was obtained from the parents of the infant
participants. The experiments were conducted according to the
Declaration of Helsinki.

Stimuli and design
The stimuli for the baseline period consisted of full-color photo
images of five vegetables, which were the same as those used in our
previous studies (Otsuka et al., 2007; Nakato et al., 2009, 2011a,b;
Honda et al., 2010; Kobayashi et al., 2012). The stimuli for the test
period consisted of full-color photo images of five female faces in
a frontal viewpoint. The sizes of the stimuli were approximately
17.5˚ × 21˚ for the faces, and 16.8˚ × 16.8˚ for the vegetables. The
facial expression of five female faces was neutral.

There were two conditions for the test period: the same-face
condition and the different-face condition (Figure 1A). The dura-
tion of each trial was fixed for 10 s. In the different-face condition,
five young female faces were shown in random order at a rate of
0.5 Hz within a trial. Each image flashed twice for 800 ms, and a
200-ms inter-stimulus interval was filled by the presentation of a
fixation point (a small red cross). In the same-face condition, one
of the five faces was selected for each trial, and was shown repeat-
edly throughout the 10-s trial. The face in the same-face condition
differed trial by trial without repeat until all five faces were pre-
sented. The order of presentation of the five faces was randomized
for each infant. As in the different-face condition, each face flashed
for a duration of 800 ms and a 200-ms ISI was filled with the
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FIGURE 1 | (A) Experimental procedure in Experiment 1. In each trial, the
baseline period consisted of stimuli of images of five vegetables, and its
duration was at least 10 s. The test period consisted of two conditions
presenting frontal faces: the same-face condition and the different-face
condition. The duration of the test period was fixed for 10 s. The
presentation order of test period 1 and 2 were changed alternately for each
infant. (B) Experimental procedure in Experiment 2. The test period
consisted of two conditions under the multiple viewpoint presentation: the
same-face condition and the different-face condition.

fixation point. The same-face and different-face conditions were
presented at alternating trials. The order of the presentation was
counterbalanced across infants. The trials were repeated as long as
infants were willing to look at stimulus display. The mean number
of the trials presented for infants per condition was 10.8 trials for
the different-face condition, and 10.3 trials for the same-face con-
dition. The same-face and different-face condition followed the
baseline period.

As in our previous studies (Otsuka et al., 2007; Nakato et al.,
2009, 2011a,b; Honda et al., 2010; Kobayashi et al., 2012), the five
vegetables were shown in a random order at a rate of 0.5 Hz during
the baseline period. As with the different-face condition, each veg-
etable’s image flashed twice for a duration of 800 ms, and a 200-ms
ISI was filled with a fixation point (a small red cross). Each trial
followed a baseline period of at least 10 s. The duration of the
baseline period was controlled by the experimenter. The results
obtained from viewing objects were used as the baseline.

To draw and keep the attention of infants, both face stimuli
and vegetables were accompanied by a beeping sound presented at
1 Hz. Two different sounds were used for the face stimuli and the
vegetables, and these sounds were used in both the same-face and
different-face conditions. The relationship between the sounds and
the visual stimuli was counterbalanced across infants.

Apparatus
Throughout the experiments, all stimuli were displayed on a 21-in
color CRT monitor with a resolution of 1024 × 768 pixels con-
trolled by a computer. The infant and CRT monitor were located
inside an enclosure made of iron poles and covered with cloth. The
distance between the infants and the monitor was approximately
40 cm. There were two loudspeakers, one on either side of the CRT
monitor. There was a CCD camera just below the monitor screen.
Throughout the experiment, the infant’s behavior was videotaped
through this camera. The experimenter could observe the infant’s
behavior via a TV monitor connected to a pinhole camera.

Procedure
Each infant was tested while sitting on the experimenter’s lap and
facing a CRT monitor 40 cm away. The infants watched the stim-
uli passively while their brain activity was measured and they were
allowed to watch the stimuli for as long as they were willing. The
participants’ behavior was videotaped during the experiment.

Recording
We used a HITACHI ETG-100 device system (Hitachi Medical,
Chiba, Japan), which can record NIRS from 24 channels simulta-
neously, with 12 channels for the right temporal area, and 12 for the
left. The instrument generated two wavelengths of NIR (780 and
830 nm). The HITACHI ETG-100 measured the time-courses of
the levels of oxyhemoglobin (oxy-Hb), deoxyhemoglobin (deoxy-
Hb), and their sum (total-hemoglobin, total-Hb) at 24 channels
with 0.1-s time resolution. Since we used newly developed NIRS
sensor probes (Hitachi Medical, Infant probe 3 × 3 mode) for
recording the infants, which have a lighter weight than previous
probes and make softer contact with the skin, it was observed
that most infants appeared to enjoy the experiments and were not
reluctant to participate. We used a pair of probes, each contain-
ing nine optical fibers (3 × 3 arrays). Of the nine fibers, five were
emitters, and four were detectors. The optical fibers of each probe
were kept in place with a soft silicon holder. The distance between
the emitters and detectors was set at 2 cm because each pair of
adjacent emitting and detecting fibers were defined a single mea-
surement channel, which allowed for the measurement of oxy-Hb
and deoxy-Hb changes in 12 channels for each hemisphere.

In each hemisphere, the placement of the probes covered the
temporal area centered at T5 and T6 according to the Interna-
tional 10–20 system (Jasper, 1958). This was a more posterior
region than that of our previous study (Otsuka et al., 2007) and
the same region as that of our recent studies (Nakato et al., 2009,
2011a,b; Honda et al., 2010; Ichikawa et al., 2010; Kobayashi et al.,
2012), since the posterior region of the temporal lobe is thought
to be more important for face perception than the anterior and
middle regions (Puce et al., 1996; Kanwisher et al., 1997; Halgren
et al., 1999; Kanwisher and Yovel, 2006; see Figure 2).

When the probes were positioned, the experimenter checked
to see if the fibers were touching each infant’s scalp correctly. The
Hitachi ETG-100 systems automatically detect whether the con-
tact is adequate to measure the emerging photos for each channel.
The channels were rejected from the analysis if adequate contact
between the fibers and each infant’s scalp could not be achieved
because of hair interference.
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FIGURE 2 | Location of the probe and the measurement channels. The
fibers were placed on the left and right temporal areas centering at the T5
and T6 of the International 10–20 system. The distance between the fibers
was set at 2 cm.

Data analysis
Throughout the experiment, the infants’ behavior was recorded on
videotape. We removed the trials from analysis if (1) the infants
did not look at the test stimuli for at least the first 7 s of the 10-
s presentation or if they became fussy, (2) if the infants looked
back at the face of the experimenter during the preceding baseline
period, or (3) if the trials included movement artifacts which were
detected by the analysis of sharp changes in the time series of the
raw data of the NIRS.

On the basis of the wavelengths of the ETG-100 model (780 and
830 nm), the estimations of oxy-Hb and total-Hb concentrations
are more precise than those of the deoxy-Hb concentration (Pena
et al., 2003; Otsuka et al., 2007). Since one of the advantages of
NIRS over fMRI is its ability to measure the concentration of both
oxy- and deoxy-Hb, the data of oxy-Hb, deoxy-Hb, and total-Hb
concentrations in the right and left temporal areas were used for
the analysis in the present study.

The raw data of oxy-Hb, deoxy-Hb, and total-Hb from individ-
ual channels were digitally high-pass-filtered at 0.02 Hz to remove
any longitudinal signal drift (Taga et al., 2003; Otsuka et al., 2007;
Nakato et al., 2009, 2011a,b; Honda et al., 2010; Kobayashi et al.,
2012). Then the raw data of each channel were averaged across the
trials within a subject in a time series of 0.1 s time resolutions from
2 s before the test trial onset to 10 s after the test trial offset.

From the time series of raw data of oxy-Hb, deoxy-Hb, and
total-Hb, we calculated Z -scores at each time point to examine
deviation of hemodynamic response to the presentation of faces
from the baseline period where objects (vegetables) were shown.
The Z -scores were calculated separately for oxy-Hb, deoxy-Hb,
and total-Hb in the same-face and different-face condition for each
channel within a subject. The Z -scores were calculated as the dif-
ference of the means of the baseline and test condition divided by
the SD of the baseline using the following formula:

d = (mtest − mbaseline)/s

Accordingly, mtest represents the averaged value of raw data dur-
ing the test trials (different-face and same-face condition) and

mbaseline represents that of raw data during the vegetable baseline
period. s represents the SD of the baseline. In the present study,
the “baseline” to calculate the Z -score means the mean value of
2 s immediately before the beginning of the each test condition
within the baseline period which reflects the activation during
the observation of vegetable images. Then the Z -scores obtained
from 12 channels within each measurement area were averaged in
order to increase the signal-to-noise ratio. Although the raw data
of NIRS were originally relative values, and could not be averaged
directly across subjects or channels, the normalized data such as
the Z -scores could be averaged regardless of the unit (Schroeter
et al., 2003; Matsuda and Hiraki, 2006; Shimada and Hiraki, 2006).

Consistent with previous studies using NIRS (Nakato et al.,
2009, 2011a,b; Honda et al., 2010), we found that a response peak
lag a few seconds behind stimulus onset (see Figure 3). Therefore,
we performed statistical analyses against the mean Z -scores from 3
to 7 s after the face stimulus onset. A two-tailed one-sample t -test
against a chance level of 0 (baseline) was conducted for the mean
Z -score during the 3- to 7-s of the test trials in the left and right
temporal areas. Furthermore, for all 24 channels, each channels’
activation was tested by a two-tailed one-sample t -test against the
baseline. To eliminate the risk of a Type I error, we performed the
corrections using the false discovery rate (FDR; Singh and Dan,
2006).

Finally, a channels-of-interest (COI) was conducted for the
channels which showed a significant increase in the concentration
of oxy-Hb in the different-face condition compared to the base-
line period (presentation of objects). We conducted a repeated-
measure ANOVA with two within-subject factors, condition and
channels on the COI region.

RESULTS
We obtained hemodynamic responses from 12 infants who looked
at the stimuli for more than three trials in both the same-face and
different-face conditions. The mean number of trials was 5.33 for
the same-face condition, and 5.41 for the different-face condition.
The mean number of channels was 11.88 for both the right and
left temporal areas.

Figure 3 shows the time-course of the average change of the
oxy-, deoxy-, and total-Hb concentrations while the infants looked
at either the same-face or different-face condition. Zero on the
horizontal axis represents the beginning of the test period and 10
on the horizontal axis represents the end of the test period. The
graphs in the left column show data from the left temporal area
(1–12 channels), and those in the right column show data from the
right temporal area (13–24 channels). The black line in the graphs
represents the mean Z -score of the different-face condition, and
the gray line represents the mean Z -score of the same-face condi-
tion. In both conditions, the hemodynamic changes of deoxy-Hb
and total-Hb were smaller than those of oxy-Hb. The concentra-
tion of oxy-Hb in both the left and right temporal areas showed
greater increase during the different-face condition than during
the same-face condition. These increases in the different-face con-
dition occurred at about 3 s after the onset of the stimuli and the
decrease occurred at about 7 s.

Figure 4 shows the mean Z -score from 3 to 7 s of the trial in
the left and right temporal areas. A repeated-measure ANOVA
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FIGURE 3 |The time-course of the average change in oxyhemoglobin

(oxy-Hb), deoxyhemoglobin (deoxy-Hb), and total-hemoglobin (total-Hb)

concentrations during the same-face condition and the different-face

condition in Experiment 1. The left column shows data from the left
temporal area, and the right column shows those from the right temporal

area. The black line in the graph represents the mean Z -score of the
different-face condition, and gray line represents the mean Z -score of the
same-face condition. Zero on the horizontal axis represents the beginning of
the test period and 10 on the horizontal axis represents the end of the test
period.

with condition (same-face vs. different-face) and measurement
area (right vs. left) as the within-subject factors was separately
performed on the data of oxy-, deoxy-, and total-Hb. This analysis
revealed a marginally significant effect of condition for oxy-Hb
[F(1, 11) = 3.43, p = 0.091]. The effect of measurement area and
interaction was not significant. In addition, no significant effect
or interaction was found for deoxy-Hb and total-Hb. To examine
the possibility that there was differential activity for the observa-
tion of faces compared to the baseline period where vegetables
were shown, we performed a two-tailed one-sample t -test on the
Z -scores against a chance level of 0 (baseline) for each condi-
tion and hemisphere separately. The analysis revealed that the
concentration of oxy-Hb increased significantly in both the left

and right temporal area during the different-face condition [left:
t (11) = 3.19, p < 0.01; right: t (11) = 3.64, p < 0.01]. The concen-
tration of deoxy-Hb decreased significantly in the right temporal
area during the different-face condition [t (11) = −2.25, p < 0.05].
On the other hand, no significant change in the concentration of
oxy-Hb or deoxy-Hb was found during the same-face condition
(p > 0.10). In addition, no significant change was found for the
concentration of total-Hb in either condition.

Table 1 illustrates the channels which showed a significant acti-
vation from 3 to 7 s after the stimulus onset compared to the
baseline in the different-face condition. The Z -score in the oxy-
Hb was maximal around the T5 position in the left temporal area
and around the T6 position in the right temporal area. During
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FIGURE 4 | Mean Z -score from 3 to 7 s of the trial in the bilateral

temporal area in the Experiment 1. The vertical line in the graphs
represents 1 SE. In the different-face condition (white bar), the
concentration of oxy-Hb in both the right and left temporal areas increased
significantly compared to the chance level of 0 (∗∗p < 0.01, ∗p < 0.05).

Table 1 | Channels activated in the different-face condition

(Experiment 1) compared to the baseline.

Oxy-Hb

ch. Z -score

Left 9 2.83*

10 3.37*

Right 18 4.03*

23 3.09*

24 3.28*

ch., channel.

*p < 0.05: two-tailed one-sample t-test vs. chance level of 0. The significant

p-value was determined by the false discovery rate (FDR).

the presentation of the same-face condition, no channel showed
a significant change in activation. Furthermore, no significant
change in individual channel was found for the concentration of
deoxy-Hb and total-Hb either in the same-face or the different-face
condition.

The five channels (ch. 9, 10, 18, 23, and 24) that showed sig-
nificantly higher activation for face than for the object baseline
in the different-face condition (Table 1) were selected as COI.
Figure 5 represents the Z -scores of the five channels selected as
COI in the same-face condition and the different-face condition,
respectively. All of these channels showed higher Z -scores in the
different-face condition than those in the same-face condition for
oxy-Hb. A repeated-measure ANOVA with condition (same-face
vs. different-face) and channels (ch. 9, 10, 18, 23, 24) as the within-
subject factors was performed on the data of oxy-, deoxy-, and
total-Hb. This analysis revealed a significant effect of condition
for oxy-Hb [F(1, 9) = 14.42, p < 0.01]. The effect of channels and
interaction were not significant. In addition, no significant effect
or interaction was found for deoxy-Hb and total-Hb.

Although only the marginal significant effect of condition was
found as the results of ANOVA on the averaged Z -score of 12
channels for each hemisphere, the significant effect of condition
was shown in the five channels around T5 and T6 position. These

FIGURE 5 | Mean Z -scores of the five channels (ch. 9, 10, 18, 23, 24)

selected as COI in the same-face and the different-face conditions,

respectively. The vertical line in each graph represents 1 SE. All of these
channels showed the higher Z -scores in the different-face condition
compared to those in the same-face condition for oxy-Hb.The main effect of
condition was significant with 2 (condition) × 5 (channel) ANOVA (p < 0.01).

results suggest that the adaptation to the face occur within the
relatively specific region of temporal area in infants.

EXPERIMENT 2
In Experiment 1, we found a significantly lower hemodynamic
response during the presentation of an identical face than dur-
ing the presentation of different faces, showing the adaptation
effect in infant hemodynamic responses for faces. In Experiment
2, we examined whether this adaptation would occur when mul-
tiple views of a face were presented. We compared hemodynamic
responses in the same-face condition and in the different-face
condition as in Experiment 1, however, faces in both conditions
changed viewpoint within each trial. An attenuated response in
the same-face condition compared to that in the different-face
condition suggests a viewpoint-invariant representation of faces.

In our previous study, we found some developmental changes
in the processing of the faces in different views within the age range
we examined in Experiment 1. That is, we found that the presenta-
tion of frontal face images induced increased response compared
to the responses to objects in both 5- and 8-month-olds, while
only 8-month-olds showed such response to facial images in the
profile view (Nakato et al., 2009). Based on the findings of Nakato
et al. (2009), we divided infants into two age groups (5–6, 7–
8 months) and compared NIRS responses to examine the possible
developmental change in the processing of faces in multiple views.

MATERIALS AND METHODS
The methods in Experiment 2 were the same as those in
Experiment 1 except for the following.

Participants
The final sample of Experiment 2 consisted of 24 healthy infants,
twelve 5- to 6-month-olds (7 boys and 5 girls, mean age 169.4 days,
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SD = 18.7 days) and twelve 7- to 8-month-olds (5 boys and 7 girls,
mean age 226.3 days, SD = 16.2 days). Six additional infants were
excluded based on the same criteria as Experiment 1.

Stimuli and design
The stimulus set used for the experiment consisted of full-color
photo images of five female faces viewed from five viewpoints
ranging from the left three-quarter view to the right three-quarter
view in increments of 22.5˚ (Figure 1B). In each trial, infants were
shown a sequence of five facial images that gradually change in
viewpoint from the left- to right three-quarter view or vice versa.
The left and right orientation of the first image in each trial
was determined randomly. In the different-face condition, each
of the five images differed in identity as well as in viewpoint,
while they differed only in viewpoint in the same-face condi-
tion. Since the 200-ms interval in between the facial images was
filled by the presentation of a fixation point, the changes in
the viewpoint of faces did not induce the perception of facial
movement.

In 5–6 months, the mean number of the trials presented for
infants was 8.6 trials for the different-face condition, and 8.2 trials
for the same-face condition. In 7–8 months, the mean number of
the trials presented for infants was 8.8 trials for the different-face
condition, and 8.6 trials for the same-face condition.

Recordings
We used a newly developed machine, the HITACHI ETG-4000
device system (Hitachi Medical, Chiba, Japan), which can record
NIRS from 24 channels simultaneously, with 12 channels for the

right temporal area, and 12 for the left. The instrument gener-
ates two wavelengths of NIR (695 and 830 nm). The wavelength
of NIR differs between ETG-100 and ETG-4000: ETG-100 = 780,
830 nm and ETG-4000 = 695, 830 nm. Long wavelength (830 nm)
irradiated by two systems contributes to detection of changes in
the concentration of oxy-Hb, whereas short wavelength (780 or
695 nm) contributes to detection of changes in the concentra-
tion of deoxy-Hb (Matcher et al., 1995). In the current study, we
focused on the changes in the concentration of oxy-Hb in interpre-
tation of data. As there is no change in the high wavelength of NIR
between ETG-100 and ETG-4000 for the measurement of oxy-Hb,
we believe that the differences in the specifications between the
two systems had little affected on our results.

RESULTS
We obtained hemodynamic responses from 12 5- to 6-month-
old and 12 7- to 8-month-old infants who looked at the stimuli
for more than three trials in both the same-face and different-face
conditions. For the 5- to 6-month-olds, the mean number of trials
was 4.33 for the same-face condition, and 4.75 for the different-face
condition. For the 7- to 8-month-olds, the mean number of trials
was 4.91 for the same-face condition and 4.33 for the different-face
condition. The mean number of channels was 12.0 for the left
temporal area, and 11.9 for the right temporal area in the younger
infant group. The mean number of channels was 11.9 for the left
temporal area, and 12.0 for the right temporal area in the older
infant group.

Figure 6 shows the time-course of the average change of the
oxy-, deoxy-, and total-Hb concentrations in the 5- to 6-month-
old and the 7- to 8-month-old groups when viewing the same-face

FIGURE 6 |The time-courses of the average change in oxy-, deoxy-, and

total-Hb concentrations during the same-face and different-face

condition under the multiple viewpoint presentation in 5- to 6-month-old

infants and 7- to 8-month-old infants in Experiment 2. In both age groups,
the two graphs in the top part indicate the data for oxy-Hb, the two graphs in

the middle part for deoxy-Hb, and the two graphs in the bottom part for
total-Hb. The data for the left temporal area are shown in the left column and
those for the right temporal area are shown in the right column. In each
graph, the black line represents the mean Z -score of the different-face
condition and the gray line represents that of the same-face condition.
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and different-face conditions. Zero on the horizontal axis repre-
sents the beginning of the test period and 10 represents the end
of the test period. The black line in the graph represents the mean
Z -score of the different-face condition and the gray line represents
the mean Z -score of the same-face condition.

At 5–6 months of age, the concentration of deoxy-Hb in both
the right and left temporal areas increased only in the same-face
condition. Oxy- and total-Hb showed a similar tendency between
the different-face and same-face conditions. That is, compared
to the baseline, the increases in the concentration of oxy- and
total-Hb were not shown in both temporal areas.

At 7–8 months of age, the concentration of oxy- and total-
Hb in bilateral temporal areas showed a greater increase in the
different-face condition than in the same-face condition. These
increases in the different-face condition occurred at about 4 s
after the onset of the face stimuli, peaking around 5–7 s. In line
with oxy- and total-Hb changes, the concentration of deoxy-Hb
showed a greater decrease in the different-face condition than
in the same-face condition in both the left and right temporal
regions.

Figure 7 shows the mean Z -score from 3 to 7 s after the onset of
facial images across the 12 channels in the left and right temporal
areas. A repeated-measure ANOVA with age (5–6 vs. 7–8 months)
as a between-subject factor, and condition (same-face vs. different-
face) and measurement area (right vs. left) as the within-subject
factors, was separately performed on the data of oxy-, deoxy-,
and total-Hb. This analysis revealed a significant main effect of
age for oxy-Hb [F(1, 22) = 5.73, p < 0.05] and total-Hb [F(1,
22) = 4.47, p < 0.05]. In addition, there was a marginally signif-
icant interaction between age and condition for oxy-Hb [F(1,
22) = 3.65, p = 0.06], suggesting a greater difference between the
two test conditions for 7- to 8-month-olds than for 5- to 6-month-
olds. No other effect or interaction reached statistical significance
(p > 0.10).

To examine the possibility that there was different activity for
the observation of faces compared to the baseline period where
vegetables were shown, we performed a two-tailed one-sample
t -test against a chance level of 0 (baseline) on the Z -scores of
oxy-, deoxy-, and total-Hb for each age group separately. In 5- to
6-month-old group, the concentration of oxy-Hb decreased sig-
nificantly in the right temporal area during the presentation of
the different-face condition [t (11) = −6.14, p < 0.01], while the
concentration of deoxy-Hb increased significantly in the left tem-
poral area during the same-face, condition [t (11) = 2.55,p < 0.05].
No significant change in the total-Hb was observed in either
of the conditions (p > 0.10). In 7- to 8-month-old group, there
was a significant increase in the concentrations of oxy-Hb [left:
t (11) = 2.89, p < 0.05, right: t (11) = 4.32, p < 0.01] and total-Hb
[left: t (11) = 2.44, p < 0.05, right: t (11) = 2.27, p < 0.05] during
the different-face condition in both temporal regions. In contrast,
no such increase in the concentration of oxy-Hb and total-Hb was
found in the same-face condition (p > 0.10). No significant change
was found for the concentration of deoxy-Hb in either condition.

Table 2 illustrates the channels that showed significant activa-
tion from 3 to 7 s after the stimulus onset in 7- to 8-month-olds
during the different-face condition compared to the baseline. The
Z -score in the oxy-Hb was maximal around the T6 position in

FIGURE 7 | Mean Z -score from 3 to 7 s after stimulus onset in the

bilateral temporal area in Experiment 2. The vertical line in the graphs
represents 1 SE. At 5–6 months of age, the concentration of deoxy-Hb
significantly increased during the same-face condition under the different
viewpoint presentation only in the left temporal area. Furthermore, the
decrease in oxy-Hb concentration was significant in the right temporal area
while infants looked at the different-face condition. At 7–8 months, in the
different-face condition (white bar), the concentration of oxy-Hb and
total-Hb in both the right and left temporal areas increased significantly
compared to the chance level of 0 (∗∗p < 0.01, ∗p < 0.05).

the right temporal area. The location of channels with significant
activation is in close proximity to what was found in Experiment
1. In contrast to the different-face condition, no channels showed
a significant change in hemodynamic responses in the same-face
condition. No further channels with significance were found for
the concentration of deoxy-Hb and total-Hb. In addition, no sig-
nificant channels were identified for the 5- to 6-month-old group
in either condition.

We further analyzed the data from the 7- to 8-month-old group
based on COI. The six channels (ch. 9, 18, 20, 22, 23, and 24)
that showed a significantly higher response for the different-face
condition than for the object baseline (Table 2) were selected as
COI. Figure 8 represents the Z -score in oxy-Hb of the six chan-
nels selected as COI in the same-face and different-face condition,
respectively. All of these channels showed a higher Z -score in
the different-face condition than in the same-face condition. A
repeated-measure ANOVA with two factors, condition (same-face
vs. different-face) and channels (ch. 9, 18, 20, 22, 23, and 24) as
the within-subject factors, was performed on the data of oxy-
Hb. This analysis revealed a significant effect of condition [F(1,
11) = 11.95, p < 0.01]. The effect of channels and interaction were
not significant.
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Table 2 | Channels activated in the different-face condition

(Experiment 2) compared to the baseline on 7- to 8-month-old infants.

Oxy-Hb Total-Hb

ch. Z -score ch. Z -score

Left 9 1.77* 7 1.67*

Right 18 2.66*

20 1.73*

22 2.04*

23 1.04*

24 2.43*

ch., channel.

*p < 0.05: two-tailed one-sample t-test vs. chance level of 0. The significant

p-value was determined by the false discovery rate (FDR).

FIGURE 8 | Mean Z -scores of the six channels (ch. 9, 18, 20, 22, 23, 24)

selected as COI in the same-face and the different-face conditions,

respectively. The vertical line in each graph represents 1 SE. All of these
channels showed higher Z -scores in the different-face condition than in the
same-face condition for oxy-Hb. The main effect of condition was significant
with 2 (condition) × 5 (channel) ANOVA (p < 0.01).

DISCUSSION
In the present study, we used the neural adaptation paradigm to
examine the nature of facial representation in infants aged 5–
8 months of age. To establish the neural adaptation effect in infants
as measured by NIRS, we compared hemodynamic responses
between the repeated presentation of the same face (the same-
face condition) and the presentation of five different faces (the
different-face condition) in Experiment 1. We hypothesized that
neural adaptation would lead to a lower hemodynamic response
to the repeated presentation of an identical face than to that of
various faces. As a result, we found that channels in the bilat-
eral temporal region around the T5 and T6 areas, which are
more responsive to faces than to objects, showed a significant
difference between the same-face condition and the different-face
condition. That is, the concentration of oxy-Hb in these channels
was significantly higher during the different-face condition than

during the same-face condition. In Experiment 2, we measured
the hemodynamic responses in the same-face and the different-
face conditions again, but faces in both conditions underwent
changes in viewpoint. We found that at 7–8 months of age, but
not at 5–6 months of age, infants showed differential responses
between the same-face condition and the different-face condition
under changes in viewpoint.

Our findings in Experiment 1 demonstrate the neural adap-
tation effect for the repeated presentation of a face based on the
hemodynamic responses in infants’ brain as measured by NIRS
(NIRS-adaptation). The attenuated hemodynamic response to the
repeated presentation of an identical face compared to those of
different faces is consistent with findings from previous fMRI
studies in adults showing the neural adaptation effect in face
recognition (e.g., Grill-Spector et al., 1999; Andrews and Ewbank,
2004; Ewbank and Andrews, 2008). The attenuated hemodynamic
responses induced by the repeated presentation of an identical face
suggest that the infants’ temporal region around T5 and T6 plays
an important role in the discrimination of faces and/or recognizing
faces. This is consistent with our previous findings using NIRS that
the posterior regions around T5 and T6 are particularly important
for infants’ face recognition (Nakato et al., 2009, 2011a,b; Honda
et al., 2010; Ichikawa et al., 2010). In the right temporal area, the
channels around the T6 position, especially the inferior channels,
showed increases in the concentration of oxy-Hb. The channels
activated in our study were in close proximity to those in Nakato
et al. (2009) and Nakato et al. (2011a,b). In the left temporal area,
the region activated in the present study was adjacent to the chan-
nels activated by the presentation of canonical faces as observed by
Honda et al. (2010). Our results are also consistent with previous
neuroimaging studies of adults reporting the importance of the
T5 and T6 regions of the temporal lobe for face perception (Puce
et al., 1996; Kanwisher et al., 1997; Halgren et al., 1999; Kanwisher
and Yovel, 2006).

Our results from Experiment 2 suggest that face is represented
in a view-invariant manner in the temporal region of infant brains
at 7–8 months of age. The results of the adaptation effect for the
same face seen from various viewpoints would rule out the pos-
sibility that greater brain responses to the different faces rather
than an identical face in Experiment 1 reflect the discrimina-
tion of images in general based on the low-level image properties.
Our findings are consistent with a recent study of adults showing
that the temporal region including STS shows neural adaptation
to high-level properties rather than low-level stimulus properties
(Zevin et al., 2010). This pattern of activation suggests that the
region is involved in representation of faces rather than general
image discrimination processing at 7–8 months of age.

While we found no developmental trend in the adaptation
effect in infants aged 5–8 months in Experiment 1, we found a
developmental change in Experiment 2. In contrast to 7- to 8-
month-olds, 5- to 6-month-olds did not show the adaptation
effect in Experiment 2 when shown the faces in various view-
points. This developmental change is consistent with our previous
findings from NIRS study and other previous studies. In the pre-
vious NIRS study, we found that the temporal area at 8 months
of age, but not at 5 months of age, responds to faces differently
than to objects not only when the frontal faces are shown, but
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also when profile faces are shown (Nakato et al., 2009). By using
ERPs, Gliga and Dehaene-Lambertz (2007) reported that they did
not find the evidence of view-invariant facial representation in
4 months of age. Consistent with these neuroimaging studies in
infants, most behavioral studies have reported the ability to recog-
nize the faces in various viewpoints develops over 7 months of age
(Fagan, 1976; Cohen and Strauss, 1979; Rose et al., 2002; Nakato
et al., 2010). These previous neuroimaging and behavioral stud-
ies suggest that neural basis of processing faces shown in various
viewpoint develop later in infancy.

Though we did not find evidence of view-invariant represen-
tation of faces in 5- to 6-month-old infants, our results do not
necessarily show that they lack the ability to recognize face across
different viewpoints. Several studies have demonstrated the ability
to recognize faces across the different viewpoints even in infants
younger than 6 months of age (Turati et al., 2004, 2008; Bulf
and Turati, 2010). One possible explanation for the differential
findings would be that young infants require a longer period to
develop a facial representation which is invariant across views.
In the current study, infants were required to recognize unfamil-
iar faces that were shown spontaneously in various viewpoints
without any prior learning period. By contrast, the studies show-
ing recognition across viewpoints in young infants generally used
an infant-controlled habituation procedure in which infants were
given considerable time to view the faces before the recognition test
was conducted. Taken together, our results suggest that the ability
to represent the face across viewpoints becomes more robust and
efficient between 5 and 8 months of age.

Interestingly, we found that more channels in the right tempo-
ral area of 7- to 8-month-olds were activated by the presentation
of faces shown under multiple viewpoints (Experiment 2) than
those shown only in the frontal view (Experiment 1). Consistent
with our results, Nakato et al. (2009) reported that the presenta-
tion of a profile face led to more channels being activated than
the presentation of a frontal face in 8-month-old infants. In pre-
vious fMRI studies, it was shown that facial identity is represented
in a view-invariant manner in medial fusiform gyrus adjacent to
FFA (Pourtois et al., 2005a,b, 2009) but not in face-sensitive FFA
(Grill-Spector et al., 1999; Andrews and Ewbank, 2004; Pourtois
et al., 2005a; Fang et al., 2006; Ewbank and Andrews, 2008). Since
analysis in most of the fMRI studies with adults was restricted
to ROI, which was limited to functionally defined face-selective
areas such as FFA and OFA (Grill-Spector et al., 1999; Andrews
and Ewbank, 2004; Pourtois et al., 2005a; Fang et al., 2006; Ewbank
and Andrews, 2008), it is unclear from these studies whether adults
also show differences between the processing of faces seen from
various viewpoints and faces seen from a single viewpoint. Based
on the findings that responses in face-sensitive areas such as FFA
showed limited generalizability of identity codes to image transfor-
mations such as viewpoint change, however, a recent fMRI study
by Natu et al. (2010) has examined the possibility that the broader
area in the ventral temporal cortex is involved in the processing of

facial identity. In order to examine neural codes for facial identity
without restricting the analysis to ROI, Natu et al. (2010) applied
a pattern-based classification analysis to the task of discriminat-
ing faces by identity across a broader area of the cortex. They
found that the broad area of the ventral temporal cortex, including
fusiform gyrus and lateral occipital complex (LOC), was required
for the neural discrimination of facial identity under changing
viewpoints. Consistent with Natu et al. (2010), our results suggest
that the processing of faces seen from multiple viewpoints requires
an involvement of the broader region of the temporal area than
that of faces seen from a single frontal viewpoint.

In the current study, we applied the neural adaptation paradigm
same as adult fMRI studies and showed the neural adaptation effect
in infancy. One of the problems in interpreting the results when
using the same paradigm or task between NIRS and fMRI record-
ings is the comparability of signals detected by NIRS and that
detected by fMRI. Previous studies conducting simultaneously
measurement of NIRS and fMRI revealed that there is a strong cor-
relation between signals measured with NIRS and fMRI (Toronov
et al., 2001, 2007; Strangman et al., 2002). In the recent study, Cui
et al. (2011) reported such correlation between NIRS and fMRI
signals even for cognitive task. These results suggest that temporal
attenuation in the NIRS signals induced by the repeated presen-
tation of identical face shown in this study could be interpreted
as the similar temporal attenuation reported by fMRI-adaptation
studies.

The current study, applying the neural adaptation paradigm,
used NIRS to explore the neural codes of the face in infants. We
obtained the first evidence of the adaptation effect for face in the
temporal area of the infant brain. We further found that the adap-
tation effect in these areas at 7–8 months of age was not sensitive to
changes in viewpoint, suggesting a view-invariant representation
of faces. Although we focused on the adaptation effect in facial
processing, the ubiquitous nature of the adaptation effect suggests
that this technique can be applicable to examine various kinds of
perceptual and cognitive processes. As with the adult brain, the
fNIRS-adaptation paradigm would be a strong tool for examining
the functional properties of infants’ developing brains.
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