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Independent component analysis (ICA) techniques offer a data-driven possibility to analyze
brain functional MRI data in real-time. Typical ICA methods used in functional magnetic
resonance imaging (fMRI), however, have been until now mostly developed and optimized
for the off-line case in which all data is available. Real-time experiments are ill-posed
for ICA in that several constraints are added: limited data, limited analysis time and
dynamic changes in the data and computational speed. Previous studies have shown that
particular choices of ICA parameters can be used to monitor real-time fMRI (rt-fMRI) brain
activation, but it is unknown how other choices would perform. In this rt-fMRI simulation
study we investigate and compare the performance of 14 different publicly available ICA
algorithms systematically sampling different growing window lengths (WLs), model order
(MO) as well as a priori conditions (none, spatial or temporal). Performance is evaluated
by computing the spatial and temporal correlation to a target component as well as
computation time. Four algorithms are identified as best performing (constrained ICA,
fastICA, amuse, and evd), with their corresponding parameter choices. Both spatial and
temporal priors are found to provide equal or improved performances in similarity to the
target compared with their off-line counterpart, with greatly reduced computation costs.
This study suggests parameter choices that can be further investigated in a sliding-window
approach for a rt-fMRI experiment.
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1. INTRODUCTION
Independent component analysis (ICA) is a data-driven blind
source separation (BSS) method widely used in brain functional
magnetic resonance imaging (fMRI) data analysis (McKeown
et al., 1998; Calhoun and Adali, 2006). The basic idea underlying
ICA is to disentangle in a multivariate way all the independent
components (ICs) whose combination gives the actual measured
signal. The generic procedure is thus to fix an arbitrary number
of ICs, i.e., the model order (MO), and let the algorithm exploit
a criterion of independence to compute the decomposition that
optimizes the criterion given that MO. Several algorithms have
been proposed to measure independence of the sources in order
to separate them into ICs. The most popular criteria have been
based on information theory principles, such as the Infomax
algorithm (Bell and Sejnowski, 1995) or higher order statistics
(second, third, and fourth order cumulants), such as kurtosis fas-
tICA (Hyvärinen and Oja, 2000). Given the nature of data-driven
BSS algorithms which try to deal with and take advantage of an
enormous amount of data, ICA found an optimal field of appli-
cation in the analysis of fMRI data. Its canonical use has been that
of analyzing data off-line, that is, once all experimental data has
been already acquired. For this paper the use of ICA off-line can

be defined as analyzing data in well-posed conditions, as we have
usually a great amount of time available for computation and a
complete dataset with all the relevant information.

A very different situation arises if ICA is to be considered for
dynamic studies such as real-time fMRI (rt-fMRI), in which there
is an interest in the dynamic characterization of brain states dur-
ing the experiment (deCharms, 2008; Weiskopf, 2012). Recently
rt-fMRI received a great deal of attention since it makes it pos-
sible to perform experiments characterized by novel paradigms
(LaConte, 2011; Caria et al., 2012). The most investigated novel
paradigm with rt-fMRI is neurofeedback (Shibata et al., 2011;
Subramanian et al., 2011). In such experiments subjects receive
stimulation that is derived from their ongoing fMRI activity and
the task can be to develop mental strategies to regulate the acti-
vation. ICA methods could be of interest in such studies for their
data-driven nature, particularly when considering experimental
designs in which hemodynamic response models will be difficult
to use for predicting the brain states under investigation, such as
resting state. In a rt-fMRI context ICA will work under ill-posed
conditions because the data need to be analyzed under critical
time constraints and with a reduced dataset. In addition, since
the data changes dynamically whereas the algorithm is usually
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fixed, the choice of the algorithm can drastically affect compu-
tation time and quality of the results. The first implementation
of ICA algorithms for rt-fMRI demonstrated successful use of the
fastICA algorithm (Esposito et al., 2003). In that work the authors
adopted several specific choices for real-time ICA analysis, includ-
ing a specific ICA algorithm, the choice of a sliding window with
a defined temporal window length (WL) and a MO. This study
gave two main results. Firstly, it demonstrated in both real and
simulated data that the expected task-related activity was equally
detected by ICA and by the standard general linear model (GLM)
approach. Secondly, ICA was able to detect transient or unex-
pected neural activity which had not been originally included in
the hemodynamic response model. Together these results support
the motivation of the evaluation and use of ICA in a rt-fMRI
experiments. Real-time ICA has been recently implemented as a
plug-in of Turbo Brain Voyager software (Goebel, 2012).

However, there are many possible choices for ICA algorithms,
differing mostly in the mathematical criteria used to establish
source independence, and it is not obvious which of these algo-
rithms could best characterize neural activity as captured by the
BOLD contrast. In addition to which particular algorithm is
used, there is also freedom for parameter setting and it is not
clear how these might affect the performance of an ICA-based
rt-fMRI analysis. Indeed, performance comparisons among dif-
ferent ICA algorithms applied to fMRI data have historically been
reported only for the well-posed off-line fMRI case in which the
full acquired time-series data was available after the experiment
(Esposito et al., 2002; Correa et al., 2005, 2007). Further, from
off-line ICA experiments it is known that a priori conditions
may help the identification of a particular IC most congru-
ent with a predefined target, such as a spatial map (Lin et al.,
2010). This a priori knowledge can be implemented in differ-
ent ways depending on the characteristics of the algorithms. It
can be as low invasive as a simple tailoring in the nature of
the statistical distribution to be extracted, i.e., weighting more
super-Gaussian or sub-Gaussian distributions, or as constrained
as targeting a specific time course or spatial map. This approach
is known as semi-blind decomposition, and its main property
is to fuse the positive principles of data-driven algorithms with
some kind of a priori knowledge on the problem of interest. The
introduction of a priori knowledge can be done in several ways,
e.g., by orienting the decomposition of data into sources with
some specific properties. An example of a semi-blind approach
is presented in Lin et al. (2010), in which a spatial a priori
constraint has been introduced in the decomposition algorithm
with the aim of extracting the source most congruent with a
predefined spatial target. The motivation of considering priors
includes reduced computational time (as a priori information
suggests shortcuts in the decomposition to the algorithm), and
improved quality of the sources obtained (given that the results
are closer to what is expected). In general not all ICA imple-
mentations foresee the possibility of introducing prior knowledge
at spatial or temporal level. In this context, and given the noisy
data of rt-fMRI experiments from the limited data available for
analysis, it is of interest to extend the evaluation of real-time
ICA strategies with the consideration of temporal and spatial
priors.

In this study we investigated and compared the performance of
various ICA algorithms under the ill-posed conditions imposed
by rt-fMRI. We used fMRI data of healthy subjects performing
a visual-motor task in a framework that simulated a real-time
acquisition for each subject separately. Four brain networks were
extracted from the full time course of an independent randomly
chosen subject not included in further analysis and used as tar-
get networks for the performance evaluations: the right and left
visual motor networks, the default mode network (DMN), and
a noise (NOISE) network associated with physiological noise.
In each network we tested 10 out of 14 different publicly avail-
able ICA algorithms, and for each algorithm we investigated how
the length of the time window (i.e., the number of time points)
used for the analysis, the MO (i.e., the number of computed ICs)
and the type of a priori information (none, spatial or temporal)
affected performance. The evaluation of performance was done
by considering computation time together with the spatial and
temporal correlations of the dynamic ICs with the network refer-
ence target. The goal was thus to find, for each network, the ICA
implementation that gave the fastest and highest spatial and tem-
poral similarity to the target, but using only a fraction of the time
series.

2. MATERIALS AND METHODS
2.1. fMRI EXPERIMENT
This simulation study was based on data acquired in a real fMRI
experiment (Calhoun et al., 2003). This data set (7 male, 1 female,
average age 24 years) has been chosen because it activates a
variety of well-known networks (including Default Mode, right
visual/motor, and left visual/motor areas) and it has been exten-
sively studied with ICA since part of the dataset is included in
the public distribution of the Group ICA fMRI toolbox (GIFT:
http://mialab.mrn.org/software/gift/index.html). The dataset is
fully described in the original publication and here we out-
line only the main aspects related to the cognitive tasks, data
acquisition and preprocessing.

2.1.1. Cognitive tasks
The visual-motor paradigm contains two identical but spatially
offset, periodic, visual stimuli, shifted by 20 s from one another
(Figure 1). The visual stimuli were projected via an LCD projec-
tor onto a rear-projection screen subtending approximately 25◦ of

FIGURE 1 | Summary of the stimulus set-up presented to the subject

during experiment data acquisition.
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visual field, visible via a mirror attached to the MRI head coil. The
stimuli consisted of an 8 Hz reversing checker-board pattern pre-
sented for 15 s in the right visual hemi-field, followed by 5 s of an
asterisk fixation, followed by 15 s of checker-board presented to
the left visual hemi-field, followed by 20 s of a central asterisk fixa-
tion. The 55 s event set was repeated four times for a total of 220 s.
The motor stimuli consisted of participants touching their right
thumb to each of their four fingers sequentially, back and forth,
at a self-paced rate using the hand on the same side on which
the visual stimulus is presented. fMRI data from this paradigm,
when analyzed with standard ICA (Calhoun et al., 2003), sep-
arated activation network results into two different task-related
components, one in left visual and motor cortex, the other in right
visual and motor cortex.

2.1.2. Imaging parameters
Scans were acquired by a Philips NT 1.5-Tesla MRI scanner. A
sagittal localizer scan was performed first, followed by a T1-
weighted anatomic scan [repeat time (TR) = 500 ms, echo time
(TE) = 30 ms, field of view = 24 cm, matrix = 256 × 256,
slice thickness = 5 mm, and gap = 0.5 mm] consisting of 18
slices through the entire brain including most of the cerebellum.
Functional scans were acquired over the same 18 slices consist-
ing of a single-shot, EPI scan (TR = 1 s, TE = 39 ms, field of
view = 24 cm, matrix = 64 × 64, slice thickness = 5 mm, gap =
0.5 mm, and flip angle = 90◦) obtained consistently over a 3 min,
40 s period for a total of 220 scans. Ten dummy scans were per-
formed at the beginning to allow for longitudinal equilibrium,
after which the paradigm was automatically triggered to start by
the scanner.

2.1.3. Preprocessing
The data used in this study were previously preprocessed.
The fMRI data were first corrected for timing differences
between the slices using windowed Fourier interpolation to
minimize the dependence upon the reference slice chosen.
Next, the data were imported into the statistical parametric
mapping software package, SPM99. Data were motion cor-
rected, spatially smoothed with a 6 × 6 × 10 mm Gaussian ker-
nel, and spatially normalized into the standard Talairach space.
The data (originally collected at 3.75 × 3.75 × 5 mm) were
slightly sub-sampled to 3 × 3 × 5 mm, resulting in 53 × 63 × 28
voxels.

2.2. SOFTWARE AND COMPUTER FOR ICA SIMULATIONS
The entire simulation work was based on an in-house MATLAB
(The MathWorks Inc., Natick, Massachusetts) implementa-
tion (http://www.mathworks.com/products/matlab) (MATLAB,
2010) that exploits the code available with the GIFT toolbox
(GIFT,http://mialab.mrn.org/software/gift). Given the ICA algo-
rithms code present in the toolbox, all the data analysis steps were
implemented in an automatic fashion to permit a testing rou-
tine to be run on ICA algorithms varying their parameters (i.e.,
varying the WL, the MO, the a priori knowledge, and the sub-
jects). The PC adopted to run the simulations was an Intel(R)
Core(TM) i5 CPU M460 @2.53 GHz equipped with 6 GB of RAM
and running a Windows 7 64-bit OS.

2.3. ICA ALGORITHMS
From a total of 14 different ICA algorithms a subset of 10 was
considered (see Table 1). Among the algorithms not selected were
those based on Infomax criterion, which has been used as ref-
erence algorithm, thus it and all the ICA methods based on it
(semi-blind infomax, radical ICA, and SDD ICA) were elim-
inated from the analysis. The algorithms were available from
the GIFT toolbox and most of them were discussed in a recent
comparative study (Correa et al., 2005). The list included algo-
rithms already used in rt-fMRI experiments, like the fastICA
algorithm (Esposito et al., 2003). These algorithms, which are
public and were taken as in their original distributions, differ in
their data reduction preprocessing steps (e.g., centering, whiten-
ing, and dimensionality reduction) and independence criteria
for source separation (e.g., minimization of mutual information
and maximization of non-Gaussianity) (Cichocki and Amari,
2002).

In the following we outline key aspects of the adopted ICA
algorithms. A detailed description of each technique is beyond
the scope of this study and we refer the reader to the cited works.
The selected algorithms cover the major approaches known in
the ICA literature for defining independence of sources: infor-
mation maximization, maximization of non-Gaussianity, joint
diagonalization of cross-cumulant matrices and second-order
correlation-based methods.

Infomax is a stochastic method which uses a non-linear func-
tion to maximize the information mapped between input and
output of a network. The implementation adopted here was
extended infomax, which improves the ability to disentangle
sub and super-Gaussian sources using natural gradient descend
method (Bell and Sejnowski, 1995; Lee et al., 1999).

FastICA is a stochastic method that uses a fixed-point itera-
tive approach to extract maximally non-Gaussian sources. The

Table 1 | List of tested ICA algorithms and their possibility to accept

as parameters arbitrary a priori knowledge (both spatial and

temporal) and a varying number of ICs.

ICA algorithm a priori knowledge Arbitrary number of ICs

Infomax Yes Yes

FastICA Yes Yes

ERICA No Yes

SIMBEC No Yes

EVD No Yes

JADEOPAC No No

AMUSE No No

SDD ICA No No

Semi-blind infomax Yes Yes

Constrained ICA Yes No

Radical ICA No No

COMBI No No

ICA-EBM Yes Yes

FBSS Yes No

Those algorithms which cannot accept an arbitrary number of ICs extract a

number of ICs equal to the time window length. These algorithms references are

contained in GIFT toolbox (GIFT: http://mialab.mrn.org/software/gift/index.html).
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independence criterion adopted can be higher order statistics or
the negentropy of the output (Hyvärinen and Oja, 2000).

ERICA (equivariant robust ICA) is an algorithm that mini-
mizes the amount of signal and noise interference on the esti-
mated sources. It is also asymptotically equivariant for sufficient
number of samples (Cruces et al., 2000).

SIMBEC (simultaneous blind extraction using cumulants) is a
deterministic algorithm that exploits natural gradient ascent in a
Stiefel manifold with the aim of jointly identify sources using as
contrast function higher order cumulants (Amari, 1999; Cruces
et al., 2001).

EVD (eigen value decomposition) is an algorithm that sepa-
rates sources exploiting both second-order statistics and higher-
order correlation functions. It creates and sums a set of shifted
cross variance matrices, after this it applies singular-value decom-
position to achieve source separation. The EVD approach is fast
and useful when the spectra of the components are different
(Georgiev and Cichocki, 2002).

JADEOPAC (joint approximate diagonalization of eigenmatri-
ces) is another deterministic algorithm which diagonalizes fourth
order cumulant matrices using the Jacobi technique to obtain
spatially independent sources (Cardoso and Souloumiac, 1993).

AMUSE (algorithm for multiple unknown sources extraction)
is a second order method based on the EVD algorithm. The
difference is that it applies EVD on a single time-delayed covari-
ance matrix for pre-whitened data. The shift of the cross-variance
matrix is chosen here to obtain sources with non-zero autocorre-
lation of sources at that shift, with auto-correlations as different
as possible from each other (Cichocki and Amari, 2002).

Constrained ICA is an algorithm that exploits a reference signal
to perform ICA. The extracted source is forced to be as close as
possible to the reference adopted (Lin et al., 2007, 2010).

COMBI is an algorithm which is the result of a combination
of two different methods (Combination and Multi-combination
of WASOBI and EFICA). SOBI (second order blind identifica-
tion) was developed with the aim of dealing with sources which
could be temporally correlated. It exploits second order statistic
to get rid of temporal correlation and maximize the separability
of sources (Belouchrani et al., 1993). WASOBI is an asymp-
totically optimal algorithm for autoregressive sources (Yeredor,
2000), while EFICA is an asymptotically efficient version of the
FastICA algorithm (Koldovsky et al., 2006).

ICA-EBM (entropy bound minimization) is based on an
entropy numerical estimation. The estimated bound of entropy
is minimized to find the ICAs. The algorithm adopts a line
search procedure initially constraining the demixing matrix to be
orthogonal (Li and Adali, 2010b).

FBSS (full BSS) is an algorithm that exploits an entropy rate
estimator to model second and higher-order correlated sources.
This estimator is the adopted to separate sources minimizing their
entropy rate (Li and Adali, 2010a).

2.4. USE OF a priori INFORMATION
As previously mentioned, the exploitation of a priori knowledge
permits an improvement in the performance of analysis run in
ill-posed conditions. However, it is worth noting that the use of
a priori knowledge can also address another practical challenge

of ICA decomposition, which is particularly relevant in ill-posed
conditions. In fact a critical choice in ICA algorithms implemen-
tation is the ranking or selection of ICs. A practical challenge is
to select and track the ICs of interest against the background of
non-relevant (or noise) ICs. To address this problem the concept
of either spatial (Lin et al., 2010) or temporal (Esposito et al.,
2003) a priori information has been explored in literature. Other
ways to solve the problem of ranking ICs could be represented
by exploitation of characteristic expected features of the ICs of
interest via a classifier (DeMartino et al., 2007; Soldati et al.,
2009).

In the context of rt-fMRI a priori information may be available
from a localizer scan that elicits aspects of activation that are then
to be tracked dynamically in a subsequent experiment. The priors
can make the mathematical computation of ICA easier, driving
the algorithm initial conditions closer to the basin of attraction
of the target IC. In this simulation study the temporal and spatial
IC priors were determined from the ICA analysis of the full time
series of an independent subject taken from the same group. This
a priori information was incorporated into the ICA algorithms as
an initial estimation of the weighted matrix or as a final constraint
of the shape of the target IC. Due to the intrinsic characteristics
of the ICA algorithms, only a subset of them allowed us to incor-
porate spatial and/or temporal a priori knowledge in the analysis
(see Table 1).

Given the general model of ICA (Calhoun et al., 2001), it is
possible to describe an fMRI ICA problem as Y = AX, where Y is
the data matrix of dimension equal to the number of time points
by the number of voxels; A is a mixing matrix of dimension equal
to the number of time points by the number of ICs; and X is the
matrix of the sources of dimension equal to the number of ICs by
the number of voxels. If we denote with W = A−1 the weighting
matrix (i.e., unmixing matrix), it is then possible to insert a priori
information in the rows of the matrix W directly, if the infor-
mation is temporal (i.e., a time course). In case the expected or
known behavior is spatial (i.e., spatial map) it is possible to con-
struct the W matrix as W = YpinvX where the rows of X, i.e., the
expected spatial maps of the independent sources are known. In
one case [spatially constrained ICA algorithm (Lin et al., 2010)]
the a priori knowledge is not given as initialization of the weighted
matrix but, following the implementation, it is imposed as final
target of the decomposition. In this last case instead of starting
from a point close to the basin of attraction, the constraint means
that the ending point will be close to the basin of attraction. In the
context of rt-fMRI a priori information may be available from the
functional localizer scan that is typically acquired at the beginning
of neurofeedback experiments to define the networks that will be
of interest to track dynamically.

2.5. PARAMETERS ANALYSED IN THE ICA SIMULATIONS
The main purpose of this rt-fMRI simulation study was to inves-
tigate a number of ICA algorithms to find the one that performed
best across subjects using a trade-off of the following parameters:

1. Window length (WL) (i.e., time length of data acquisition)
2. Model order (MO) (i.e., number of ICs)
3. Type of a priori information (none, spatial, or temporal)
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These choices for these parameters are discussed in more details
in the following sections.

2.6. WINDOW LENGTH AND MODEL ORDER
The amount of data that an ICA algorithm uses depends directly
on the number of brain volumes available in the growing time
window, which in turn defines a limit to the maximum number
of ICs that may be computed. As the time WL becomes longer
there may be a more accurate representation of the averaged
dynamic responses of the brain because more data is available.
However, this may come at a cost related to both reducing tem-
poral resolution of the dynamics characterized and increasing the
computation time. Conversely, with shorter windows the charac-
terizations may be faster yet less accurate. In this study we focused
on a growing window approach because we were interested in
finding an optimal WL. For the simulation of each ICA algorithm
the WL was varied between 3 and 12 brain volumes (the full time
series consisted of 220 brain volumes, and 12 TRs approximated
to the hemodynamic delay). For each time WL the number of ICs
was varied between 2 (minimum meaningful value of MO in BSS)
and the actual WL. Moreover, since for computational reasons
the MO must be less than or equal to the WL, the WL minimum
value was set to 3. Thus while increasing the WL all possible MOs
between 2 and WL were evaluated to find the best performing pair
of parameters (WL and MO). Not all the ICA algorithms consid-
ered permitted an arbitrary selection of the number of desired
ICs. Some of them (jade-opac, amuse, Radical ICA, combi, ICA-
ebm, and FBSS) allowed extraction of only the number of ICs that
was fixed for each run and was equal to the number of available
data points. In our case, this means that for these algorithms the
spanned parameter space was represented by a line identified by
the points in the space with equal number of ICs and time WL.

2.7. COMPUTATION TEMPLATE ICs FOR PERFORMANCE EVALUATIONS
Four template ICs were identified on a single subject not included
in further analysis by applying the Infomax ICA algorithm with
20 components on the full time series. Infomax is well known
to fMRI studies as it has been commonly applied and its perfor-
mances shown to be stable and reliable (Calhoun et al., 2004).
Moreover, when applied on task-related datasets, it furnishes
results completely similar to those obtained via application of
SPM (Calhoun et al., 2001; Correa et al., 2007). For this rea-
son, although an absolute accuracy as gold standard cannot be
defined for ICA results, we opted to use it as a relative reference
against which to compare results computed by other algorithms.
In addition, to further reduce bias we decided to eliminate from
the on-line test analysis Infomax itself and all the other ICA algo-
rithms based on the same criteria (semi-blind infomax, radical
ICA, and SDD ICA).

The spatial maps and associated time courses of these networks
were later used as reference and as a priori knowledge options for
the performance evaluation of different ICA implementations, in
particular shorter time series to simulate rt-fMRI conditions.

The task-related networks were the right visuo-motor task
(RVMT) and left visuo-motor task (LVMT), which were selected
by visual inspection using as reference the originally published
results (Calhoun et al., 2003). In addition, the DMN and a NOISE

network were also identified and used as templates for networks
typically present in resting state studies (Robinson et al., 2009;
Soldati et al., 2009). Figure 2 shows sample spatial representations
of the four template networks in a subject.

In our simulation study there could be a potential bias favor-
ing the performance of algorithms that use a priori information
given that the priors are derived in the same way as the reference
templates used for performance estimation: spatial and temporal
ICA for the networks of interest using the Infomax ICA algo-
rithm on the full time series. Two considerations were made to
reduce this bias. Firstly, a random subject was chosen from the

FIGURE 2 | Spatial maps of ICs considered in the simulation obtained

from Group ICA 20 ICs. For ease of visualization only the relevant slices are
reported here. First row depicts default mode network (DMN) and residual
motion artifact (Noise). Second and third rows depict the two task-related
ICs, right visuo-motor task (RVMT) and left visuo-motor task (LVMT).
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group of 8, the spatial and temporal priors were derived from
this subject and used as priors for the other seven subjects. In
this way the priors and reference templates are not identical,
because the latter ones continue to be calculated for each sub-
ject separately. Secondly, the real-time simulation did not use
the Infomax algorithm nor other algorithms based on similar
principles (semi-blind infomax, radical ICA, and SDD ICA)for
performance evaluations.

2.8. EVALUATION OF PERFORMANCE FOR DIFFERENT ICA
IMPLEMENTATIONS

The performance of each ICA algorithm was assessed separately
for each subject (7 out of 8) and network (RVMT, LVMT, DMN,
and NOISE) by systematically sampling the space of algorithm
variables, finding for each variable set the targeted network ICs
and comparing them with the corresponding template networks.

The ICA implementations for each subject and network were
manipulated through the following variables:

• ICA algorithm: 10 out of 14 algorithms listed in Table 1.
• Prior: all 10 algorithms were tested without priors. A subgroup

of four algorithms (fastICA, Constrained ICA, ICA-EBM, and
FBSS) allowed the additional implementation of either spatial
or temporal priors taken from the template ICs.

• Window length (WL): for each algorithm the WL varied from 3
TRs to 12 TRs in a growing window scheme. The lower limit of
3 TRs was chosen as the minimum time course length for which
an ICA can be computed. The upper limit of 12 TRs was chosen
because it is approximate to the hemodynamic response.

• Model Order (MO): for each WL the MO was varied between
2 and WL.

These parameters were manipulated according to an iterative
automatic procedure (Soldati et al., 2010), as schematically shown
in Figure 3. This meant that for each subject (a total of 7 out of 8),

FIGURE 3 | Diagram of adopted method for ICA algorithm comparison.

For one separated subject data are exploited for creating templates using
INFOMAX with model order (ICs) of 20 and window length (WL) equal to
the entire available time course. The ICA algorithms are then tested
iteratively on all the other subjects for each combination of IC and WL.
Results of each computation are compared with templates and evaluated in
terms of spatial similarity and temporal correlation.

network (a total of 4), and ICA algorithm (a total of 18: 10 with
no priors, 4 with spatial, and 4 with temporal priors), 66 ICA
computations were made given that WL spans from 3 to 12 and
for each WL, MO spans from 2 to WL. At each iteration the
extracted IC results were compared with the templates to estimate
the performance of the iteration’s parameters.

The performance of each algorithm was characterized from the
following three parameters:

1. Spatial similarity with template network: the target network
IC was selected automatically by choosing the one with the
highest spatial similarity (i.e., spatial overlap) between the ICs
extracted and the template IC for the corresponding network.
The spatial similarity metric was computed as the absolute
value of

Similarity = a ∗ b

norm(a) ∗ norm(b)
(1)

where a and b are the vectors representing the spatial map
(reshaped to 1D) of extracted and the template IC of interest,
respectively.

2. Temporal correlation with template network: the tempo-
ral correlation between the IC extracted and the template
IC derived was computed, with its statistical significance
(p < 0.05).

3. Computation time: the computation time to extract the ICs
was recorded.

Considering a fixed subject, brain network and ICA algorithm
(with or without prior), the best performing ICA implementa-
tion (choice of WL and MO) was considered the one that gave the
highest spatial similarity with a significant temporal correlation
to the reference network and a computational time below the 12 s
threshold.

3. RESULTS
The proposed method has been applied to characterize the behav-
ior of different ICA algorithms in ill-posed conditions simulating
rt-fMRI manipulating MO, WL, and a priori conditions. The
goal was to find the implementations that would give the best
compromise between computational time and similarity between
the detected IC and the reference IC at minimal computation
time.

The obtained group performance results are reported in
Figures 4–6. These figures report the optimal values of the
parameters obtained without exploiting a priori knowledge
(Figure 4), exploiting spatial a priori knowledge (Figure 5), or
temporal a priori knowledge (Figure 6). From the results it can
be clearly seen how the selected ICA algorithms differed in per-
formance in these extreme conditions. A trade-off of these results
must be obtained to evaluate the winners. In the case of no a priori
knowledge exploitation (Figure 4) erica, evd, amuse, and partially
fastICA seemed to be the more suitable algorithms given their
particularly low computational time, with fastICA and evd being
the best performing also with respect to spatial and temporal
similarity to the reference template.

When considering spatial (Figure 5) and temporal (Figure 6)
a priori knowledge only 4 of the 10 considered ICA algorithms
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FIGURE 4 | Results of the best performing runs (mean across subjects)

for all available ICA algorithms for a growing length of time window up

to 12 TRs and no a priori information considered. For each ICA algorithm
the values of similarity (Sim), computational time (CT), temporal correlation
(TC), model order (MO), and window length (WL) w.r.t. four reference ICs
representing brain activities of interest (Figure 3), are reported for the same

optimal condition identified. It is worth noting that here is reported a total of
8 algorithms out of 14 given that Infomax and all those algorithms based on it
(semi-blind infomax, radical ICA, and SDD ICA) are excluded from the on-line
simulations. Moreover constrained ICA has been excluded since it cannot
work without a priori knowledge. Finally SIMBEC proved itself to not respect
the constraints on computational time, thus it has not been included.

FIGURE 5 | Similar to Figure 4, but considering only the algorithms which permit the inclusion of spatial a priori knowledge.

allowed the evaluation of a priori information. Constrained ICA
and FBSS were the fastest algorithms, while fastICA, though
slower, obtained a slightly higher overall performance in com-
puting similarity metrics. A comparison between Figures 4 and 6

shows the advantages of using prior information with some of
the tested algorithms. In particular, for FBSS the computational
time improved by a factor of more than two with either spatial
or temporal a priori information keeping the same performance
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FIGURE 6 | Similar to Figure 4, but considering only the algorithms which permit the inclusion of temporal a priori knowledge.

in terms of spatial and temporal correlation. Also, with the use of
a priori information the fastest algorithm (constrained ICA, com-
putation time < 0.15 s) was about two orders of magnitude faster
than those giving comparable spatial similarities without priors. It
is worth noting that the results varied across different monitored
networks, i.e., tasks.

4. DISCUSSION
The aim of the present study was to evaluate the performance of
ICA algorithms in ill-posed conditions, i.e., with a small amount
of data availability and constraints on computational time. The
issue here was to understand if it is possible to adapt an ICA
algorithm to a non-ideal environment, as presented in Esposito
et al. (2003). Moreover the analysis was extended to investigate
which ICA algorithm was more suitable to this kind of con-
ditions from the perspectives of monitoring a brain activity of
interest.

Our goal was to explore the performance in terms of
ability to reach the spatial and temporal network character-
istics that could be derived from the full dataset in a stan-
dard off-line analysis. Thus, we assumed as reference template
the optimal results obtained via a single subject ICA with
all time-points available, a MO of 20 and using the info-
max algorithm, considering stochastic differences not critical.
Another intrinsic issue is that the differences in results between
off-line and ill-posed conditions can be related not only to
computation, but also to the extraction of dynamic behavior
with respect to the stationary behavior typically extracted by
off-line ICA.

One issue that deserves special consideration is circularity. The
use of a validating reference template obtained from the same
data used in the simulations did not introduce circularity issues
since we are in principle just checking that the same informa-
tion can be extracted in different ways, with only differences due
to noise.

A practical issue to consider is that the high dimension-
ality of the parameter space results in a high computational
load for running simulations spanning the entire multidimen-
sional parameter space. The best performance can be evalu-
ated in a trade-o perspective, since different combinations of
parameters can give similar results. The consequence is that
performance optimization is heavily connected to the practi-
cal application and conditions in which the ICA algorithm is
adopted.

Relying on these elements, we performed a direct compari-
son of different algorithms, defining a cluster of algorithms on
the basis of the manipulability of the parameters that they offer
(Table 1). In fact the tested ICA algorithms can be divided into
three groups: those which accept setting of MO and a priori
knowledge (i.e., infomax, fastICA, and semi-blind infomax),
those which accept neither setting of MO nor a priori knowledge
(i.e., jade-opac, amuse, radical ICA, and combi), and those which
accept only one of the two (i.e., erica, simbec, evd, constrained
ICA, ICA-ebm, and FBSS). These constraints are intrinsic to the
publicly distributed algorithms. It is beyond the scope of this work
to try to change any of the algorithms to eventually make them
more flexible. The more flexible algorithms (i.e., those accepting
full manipulability of parameters) will, however, not necessarily
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be better, since the most rigid could be the most adaptable for
specific circumstances. Putting everything in a rt-fMRI experi-
ment perspective, it is possible to distinguish the algorithms on
the basis of the tasks and conditions they must face. Those algo-
rithms which do not accept any a priori knowledge could work
very well to define the target networks from the functional local-
izer step that usually precedes a rt-fMRI acquisition, a step in
which a priori knowledge may not be necessary or even available.
For this use it is possible to permit a higher computational load,
since usually the localizer part of an experiment can have more
time allocated. The algorithms that tended to be more suitable
for this use were evd and amuse, which resulted in particularly
fast computation, with evd performing slightly better. The jade-
opac and fastICA algorithms also performed well but at the cost of
a higher computational time (Figure 5). The results showed that
the use of a priori knowledge can drastically improve computa-
tion time and spatial similarity to a target IC. This suggests that
use of priors may be crucial in the dynamic analysis part of the rt-
fMRI experiment, where any information from the localizer can
be exploited to speed up the process and increase accuracy. From
this point of view the flexibility of the ICA algorithm is essential.
Thus among the algorithms which accept a priori knowledge, con-
strained ICA provided the optimal solution, followed by fastICA
(Figures 5 and 6).

For completeness, it is important to analyze the values of the
two parameters growing WL and MO for the previously reported
best performing algorithms. In an on-line perspective these values
are related to the time needed to elapse before obtaining the first
real-time result or step updating. This means that the longer the
window and the higher the MO, the more time will pass before the
availability of results. This is critical for the on-line computation,
since the scale of the resolution in monitoring the brain dynamics
will be directly associated to that.

Another observation is related to the type of brain activ-
ity monitored (i.e., if it represents a resting state brain activity,
a task-related activity or physiological noise). Monitoring ICs
with different origins conveys different information. Cross-task
variability can be due to the fact that the less the variance of
data is explained by the IC, the more difficult it is to extract,
especially with a decreased amount of data available. For this
reason ICs whose rank is low in a full-data ICA decomposition
are critical to identify in the ill-posed conditions. Nonetheless,
as the simulations showed, they can still be at least partially
captured.

The periodicity of the ICs of interest affects the choice of
optimal parameters. The DMN deserves particular considera-
tions due to the low frequency nature of its sources (Damoiseaux
et al., 2006). Its identification, despite being easily done by data-
driven algorithm, is dramatically harder in ill-posed conditions
given that its periodicity is significantly longer than the WL.
This results in difficulties in observing its full dynamic. Given
these new dimensions (type of brain activity and periodicity) it
was possible to see that different algorithms had different effec-
tiveness in adequately identifying brain activity coming from
different kinds of sources. It can be seen that the same algo-
rithm could outperform all the others in detecting task-related
activity, while suffering in dealing with non-structured noise or,

vice versa, as for example it happened in the case of evd and
jade-opac, or evd and combi with no a priori knowledge. The
same reasoning holds for the use of a priori knowledge. Even
if in this case not all algorithms permitted the introduction of
a priori knowledge in performing the ICA decomposition, for
those which accepted this input the performance varied consider-
ing different target sources. Indeed fastICA and constrained ICA
alternated best performance, with constrained ICA performing
slightly better overall.

Additional ambiguity comes from the stochastic nature of
most ICA algorithms, resulting in different runs of ICA deliver-
ing slightly different results. This is due to the search procedure
of final results optimization, which could result in the algorithm
being trapped in a local minima. Another observation can be
related to the computational time of ICA decomposition: in gen-
eral it grows linearly with the increase of the WL, and this can be
easily justified by the fact that the more data are to be processed
the more time it takes. But as the data become more descriptive
of the source to be extracted, the algorithm is able to extract the
source more easily, thus reducing the computational time needed,
independently of the data length.

One limitation of this study is that the adopted implementa-
tions of ICA algorithms are not directly optimized for ill-posed
conditions. This opens the door to further development ori-
ented toward their methodological and algorithmic optimization,
which would make them more efficient and flexible. Nonetheless,
this work demonstrates a methodology for evaluating differ-
ent ICA implementations for the purpose of finding the ICA
algorithms and analysis parameters for the optimal detection
of a target brain network under ill-posed conditions. Further
experiments are needed to evaluate the performance of ICA
implementations on larger datasets and also other networks.

Another element to be taken into account is the relatively small
number of subjects adopted in the simulations (8) and reduced
number of brain networks studied (visual, motor, and default
mode). These constraints result from the use of a dataset whose
behavior is well known in the ICA domain and which could con-
firm the stability and validity of obtained results. Nonetheless, this
work demonstrated a methodology for evaluating different ICA
implementations for the purpose of finding the ICA algorithms
and analysis parameters for the optimal detection of a target
brain network under ill-posed conditions. Further experiments
are needed to evaluate the performance of ICA implementa-
tions on larger datasets, other brain networks and experimental
conditions.

The results of this study can be used to evaluate ICA imple-
mentations for the dynamic analysis of fMRI data. In particular,
in a potential rt-fMRI perspective, the best performing ICA algo-
rithm without the use of a priori knowledge can be adopted to
analyze the functional localizer data in a data-driven way. In this
approach the target ICs to be then followed dynamically in the
real-time experiment are defined without considering spatial or
temporal constraints. The sources defined by the functional local-
izer can then be used in different algorithms that include a priori
spatial, temporal or spatio-temporal knowledge for the dynamic
monitoring of target ICs in a rt-fMRI experiment, such as for
neurofeedback.
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5. CONCLUSION
In this paper we presented an extensive comparison of ICA algo-
rithms under the constraints to have a fast decomposition with
a small amount of data available (ill-posed condition). The aim
of ICA is to exploit the multivariate nature of data-driven meth-
ods to perform a whole-brain analysis. Here we have shown that
ICA can satisfactory work in ill-posed conditions with results
which are similar and thus acceptable with respect to the off-
line implementation. In our comparison we found that several
ICA algorithms (evd, amuse, fastICA , and constrained ICA) can
be adopted in ill-posed conditions and thus can be exploited for
dynamic analysis of fMRI data. The best performing algorithms
(evd and constrained ICA) were also shown to be useful in terms
of robustness against errors in parameters, and fast in terms of

computational time. this opens the door to their exploitation in
applications such as rt-fMRI, both as functional localizers and for
on-line dynamic analysis. Adoption of these methods would be
useful for experimental designs such those known as neurofeed-
back experiments, although further work is needed to implement
a fully real-time ICA method for fMRI data analysis.
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