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This study aimed to investigate movement accuracy of experienced cellists, the statistical
properties of their note sequences during a reciprocal task, and the degree to which these
movement characteristics depend on auditory feedback. Nine experienced cellists were
asked to shift alternately between two notes using only their index finger to make contact
with the string and fingerboard. Shifting sequences continued for two minutes at a rate
of one note per second. The task was performed under two conditions: with auditory
feedback (provided by the bow) or without auditory feedback (i.e., without the use of
bow). When the bow was used, subjects had no difficulty in shifting between target notes
with precision and stability. Some variability was present, but notes in these sequences
were generally uncorrelated. The contact data and correlations in most bowed trials
resembled those expected of a renewal process, a process in which successive values
are statistically independent and identically distributed. Without the bow, subjects lost
their ability to reach the same target positions accurately; contact locations tended to drift
and had a random quality, indicating that without the bow subjects were uncertain of the
target location in relation to the spatial location of their fingertips. Within these unbowed
sequences, finger positions were highly correlated—within and between note sequences.
In some trials without the bow, the statistical correlation patterns of the sequence were
consistent with the expectations of a discrete Wiener process. Throughout our study,
computer simulations of renewal and Wiener processes enabled us to determine the
types of correlations to be expected from these theoretical models. The implications of
the statistical results in terms of subject behavior are discussed.
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INTRODUCTION
The motor activities of stringed instrument players, i.e., perform-
ers of instruments from the violin family, must be precisely con-
trolled. Under normal performance conditions, an experienced
musician can move rapidly, alternately and repeatedly between
notes with considerable accuracy. Indeed, many stringed instru-
ment players believe they can move from note to note even with-
out auditory feedback, as if somehow they automatically “know”
where the notes are. In this study of experienced cellists, we
investigated the degree to which their accuracy in moving between
notes on a single string, and the statistical properties of the note
sequence locations, were dependent on auditory feedback.

In this study, a specially instrumented cello was used, allowing
us to track precisely the contact location between the finger, the
string and the fingerboard as subjects moved repeatedly between
two alternating note locations. In some trials the performers were
permitted to use the bow during the shifting sequences (providing
auditory feedback); in other trials the bow was not used. As
expected, when the bow was used performers had no difficulty

reaching the requisite note locations with considerable preci-
sion (though there was, of course, a small random—but usually
imperceptible—pitch/location error). Without the bow subjects
shifted between the same two target locations, but appeared to
have lost any clear sense of the finger contact location in relation
to the intended target locations. These errors would have been
easily perceived if the bow had been used. The properties of
the dual note sequences were analyzed statistically and are the
main focus of this report. In trials using the bow, the note
sequences most often had the statistical characteristics of an alter-
nating renewal process (Cox and Lewis, 1966). Without the bow
some note sequences had the characteristics of a discrete Wiener
process, a theoretical random-walk process related to Brownian
motion (Einstein, 1956; Bharucha-Reid, 1960; Chatfield, 1975).
This result seems to contradict the assertion by many musicians
that in the absence of auditory feedback, years of practice and
performance would still enable them to reach any target note
with precision. The random characteristics of sequences gen-
erated without use of the bow may actually reflect a rational
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attempt (a “martingale strategy”) by the performer to return
alternately to the same previous target locations. This ratio-
nal strategy may, paradoxically, lead to a stochastic—“random
walk”—performance. We are accustomed to thinking of random
walk processes as being associated with microscopic features of
biological systems: diffusion and Brownian motion are two exam-
ples (Berg, 1993). But the present study shows that classic random
walk processes can arise at the macroscopic—behavioral—level
as well. We discuss below the connections of our study—and its
results—to an existing body of research that has led to several
major motor control theories.

METHODS
LABORATORY APPARATUS
All subjects used a cello equipped with a string circuit that
measured the contact position between their first finger and the
fingerboard. This allowed us to determine their finger position
when they held a note and when they shifted between notes. It
was described previously in Chen et al. (2006, 2008). The circuit
output was digitized at 360 samples/sec. The circuit effectively
measures the distance between the cello bridge and the point
where the first finger makes contact between the string and the
fingerboard; the contact location can be determined to within a
millimeter. The distance to the bridge determines the length of the
freely vibrating string and the fundamental resulting frequency of
the vibration (pitch). Surrounding each exact note position is a
distance within which it is difficult to detect whether the note is at
the required pitch. This region, called here the “pitch window”, is
one-eighth of the distance to the next higher and lower note and is
wider for lower-pitched notes (being of the order of a cm or more
for notes farthest from the bridge), but only a millimeter or less
for notes closer to the bridge. That is, considerably greater spatial
precision is required for higher-pitched notes close to the bridge.
It is useful therefore to express variability of finger positions for a
given note in relation to the length of its pitch window. Our pitch
window calculations here are based on a string length of 68.5 cm.

SUBJECTS
A group of nine cellists, four males and five females, participated
in this study. Seven were recruited from the University of Oregon
School of Music. Two other subjects were professional cellists.
Significantly, none of the subjects had absolute pitch, which
means that none of them could reliably and consistently produce
or identify a named note from an auditory cue.

PROTOCOL
Participants were asked to shift alternately between two notes on
the cello A string without using vibrato at the rate of 1 note/sec
for 2 minutes. Two pairs of notes were used: B (246.9 Hz) and
D (293.7 Hz), and B and A (440 Hz). These pairs were separated
on the fingerboard by approximately 10 and 26 cm, respectively.
Each note was played using only the index finger; thus required
a shifting movement of the hand and arm along the string. All
subjects employed a legato bowing style and played one bow per
note. The string was tuned by each subject at the beginning of
each trial, using a conventional musician’s frequency meter, inde-
pendently calibrated. All trials were paced by a metronome for a

few seconds before data collection began; the metronome was set
to one beat per second. Each trial yielded between 35 and 45 notes
for each note in the pair. In an equal number of trials subjects
were instructed to shift between these same note pairs but without
using the bow. String vibrations were muffled to eliminate any
auditory feedback. Participants were required to close their eyes
during these trials, though even when playing freely most subjects
did not use vision consistently to guide their movements. Bowing
conditions and note pairs were randomized between trials.

For each note we determined the modal contact position (See
Chen et al., 2008). Though subjects using the bow typically make
small adjustments in contact position during each note (presum-
ably to make small pitch corrections), we took from each note
that value of the contact point assumed most of the time while
the note was held. That modal value is used here in our graphic
displays and subsequent calculations. In the Figures below we plot
the modal value of the contact position against the serial number
of the note, that number becoming an index of the sequence
(replacing the time variable). Players played in tempo with a
high degree of consistency so that plotting modal location against
serial number is approximately equivalent to a time plot. Here, of
course, time is not the variable of interest.

DATA SELECTION
When a subject did not use the bow we found, unexpectedly,
that the shifting movements between the same notes were quite
different in their details. Many subjects had less contact with the
fingerboard during their silent shifts; the moment of contact for
each succeeding note was therefore less precisely defined, as was
the modal value. For this study we therefore used only those no-
bow trials where the performer maintained sufficient contact with
the string during and after the shift to make the determination of
modal value unambiguous.

SERIAL CALCULATIONS
For each trial, we calculated the serial auto-correlation coefficients
of positions for note x and note y, and the serial cross-correlation
between note x and note y positions. We also calculated the serial
correlation coefficient between any note and the k-th note follow-
ing (or preceding), calculating the correlations beyond adjacent
notes. In each trial, note B was assigned as the reference note; thus,
the note y following immediately has the same index number
(lag = 0).

The k-th order correlation coefficient is computed as:

R(k) =
∑

i

[
(xi − ūx)

(
yi+k − ūy

)
/ (σx)

(
σy

)]

where R(k) is the k-th order serial cross-correlation coefficient,
ūx and ūy are the mean positions of notes x and y, and σx and
σy are their standard deviations. The corresponding auto-
correlations have only x or y in the above expression. If successive
note positions are independent, then the expected value of R(1)
is zero. If a sharp note is followed by a sharp note (or flat by flat)
then the expected value of R(1) will be positive. If a sharp (flat)
note is followed by a flat (sharp) note then the expected value
of R(1) is negative. All correlation coefficients lie between +1
and −1. Auto-correlograms are symmetric about k = 0 (where
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R(0) = 1.0). A conventional measure for assessing the statistical
significance of the correlation coefficients was used (Chatfield,
1975). Here, a significance level of α < 0.05 is employed.

MODELING
In this study we also used models of the shift end-points to help
us interpret the correlations derived from the experimental data.
These were algorithms that generate an alternating sequence of
two end-points on the basis of various assumptions. The note
sequences thus generated were subjected to the same analysis
applied to the empirical data. Simulated sequences of note posi-
tions using these different models were based on the assumption
that each movement had a zero mean, normally distributed exe-
cution error, an assumption that is not critical.

Two models are used here.

1. Alternating renewal model: End-points Pj are chosen indepen-
dently and alternately from two normal distributions N with
means μ1 and μ2 and standard deviations σ1 and σ2.

Pj(i + 1) = N(μj, σj); j = 1, 2

2. Wiener process model. Theoretically, the Wiener process is a
continuous random walk process. We have employed a discrete
version here, as if sampling from the continuous process. Two
simultaneous alternating sequences are generated for compari-
son with our two-note data sequences. This model is a variant
of Wold’s Markov process model (Cox and Lewis, 1966). To
generate each successive value in our simulations we take the
current value P(i) and add a zero-mean, normally distributed
random variable.

Pj(i + 1) = Pj(i) + N(μj, σj); j = 1, 2

Model 2 has been well-studied theoretically. Since the val-
ues in each of the two sequences are dependent only on their
previous values, this is also classified as an alternating Markov
(or semi-Markov) process (Einstein, 1956; Bharucha-Reid, 1960;
Cox and Lewis, 1966; Iosifescu, 1980). It is also classified as a
martingale sequence since the expected value of the random vari-
able, E[P(I + 1)] = P(i). (Bharucha-Reid, 1960) Thus, for two
notes with different locations, each with martingale properties, we
would have an alternating martingale process. It should be noted
that when both note sequences are martingales, Model 2 can also
be conceived as an alternating martingale “distance” model. A
distance model bases each new end-point on the previous end-
point plus or minus some normally distributed distance variable.

While it is a relatively simple matter to simulate a variety of
random processes, including classic random walks identifiable by
name, it is usually impossible to look at a random—looking data
sample and decide if it could be a realization of one of those
processes. Usually, we don’t know what features of the data are
diagnostic. The Wiener process is a notable exception.

RESULTS
In this report we present results from subjects shifting alternately
between notes B and D, or B and A, on the A-string of the cello.
The shift sequences in half the trials were made while using the

bow; therefore visual and auditory feedback of the pitch changes
accompanying those movements was available. In the other half,
subjects were not permitted to use the bow and the subjects’ eyes
were closed to prevent any possibility of visual guidance during
the movements.

In Figure 1A is shown a performance by a subject shifting from
note B (61 cm from the cello bridge) to note D (at 51.3 cm). There
are 44 notes at each pitch. The shifting distance is not large, and
the subject is very close to the true location of the target note most
of the time. In a third trace is shown the relatively constant contact
distance between B and the next D. Enclosing each note track
is a measure we call the “pitch window”. It indicates how much
latitude there is in the contact position for each note in order
for the note to be perceived, for all but the most discriminating
listeners, as having the correct pitch. The pitch window is not the
same for any two notes, becoming larger as the distance from the
bridge becomes greater.

FIGURE 1 | (A) Subject shifts between two notes (top trace: note B; lower
trace: note D) while using the bow. The two traces show the sequential
modal values of finger contact position as measured by a string circuit. The
modal location (vertical axis) for each note is shown as a standardized line
and plotted horizontally against the note number. Enclosing each note
sequence is a “pitch window”; notes within that window would not be
perceived as having pitch error. (B) Serial correlation coefficients for the
note sequences shown above. The red lines indicate the values within
which coefficients are not significant at the p < .05 level. Left: serial
auto-correlation coefficients for Note B, lags −5 to +5. Middle: same for
note D. Right: cross-serial coefficients with note B the reference note. The
red circle indicates the value at lag = 0. (C) Serial correlation coefficients for
the sequential differences between notes. Left: Serial auto-correlation
coefficients for the sequential differences between notes B. Middle: same
for note D. Right: cross-serial correlations between sequential note B and
note D differences.

Frontiers in Human Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 419 | 3

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Chen et al. Stochastic motor behavior in musicians

This example illustrates an important feature of trials using the
bow. First, Figure 1A portrays a level of accuracy that would the
expected of an experienced performer. We note also the stability
of each sequence: no trends are evident. For note B, only two notes
are outside the pitch window—just barely. None of the D notes is
outside the D pitch window.

For each note sequence in Figure 1 we calculated the standard
deviation of contact position. Dividing that value by the size of the
pitch window gives us a measure of how the variance of contact
position is related to pitch precision. The window for B is larger
than that for D, but the variance of contact positions for B is also
greater. In percentage terms, the standard deviation of contact
points for B is 15% of the window; for D the value is 6%. Thus
D has a pitch precision considerably greater than that of B.

In Figure 1B we show the serial auto- and cross-correlation
coefficients for the two note sequences shown in Figure 1A.
There are no coefficients of statistical significance. The notes
within each sequence, while variable and random, are statistically
independent of one another. Nor is there dependence between the
two notes (at the p < .05 level). From a formal point of view these
note sequences have the properties of two independent renewal
processes (Cox and Lewis, 1966).

At the bottom of the figure (Figure 1C) we show a second
set of correlation coefficients, this time for the successive dif-
ferences between all notes B, all notes D, and the correlation
between the note B and D differences. While the note contact
locations are uncorrelated, their serial differences are not. In
particular, we note the characteristic significant negative serial
autocorrelation coefficient at lag = 1. Its expected value is −0.5
(See Wing and Kristofferson, 1973). The patterns of correlations
in Figures 1B,C are the basis on which we classify this and other
trials as potentially renewal trials.

In Figure 2A we show one result when a subject performed
the same nominal shifts (B to D) but without using the bow. The
pitch windows are shown as before. In contrast with the results in
Figure 1, here both B and D notes have a systematic pitch/location
error. Both notes also show noticeable drifts with changes in drift
direction at various points in the trial. This result suggests that
without the bow, this subject had no clear or consistent idea where
the target note-positions were located.

In Figure 2B we show the serial correlations for notes B
and D and their cross-serial correlation coefficients. These serial
correlations exhibit patterns quite unlike those seen in Figure 1B
where the subject used the bow. In particular these correlations
are persistently significant over many lags. In Figure 2C we show
the serial correlations of the differences between sequential notes.
The pattern here is similar to the pattern shown in Figure 1B. The
absence of any significant correlation suggests that the difference
sequences are realizations of renewal processes: statistically, suc-
cessive differences are individually and mutually uncorrelated.

To put these two examples in context, we show, in Figures 3,4
single examples of simulations of two types of random processes:
These provide a framework for discussing the behavior of these
two subjects in the two performance conditions.

In Figure 3 we show an example of a simulation of a renewal
process (Methods, Model 1). Each of the “notes” X and Y is
generated by adding a normally distributed random variable to

FIGURE 2 | (A) Subject shifts between the same two notes as in Figure 1

without the use of bow (and eyes are closed). For reference, the same
“pitch window” is again shown. (B) Serial correlation coefficients for the
note sequences shown above. Left: serial auto-correlation coefficients for
Note B, lags −5 to +5. Middle: same for note D. Right: cross-serial
coefficients with note B the reference note. (C) Serial correlation
coefficients for the sequential differences between notes. Left: Serial
auto-correlation coefficients for the sequential differences between notes
B. Middle: same for note D. Right: cross-serial correlations between
sequential note B and note D differences.

the fixed mean values of X and Y. The sequences have expected
values X and Y as do the expected values of each note. For
our purposes the actual values and their variances are of no
interest. Figures 3B,C also shows the serial correlation coefficients
of X and Y, their cross-serial correlations; and the correlation
coefficients of their sequential differences, as in Figure 1.

In Figure 4 we show an example of a random walk model
simulation (Methods, Model 2) that also generates sequences X
and Y. Each value x(i) is calculated from the previous value x(i–1)
to which is added an independent, normally distributed random
variable. Whereas in Figure 3 each successive note value is inde-
pendent of all others, in Figure 4 each note is dependent on (gen-
erated from) the previous note value. The expected value of x(i) is
x(i−1). That property of this model makes it a martingale process.
Since the value of each note is dependent only on the previous
note, this is also classified as a Markov process (Bharucha-Reid,
1960; Iosifescu, 1980). This sequence may also be thought of as
consisting of sequential samplings of a continuous theoretical
process known as a Wiener process or Brownian motion process
(Bharucha-Reid, 1960). The serial auto- and cross-correlations of
this example are shown in Figure 4B; the serial correlations of
the sequential differences are shown in Figure 4C. The differences
are generated in the simulation algorithm from a sequence of
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FIGURE 3 | (A) Alternating positions of X and Y simulated using a renewal
model. (B) Serial correlation coefficients for the renewal model sequences
shown above. Left: serial auto-correlation coefficients for X. Middle: same
for Y. Right: cross-serial coefficients with X the reference. (C) Serial
correlation coefficients for the sequential differences between simulated
sequences. Left: Serial auto-correlation coefficients for the sequential
differences within the renewal sequences X. Middle: Y sequence. Right:
cross-serial correlations between sequential X and Y differences. X is the
reference.

independently chosen, normally distributed random variables;
hence they are—theoretically—realizations of a renewal process.
The difference correlations (Figure 4C) therefore have a statistical
structure equivalent to those shown in Figure 3B. The structure
of the sequential correlations (Figures 4B,C) are quite different,
but resemble qualitatively, those from the no-bow trial shown in
Figures 2B,C.

To what extent are the results in Figures 1,2 representatives,
respectively, of bowed and un-bowed trials? Actually, sequences
in both sets of trials can exhibit the stochastic properties shown
in Figures 1,2 . That is, some of the bowed sequences have
statistical results resembling those in Figure 2; some of the un-
bowed sequences resemble those in Figure 1 (see analysis below).
Some empirical sequences do not belong clearly to either type,
having correlation patterns that are hybrids of the two. These we
are presently unable to classify using our models. In the bowing
trial shown in Figure 1 none of the autocorrelation coefficients
for either note B or D was significant, conforming to the pattern
associated with a renewal process. Overall, in eight bowed B–
D trials, 8 of the 16 sequences showed the Figure 1 pattern;
i.e., had no significant autocorrelation coefficients for lags 1–
5. In six of these eight trials it was note D that exhibited the
renewal pattern. Only two of eight bowed trials showed significant

FIGURE 4 | (A) Alternating positions of X and Y simulated using a dual
Wiener process (martingale) model. (B) Serial correlation coefficients for
the simulated sequences. Left: serial auto-correlation coefficients for X.
Middle: same for Y. Right: cross-serial coefficients with X the reference. (C)

Serial correlation coefficients for the sequential differences between
simulated sequences. Left: Serial auto-correlation coefficients for the
sequential differences within sequence X. Middle: same for Y. Right:
cross-serial correlations between sequential X and Y differences. Note X is
the reference.

cross-correlations between notes B and D. Figure 1 therefore is
representative of many bowed BD trials, though in only two cases
did both notes exhibit a renewal pattern. For the bowed B–A trials,
5 of 16 usable sequences showed the renewal pattern of Figure 1B;
two showed the pattern in Figure 2B.

In the no-bow case, 12 of 13 B–D sequences had significant
autocorrelation coefficients such as those shown in Figure 2B.
Seven of eight trials had significant cross-serial correlation coeffi-
cients. Thus the Figure 2 results are representative of many—but
not all—no-bow B–D trials. For the unbowed B–A trials three
of five usable sequences showed the Figure 1B (renewal) auto-
correlation pattern; two showed the Figure 2B pattern.

Similarly, we can ask if the sequences and correlations shown
in Figures 3,4 are representative of repeated simulations of
renewal or Wiener process models. No two simulated model
sequences were the same, of course, and no correlation sequences
were the same, either for the sequences themselves or for the
sequences of their differences. But repeated simulations con-
formed to the basic pattern of renewal processes or Wiener pro-
cesses. To that extent, Figures 3,4 are representative of the basic
patterns for each model.

Repeated simulations using the renewal model rarely lead to
auto- or cross-correlation coefficients that are statistically signif-
icant. The difference correlations are almost invariably charac-
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terized by significant negative correlations at lag = 1. Repeated
simulations using the Wiener model invariably lead to serial auto-
correlation coefficients that are significant and persistent, at least
when the sample is restricted to 50 values (“notes”) for each
sequence. Cross-serial coefficients have patterns that can drift
between positive and negative values; rarely are all coefficients
without statistical significance at least for lags from −5 to +5.
Auto- or cross-correlations coefficients based on the serial dif-
ferences in the Wiener simulation sequences rarely have statistical
significance. It follows, then, that there would inevitably be quan-
titative differences in the details of Figures 1,3 and Figures 2,4;
but there are no qualitative differences in pattern for the two trials
shown.

DISCUSSION
We report here four sets of results of cello pitch performance:
empirical trials of repeated performance of specific pitch intervals
with and without the bow, and models applicable to both sets of
the empirical data, each examined consistently from a statistical
point of view.

Least surprising are the results obtained when our subjects
shift between two notes while using the bow: their intent was
to obtain specific auditory outcomes. We have reported earlier
on the actions of performers in these conditions (Chen et al.,
2006, 2008), noting that small changes in final finger contact
location are often made by the performer within the duration of
the note. These may be error-correcting movements, possibly in
response to perceived errors in pitch. When these note sequences
are subjected to statistical analysis, we reach the unexpected
conclusion that each of the notes, as defined by their location on
the fingerboard, are generally independent of all other notes. In
other words there is no indication that any pitch/position errors
in either note have observable effects on the pitch/position of
subsequent notes. Whatever the effect of any errors, they have
been subsumed within each note. These results are summarized
by saying that most—though not all—bowed note sequences
can be provisionally classified, from their statistical pattern, as
renewal processes. Behaviorally, these results also indicate that the
performer has adopted a consistent strategy within each trial.

On the other hand, when the performer attempts to shift
between the same note pairs without using the bow, the precision
seen earlier vanishes: the notes no longer lie comfortably within
the pitch window of the target note. Even their mean positions
may exhibit a systematic error, in addition to drift (not necessarily
monotonic) within the sequence. This is perhaps surprising when
we recall that pitch and position, and the presumed propri-
oceptive and tactile cues that accompany each note, have an
association established by years of practice. Shifts from B to D
(and D to B) using the index finger are commonplace events in
performance. Yet without the pitch feedback provided by the bow,
our subjects seemed to have only a vague idea of where their
contact finger had landed on the fingerboard. Somatic cues alone
were inadequate. If performers could hear the pitch equivalent to
their contact position they, like all listeners, would immediately
perceive the surprisingly large pitch/position errors. Furthermore,
in most cases our no-bow data and their serial correlations—
utterly unlike the usual note correlations when using the bow—

show strong serial correlations within and between the note
sequences.

It is important to point out that when deprived of vision,
important cues about the spatial location of the performer and the
cello are lost. And with the bow no longer even on the string, the
performer also loses a potential source of triangulation that may
be important for positioning the finger properly on the string.

Of the two note pairs used in our study the B–D shifts are
unique: during the shift the hand and arm encounter no distinc-
tive landmarks of the cello body itself, unlike the larger B–A shifts
that require arm and hand postural changes to navigate obsta-
cles presented by the instrument. This lack of distinctive land-
mark features in B–D shifts may make the performer even more
dependent on pitch. In several cases no-bow sequences have sta-
tistical properties that suggest they are realizations of a random-
walk process (Methods, Model 2). In particular, these cases have
statistical patterns characteristic of a well-known Markov pro-
cess related to a theoretical random walk known as the “Wiener
process” (Bharucha-Reid, 1960). In our simulated sequences each
“note” was based on the previous—but only the previous—note
location. Individual realizations (simulations) of such processes
are often characterized by local drift, leading to statistically sig-
nificant and sustained serial auto-correlation coefficients, as seen
in Figure 4. Though the two sequences in Figure 4 were inde-
pendently generated, their cross-correlations show sustained and
statistically significant coefficients, a result of the fact that such
sequences, as in Figure 4, exhibit drifts that partially overlap in
time. When our performance data exhibit this feature (Figure 2)
we cannot therefore reject the Wiener model as an explanatory
summary of the performance. We provide an interpretation of this
below.

REFERENCE POINTS
Central to most motor control theories is the concept of a “ref-
erence point”. The paradoxical issue here is that the key sensory
system when acoustic feedback is present is auditory—which does
not have a spatial dimension. Both proprioception and vision
have spatial aspects; but pitch does not, though the pitch of the
note precisely determines the exact spatial location required of
the contact between the finger, the string and the fingerboard.
When pitch is the reference there must be a mapping from the
non-spatial pitch variable to the spatial fingerboard variable. Yet
the (hyperbolic) mapping of pitch onto the fingerboard is not
simple or linear, and only qualitatively understood by performers.
This mapping may require years of practice to achieve accuracy.
The fact that note sequences, when auditory feedback is present,
are renewal processes indicates that some internal pitch–sense
controls central motor behavior, and that the external behavioral
realizations do not affect, or corrupt, the internal reference. As
noted in a recent study (Brown et al., 2013), “The ways in which
pitch and temporal structure in auditory sequences are mapped to
the motor system in production remain poorly understood”. This
blunt assessment from such a complex study makes it unlikely
that we will have any theoretical understanding in the near future
of the failures that led to the degradation of our subjects’ no-
bow performances. We are not arguing here that vision and
proprioception are not important in musical performance; this
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study shows that they are not by themselves adequate to support
the fingering precision that is observed when auditory feedback is
also available.

BEHAVIORAL INTERPRETATIONS OF THE DATA
We assume that the performer, when using the bow, attempts to
match the resulting pitch with an internal reference pitch. But
what is the performer attempting to do when use of the bow is
denied? This requires a change in strategy, or rather a change in
reference. But our subjects don’t seem to have a stable absolute
spatial reference sense. Instead, our models imply that in many
cases the spatial reference is a random variable dependent on the
spatial location of the previous note. A “floating reference”, per-
haps, leading to a random walk-like succession of executed note
locations. (Perhaps in some cases the subject adopts a random
inter-note distance reference value; in which case, both notes must
be martingale-like sequences). In other trials only one note may
have the martingale property. For the remainder of our empirical
trials the statistical profile seems to be a hybrid of Figures 1,2
correlations; we do not at present have models for these note
sequences.

Does this mean that the controller itself is stochastic? It
depends. In the case of Figure 2, interpreted by the results of
Figure 4, the controller can follow a completely deterministic pro-
cess, which, because of execution and perception errors, generates
a random- walk sequence. The controller can be deterministic
but the control reference point is “random” because, in effect,
the controller “learns” the previous random reference value and
sequentially updates it. It “learns” or “remembers” its own cumu-
lative random execution errors. This is the inevitable result of
any controller attempting to reproduce a response already con-
taminated by execution error. The performer’s strategy or intent
may be entirely rational; the controller may be deterministic. The
resulting motor behavior is stochastic.

“Execution errors” are assumed to be on the efferent side
but perceptual errors, for example a misperception of the hand
or finger contact position, are assumed to be on the afferent
side. If these errors are additive, the result is still a stationary
Markov process—a random walk—assuming the central strategy
is unchanged. The subject need not be employing any strategy
consciously, but a martingale strategy has one great advantage:
the subject need only remember the last perceived location for
each note.

Indeed, the performer may be following a similar strategy
when using the bow; the central controller may be attempt-
ing to return the finger to the previous contact position—or
pitch—for a given note. Again, there will be motor execution
and proprioceptive errors. If the resulting and possibly error-
contaminated pitch/location errors are detected (in relation to

the invariant internal pitch reference) and corrected during the
time period that note is held (Chen et al., 2008), a renewal process
would be expected. Whatever the case, the final contact location,
presumably associated with an acceptable pitch, has no influence
on subsequent final locations. But if the final pitch/location is
memorized by an updated controller, then, in these rare cases,
even a bowed sequence could exhibit a Wiener process type of
sequence.

In this study we employed a task requiring sequential, alter-
nating movements between two target locations. We studied not
only average performance accuracy (see Chen et al., 2006, 2008),
but also the serial relations within and between the alternating
note location sequences. To our surprise, we found that in the
no-bow trials subjects seemed unable to place their fingers at
the correct contact positions on the fingerboard, and without
auditory feedback seemed unaware of their actual performance.
It is possible that the internal pitch the subject imagined was
stable and accurate (all trials began with the subject acoustically
verifying the correct pitch of note B) but that the processes that
normally generate movement to the desired location were com-
promised. Another possibility is that the internal reference pitches
were themselves compromised, though the usual motor processes
that translate a desired internal pitch to a spatial location of the
finger on the string were intact. Or perhaps there was a combina-
tion of these and possibly other malfunctions that degraded the
performance.

CONCLUDING REMARKS
Statistical properties of note sequences produced by experienced
cellists have been modeled here using simulations of various
random processes. Without auditory feedback, even experienced
musicians have difficulty shifting alternately and with preci-
sion between two notes played with one finger on the same
string. The sequence of note positions resembles statistically
those resulting from a discrete Wiener process. With auditory
feedback, conversely, the same note locations are reached with
remarkable precision, an unsurprising result; here the random-
ness in performance is best modeled as a renewal process. The
degradation in performance, when use of the bow is denied,
may reflect the distinctly secondary value of proprioceptive and
tactile feedback in skilled cellists. This finding gives little support
to the common assertion that musicians can produce precision
movements in the absence of auditory feedback. Their actual
performance, including the random aspects reported here, was
unexpected.
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