
ORIGINAL RESEARCH ARTICLE
published: 18 February 2014

doi: 10.3389/fnhum.2014.00078

Associations between prefrontal cortex activation and
H-reflex modulation during dual task gait
Daan Meester1*, Emad Al-Yahya1,2 , Helen Dawes1, Penny Martin-Fagg1 and Carmen Piñon1

1 Movement Science Group, Department of Sport and Health Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford, UK
2 Department of Physiotherapy, Faculty of Rehabilitation, The University of Jordan, Amman, Jordan

Edited by:

Marco Iosa, Fondazione Santa Lucia,
Italy

Reviewed by:

Floriana Pichiorri, Fondazione Santa
Lucia–Istituto Di Ricovero E Cura A
Carattere Scientifico, Italy
Erik B. Simonsen, University of
Copenhagen, Denmark

*Correspondence:

Daan Meester, Movement Science
Group, Department of Sport and
Health Sciences, Faculty of Health
and Life Sciences, Oxford Brookes
University, Headington, Oxford OX3
0BP, UK
e-mail: dmeester@brookes.ac.uk

Walking, although a largely automatic process, is controlled by the cortex and the spinal
cord with corrective reflexes modulated through integration of neural signals from central
and peripheral inputs at supraspinal level throughout the gait cycle. In this study we used
an additional cognitive task to interfere with the automatic processing during walking in
order to explore the neural mechanisms involved in healthy young adults. Participants were
asked to walk on a treadmill at two speeds, both with and without additional cognitive
load. We evaluated the impact of speed and cognitive load by analyzing activity of the
prefrontal cortex (PFC) using functional Near-Infrared Spectroscopy (fNIRS) alongside spinal
cord reflex activity measured by soleus H-reflex amplitude and gait changes obtained by
using an inertial measuring unit. Repeated measures ANOVA revealed that fNIRS Oxy-Hb
concentrations significantly increased in the PFC with dual task (walking while performing
a cognitive task) compared to a single task (walking only; p < 0.05). PFC activity was
unaffected by increases of walking speed. H-reflex amplitude and gait variables did not
change in response to either dual task or increases in walking speed. When walking under
additional cognitive load participants adapted by using greater activity in the PFC, but this
adaptation did not detrimentally affect H-reflex amplitude or gait variables. Our findings
suggest that in a healthy young population central mechanisms (PFC) are activated in
response to cognitive loads but that H-reflex activity and gait performance can successfully
be maintained.This study provides insights into the mechanisms behind healthy individuals
safely performing dual task walking.
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INTRODUCTION
Walking is a largely automatic process although it is controlled by
the cortex, brain stem and spinal cord, and modulated through
integration of neural signals from central and peripheral inputs
at spinal and supraspinal level (Nielsen, 2003; Yang and Gorassini,
2006). Activation of cortical motor networks, including the motor,
premotor, and prefrontal cortex (PFC) has been observed during
walking (Fukuyama et al., 1997; Hanakawa et al., 1999). How-
ever, whilst it has been reported that cognitive tasks interfere
with walking performance (Suzuki et al., 2004; Al-Yahya et al.,
2011), the underlying mechanism of how cortical interference
affects gait and mobility has not yet been described. Walking has
been shown to be facilitated by selective moderation of central
drive as a result of inhibitory activity by intracortical neurones
which suppress motoneuronal activation (Petersen et al., 2001).
This effect is apparent in the strong modulation of the soleus
H-reflex throughout the gait cycle whereby the H-reflex decreases
or is absent during the swing phase of gait, facilitating ankle
dorsiflexion, and increases approaching heel contact and stance
phases, thus assisting weight bearing (Yang and Gorassini, 2006;
Makihara et al., 2012). The H-reflex is considered to provide valu-
able information on the involvement of the corticospinal tract in
the control of peripheral reflexes and movement during walking
(Knikou, 2008a,b). There is further evidence of phase-dependent

soleus H-reflex modulation, observed during walking in patients
with spinal cord injuries (Knikou et al., 2009), which supports the
contribution from sensory afferents in walking control. Explor-
ing gait parameters alongside H-reflex and cortical mechanisms
may offer an insight into the mechanisms involved in gait
control.

In this study we explored the impact of an additional cogni-
tive task, which placed demands on the PFC (McCulloch, 2007),
on walking at self-selected and fast walking speeds (Suzuki et al.,
2004; Suzuki et al., 2008; Al-Yahya et al., 2009). We set out to inves-
tigate PFC activation and any consequential effects on the soleus
H-reflex alongside gait performance. To date, a reduced H-reflex
amplitude, indicating a depressed spinal excitability to improve
stability, has been observed when performing an additional cog-
nitive load during standing (Weaver et al., 2012); but the effect of
cognitive load on neural mechanisms during walking has not been
explored.

Furthermore, walking speed associated changes have been
demonstrated in both central and peripheral mechanisms, where
both the activity of the PFC (Suzuki et al., 2004), and H-reflex
amplitude were shown to increase with higher walking speed
(Simonsen et al., 2012).

We hypothesized that additional cognitive load would increase
PFC activity and through projections from the PFC reduce the
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H-reflex amplitude during normal walking speed. We further
expected that increasing both speed and the cognitive load would
provoke a further increased activity in the PFC and reduce speed
related changes in the H-reflex amplitude (Petersen et al., 2009),
with greater changes in the PFC associated with a reduced H-reflex
during stance and greater alterations in gait parameters. As such,
our study sets out to explore the mechanism behind healthy
individuals safely performing dual task walking.

MATERIALS AND METHODS
Seventeen healthy subjects (7 men; 10 women), 15 right handed
and 2 left handed, participated in this study. Mean age was
27.8 ± 6.3 with age range 22–44 years; mean height and weight
were 1.75 ± .11 m and 69.1 ± 15.2 kg, respectively. All subjects
gave written informed consent according to the Declaration of
Helsinki before the start of the experiments and this study was
approved by the University Research Ethics Committee. Subjects
walked on a treadmill while concurrently performing a cognitive
task at a normal and faster walking speed. H-reflexes were elicited
in the right soleus and measures of fNIRS were performed on the
PFC.

STUDY DESIGN
Standard methodology, utilizing several practice trials was used
to familiarize participants with the treadmill and varying speeds
(Woodway ELG 75, Germany) and thus determine preferred walk-
ing speed close to normal over ground walking speed (Voloshin,
2000). A faster walking speed was determined by increasing the
normal walking speed by 20% (Voloshin, 2000).

The treadmill was programmed for five repetitions of walking
and dual task walking alternated with rest periods in which the
treadmill was stationary. Both walking and walking with distrac-
tion were performed in blocks of 30 s, and rest periods varied from
20 to 40 s. The rest periods had a varying length to prevent sub-
jects anticipating the start of the next block. Subjects performed
five repetitions of walking and walking with distraction at each
of the two speeds. For the cognitive task, subjects were asked to
count backward in steps of seven from a number presented by the
investigator.

fNIRS IMAGING
A continuous wave (782 nm, 859 nm) fNIRS instrument (Oxy-
mon, Artinis Medical Systems, The Netherlands) was used to
measure PFC activation. Two identical plastic holders consisting
of four optodes each (two sources, two detectors) in a 4-channel
arrangement with an inter optode separation of 30 mm were
placed on each participant’s forehead using a custom-built spring-
loaded array optode holder covering the area linking Fp1, F3, and
F7 and the area linking Fp2, F4, and F8 according to the inter-
national 10–20 EEG electrode system, which corresponds to the
left and the right PFC, respectively (Leff et al., 2008). To moni-
tor hemodynamic responses, blood pressure, and heart rate were
measured at baseline and at the end of the program.

H-REFLEXES
H-reflexes were elicited in the right soleus muscle (SOL) dur-
ing single and dual task blocks. A constant current high voltage

stimulator (Digitimer Ltd. DS7A, UK) was used to elicit H-reflexes
and M-waves. H-reflex recruitment curves were obtained while
subjects were standing. Hmax and Mmax were measured to deter-
mine the intensity which elicited 20–25% of Mmax (Simonsen and
Dyhre-Poulsen, 1999; Phadke et al., 2010). A footswitch (Odstock
Medical Ltd, UK) under the subject’s right heel provided data to
time the stimulation within the gait cycle. The footswitch was
used to trigger the stimulator to elicit a H-reflex during mid-
stance (30% of gait cycle; Hughes and Jacobs, 1979). To prevent
depression of the H-reflex and subject anticipation of the reflex,
stimulations were given every four, five, or six heel strikes; corre-
sponding to an inter-stimulus-time (ISI) of 4–5 s, which is known
to be long enough to measure consecutive H-reflexes (Knikou and
Taglianetti, 2006; Jeon et al., 2007).

EMG RECORDING AND NERVE STIMULATION
Based on earlier research (Capaday and Stein, 1986, 1987; Simon-
sen and Dyhre-Poulsen, 1999), the right SOL was selected for EMG
recordings. Ag–AgCl electrodes (55 mm diameter) were placed on
the muscle belly and as a stimulating electrode on the tibial nerve
(Konrad, 2005). The cathode was placed in the popliteal fossa with
the anode at a distance of 2 cm medial to the cathode. Researchers
located the nerve using small moveable electrodes, before posi-
tioning the actual stimulation electrodes, which were secured with
Velcro tape to prevent slippage during locomotion. EMG leads
were attached to the leg and upper body to reduce movement
artifacts and prevent subjects from tripping.

STEP TIME
Step time was measured using an inertial measuring unit (Philips,
Eindhoven, The Netherlands) comprising a tri-axial accelerome-
ter, gyroscope, and magnetometer placed on the center of mass
(Esser et al., 2012). Post-processing and analysis was performed in
a pre-written program in LabVIEW2010 (National Instruments,
Austin, TX, USA). Step time was taken as the gait variable of inter-
est with the time interval between trough-to-trough center of mass
excursions during one gait cycle (Esser et al., 2009).

DATA PROCESSING
Raw fNIRS signals were collected at a sample rate of 10 Hz. Deoxy-
Hb and Oxy-Hb concentrations were calculated (Oxysoft 2.1.6),
filtered with a low pass filter set at.67 Hz (Labview 6.1) and visually
inspected for motion artifacts, missing signals, and noisy signals.
Blocks with missing signals or artifacts were excluded from analy-
sis. A moving average filter with a width of 4 s was used to smooth
the signal. Block averages of the 5 task + rest repetitions were
calculated and the middle 10 s of each task and rest periods used
for statistical analyses. To offset low spatial resolution of fNIRS,
and provide a better indication of general measured activity in the
PFC, the four channels on both the left PFC and the right PFC
were averaged.

Signal software was used for data acquisition and analysis (CED
Signal 3.09, UK). EMG signals were pre amplified 1000 times and
high passed filtered at 30 Hz (NL844; Digitimer). Consequently
signals were low pass filtered at 200 Hz (NL135; Digitimer) before
H-reflexes were sampled at 1000 Hz (Tokuno et al., 2007). Peak-
to-peak amplitude of the H-reflex measured during walking was
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normalized by expressing the walking H-reflex as a percentage
of the standing H-reflex elicited at the same intensity. Variabil-
ity of normalized H-reflexes was determined using the standard
deviation.

STATISTICS
Descriptive statistics were performed on demographic and gait
control parameters. Paired t-tests were used to examine differences
in hemoglobin concentrations during task and rest blocks. The
effects of task and speed on brain measures, H-reflex amplitudes
and step times were examined using repeated measures ANOVA
models. To investigate relationships between central and periph-
eral mechanisms, changes in Oxy-Hb concentrations, H-reflex
amplitude variability, and step time variability were explored
through Pearson correlations. For all statistical tests, alpha level
was set at 0.05 a priori, and SPSS Bonferroni adjusted p-values are
quoted.

RESULTS
DESCRIPTIVES
Individuals’ average self-selected normal walking speed was
1.22 ± SD 0.24 m/s, range 0.7–1.5 m, and faster walking
speed was 1.48 ± 0.26 m/s, range 1.0–1.7 m/s. Blood pres-
sure and heart rate were stable with a mean blood pressure of
117 ± 10.6/75 ± 6.7 mmHg, range 98/63 mmHg to 136/89 mmHg
and a mean heart rate of 75 ± 12.3 bpm, range 60–109 bpm. Blood
pressure and heart rate did not significantly (p > 0.05) change from
baseline to normal and faster walking speed. Cognitive task score
was not significantly (p > 0.05) different between speeds. Average
answer rate was 10.3 ± 3.8 answers during normal walking and
10.5 ± 3.8 during faster walking with, respectively, mean error
rates of 0.4 ± 0.4 and 0.4 ± 0.3.

NIRS IMAGING
Average Oxy-Hb and Deoxy-Hb concentrations are summarized
in Figures 1 and 2. Repeated measures ANOVA results are shown

in Table 1. For single and dual task blocks at normal and faster
walking speed, relative Oxy-Hb concentrations were significantly
(p < 0.05) higher during the task compared to the average rest
block followed after each task in both hemispheres. Deoxy-Hb
changes were significantly (0.011) lower during dual task blocks
compared to rest in the right PFC when walking at a faster walking
speed.

In the right cortex Oxy-Hb concentrations increased sig-
nificantly with dual task (F = 4.632; p = 0.049) from
0.23 ± 0.1 mmol/l to 0.34 ± 0.1 mmol/l at normal speed and from
0.21 ± 0.1 to 0.51 ± 0.1 at faster speed. In the left cortex, a trend
was shown toward significant increases (F = 3.535; p = 0.080)
of Oxy-Hb concentrations with dual task, with increases from
0.23 ± 0.1 mmol/l to 0.38 ± 0.1 mmol/l and 0.22 ± 0.1 mmol/l
to 0.46 ± 0.1 mmol/l for normal and faster walking speed, respec-
tively. Deoxy-Hb concentrations were not significantly affected
by task or speed. Increases and decreases in Oxy-Hb and Deoxy-
Hb were not significantly different between speeds. No significant
interactions were found between task and speed for either Oxy-Hb
and Deoxy-Hb concentrations.

H-REFLEX AND STEP TIME
Averages and variability of H-reflex amplitudes and step times
are described in Table 2 and Figure 3. Changes of mean nor-
malized H-reflex, step time, and variability of H-reflex and step
time were not significantly (p > 0.05) different between tasks and
walking speeds. Furthermore repeated measures ANOVAs did not
show interactions between task and speed for both parameters (see
Table 3).

CORRELATIONS BETWEEN CENTRAL AND PERIPHERAL MEASURES
No significant relationships were found between PFC activity,
H-reflex, and step times. Changes in Oxy-Hb concentrations did
not correlate with H-reflex variability and step time variability.
Changes in Oxy-Hb concentrations in the left cortex due to dual

FIGURE 1 | Mean relative changes and standard deviations in Oxy-Hb

(red and orange) and Deoxy-Hb (purple and blue) during normal and fast

(dotted bars) walking in the left and right cortex. Results of single task
(orange and purple) and dual task walking (red and blue) are presented.

PFC = prefrontal cortex, Oxy-Hb = oxy hemoglobin, Deoxy-Hb = deoxy
hemoglobin, ST = single task, DT = dual task. Significant higher Oxy-Hb
concentration change during dual task walking compared to single task
walking in the right cortex (*p = 0.049).
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FIGURE 2 | Relative change of Oxy-Hb (red and orange) and Deoxy-Hb (blue and purple) concentrations during single task walking and dual task

walking at normal and fast walking speed. Task period are indicated in gray. Oxy-Hb = oxyhemoglobin, Deoxy-Hb = deoxyhemoglobin, ST = single task,
DT = dual task.

Table 1 | Repeated measures showing the effect of task and speed on Oxy hemoglobin and Deoxy hemoglobin concentrations in the left and

right prefrontal cortex.

Summary statistics of ANOVA for Oxy and Deoxy hemoglobin concentrations

Left PFC hemisphere Right PFC hemisphere

Oxy-Hb Deoxy-Hb Oxy-Hb Deoxy-Hb

Effect F Sig. F Sig. F Sig. F Sig.

Task 3.535 0.080 3.396 0.085 4.632 0.049∗ 2.107 0.169

Speed 0.213 0.651 0.188 0.736 1.776 0.204 0.045 0.835

Task*Speed 0.471 0.503 0.076 0.786 2.425 0.142 1.231 0.286

Task = single and dual task walking, speed = normal and faster walking speed, PFC = prefrontal cortex, Oxy-Hb = oxy hemoglobin, Deoxy-Hb = deoxy hemoglobin.
Significant higher Oxy-Hb concentration change during dual task walking compared to single task walking in the right prefrontal cortex (*p = 0.049).

Frontiers in Human Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 78 | 4

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Meester et al. Neural mechanisms during distracted gait

Table 2 | Averages + standard deviations of H-reflex amplitude, variability, step times, and step time variability.

H-reflex and step time averages and variability

Normal walking speed Fast walking speed

Single task Dual task Single task Dual task

H-reflex (%) 103.7 ± 24.4 105.9 ± 25.5 109.0 ± 26.9 106.7 ± 33.2

H-reflex variability (%) 14.2 ± 7.8 18.1 ± 10.3 16.9 ± 12.5 17.6 ± 11.3

Step time (ms) 528.4 ± 41.3 532.4 ± 46.1 524.3 ± 39.8 517.6 ± 38.3

Step time variability (ms) 105.0 ± 134.1 124.6 ± 139.4 63.4 ± 81.3 54.1 ± 48.5

Variability of the normalized H-reflex and step time was measured using the standard deviation.

Table 3 | Repeated measures showing the effect of task and speed on normalized H-reflex, H-reflex variability, step time, and step time variability.

Summary statistics of ANOVA for H-reflex amplitudes and step times

H-reflex H-reflex variability Step time Step time variability

Effect F Sig. F Sig. F Sig. F Sig.

Task 0.001 0.973 2.266 0.153 0.966 0.341 1.436 0.251

Speed 0.868 0.366 0.376 0.549 0.108 0.746 0.205 0.658

Task*Speed 0.951 0.345 2.255 0.154 3.339 0.088 3.387 0.087

Variability of the normalized H-reflex and step time was measured using the standard deviation.

FIGURE 3 | (A) Means and standard deviation of normalized H-reflex. (B) Mean variability of H-reflex+standard deviation. Variability of the normalized H-reflex
and step time was measured using the standard deviation.
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task and changes in step time showed the highest correlation of
0.420 close toward a trend; p = 0.11. Error rates of cognitive task
performance were not correlated with significantly higher or lower
concentrations of Oxy-Hb or Deoxy-Hb or changes due to single
and dual task. Moreover changes in H-reflex variability did not
correlate with step time variability.

DISCUSSION AND CONCLUSION
We found healthy young adults responded to additional cognitive
loading during treadmill walking with increased PFC activation,
but unlike individuals after stroke or the elderly, this activation
was not associated with altered gait parameters (Al-Yahya, 2011).
Further, there was no change in the amplitude of the H-reflex dur-
ing stance in either fast or dual task walking conditions. It was
hypothesized that the H-reflex amplitude would reduce during
the stance phase of walking when participants were simultane-
ously performing a cognitive task. However, whilst we observed
no change in amplitude of the reflex there was a trend toward
increase in H-reflex amplitude variability under both fast and
dual task walking conditions. In earlier studies Capaday and
Stein (1986, 1987) found decreases in H-reflex amplitudes from
standing to walking and with increasing walking speed through-
out the gait cycle, whereas Simonsen and Dyhre-Poulsen (1999),
Simonsen et al. (2012) showed increases in H-reflex amplitudes
from walking to running. In agreement with these inconsistent
results this study confirmed that there is no clear direction in
which the H-reflex amplitude is altered, but that an increased
walking task difficulty by speed or dual task may increase the
variability of the H-reflex amplitude. The absence of changes in
gait parameters between different walking conditions indicates
that young healthy individuals are able to cope with additional
cognitive loads and changes in speed during walking. There-
fore it is proposed that the observed increases in PFC activity
allowed individuals to perform additional tasks simultaneously,
without affecting cortical output onto the measured periph-
eral reflexes and thus gait control. When exploring correlations
between dual task changes in PFC activation and step time, the
highest Pearson r2 found was 0.420 which was not significant
(p = 0.11). This indicates that in a healthy young population
central mechanisms are activated in response to cognitive loads
but that reflex activity and gait performance can successfully be
maintained.

Our findings are important as they set out a non-pathological
response of reflex control alongside central adaptations to cog-
nitive load in healthy young adults at both self-selected and fast
walking speeds. Previous studies (Capaday and Stein, 1986, 1987;
Chalmers and Knutzen, 2000; Ferris et al., 2001) have found both
decreases and increases in H-reflex amplitude with increases in
walking speed (Simonsen and Dyhre-Poulsen, 1999; Schneider
et al., 2000; Simonsen et al., 2012) which suggest that central
control mechanisms are involved in H-reflex pathways during
activities like walking. The stance phase of gait is important for
stability and propulsion during gait and thus of importance to
understand mechanisms affecting balance. Our study found a
very stable H-reflex during the stance phase of walking within
younger subjects. The swing phase of the gait cycle shows a dif-
ferent response which could now be explored in dual task walking

conditions. Our findings suggest that central control, measured
with prefrontal activation changes, occurred in response to altered
walking demands but that these did not affect peripheral reflexes,
as measured by the H-reflex through supra-spinal cortical outputs
directly controlling motor neuron excitability. Increased impact
of cognitive load has been shown during backward walking (Kurz
et al., 2012) and during dual tasking in older adults (Seidler et al.,
2011). The increase in associated gait decrements in the older
populations, particularly those with neurological damage, sug-
gests an age-related shift from automatic to attentional control of
movement as walking ability declines (Seidler et al., 2011). Inves-
tigation of the impact on both PFC and H-reflex in the older
population may elucidate the mechanism behind this behavioral
response.

In our younger population, no significant changes in PFC activ-
ity were found with increased speed, suggesting there might be
differences in control mechanisms of faster speeds, or greater
capacity for adaptation in younger population. Importantly
peripheral changes were not related to cortical changes. This
supports the hypothesis that in healthy individuals there is ade-
quate central capacity to cope with subtle changes in walking
and that any peripheral changes may be minimal and separately
mediated.

The methodologies used in this study do have some limita-
tions. fNIRS is a developing modality with great opportunities
(Belda-Lois et al., 2011), but it also has a poor spatial resolu-
tion, low depth penetration and is variable with regards to signal
quality between individuals (Toronov et al., 2007; Seraglia et al.,
2011). Furthermore due to practical reasons we only measured
the PFC, and were limited due to patient comfort in our testing
time thus limiting our ability to test the H-reflex throughout the
gait cycle and from exploring other motor networks (Suzuki et al.,
2004; Kurz et al., 2012; Karim et al., 2013) which may provide
further insight into gait and balance control. Our study may be
underpowered and prone to type II error. The use of the H-reflex
in order to explore walking has inherent practical challenges of
using the appropriate intensity of stimulus, timing of the stimu-
lus (Simonsen et al., 2013), protocol (Mynark, 2005), and control
of the amount of body weight (Hwang et al., 2011); however, we
used techniques with established reliability (Simonsen and Dyhre-
Poulsen, 2011; König et al., 2013). Nevertheless the H-reflex has
been shown to be effective in exploring the normal response to
postural threat, and perhaps by measuring the reflex in mid stance
changes at heel strike or other areas of the gait cycle were missed
(Krauss and Misiaszek, 2007). Although gait control has not
been explored before, differences in the H-reflex during upright
stance have been found between the elderly and young in bal-
ance responses (Baudry et al., 2010; Baudry and Duchateau, 2012).
Considering the high variability in H-reflex and fNIRS between
participants, the measures used, although normalized, may not
have been sensitive enough to pick up correlations between cen-
tral and peripheral mechanisms. However, it is important to
replicate this research in elderly individuals and neurological pop-
ulations to explore relationships between the mechanisms in those
populations.

We used a treadmill for our study, which is not reflective of an
overground walking and normal walking control, since individuals
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were unable to respond to simultaneous cognitive demand by
slowing down (Al-Yahya et al., 2009). Although previous stud-
ies using treadmill testing have shown changes in gait parameters,
the method may lack some ecological validity for understanding
gait control for community mobility. Our population selected an
average walking speed of 1.2 ms−1 which is lower than the aver-
age walking speed for this age group (Bohannon and Williams
Andrews, 2011) resulting in fast walking speeds, set at 120% of
normal walking speed, which were more reflective of a normal
walking pace.

Our results have shown that cognitive load does increase activ-
ity in the PFC but this is not associated with a change in H-reflex
modulation during stance or gait parameters. Gait control mech-
anisms under speed and dual task conditions now need to be
explored in older adults, and people prone to falls or poor balance
and mobility.
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