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Reconstructing functional brain networks: have we got the
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Both at rest and during the executions of
cognitive tasks, the brain continuously cre-
ates and reshapes complex patterns of cor-
related dynamics. Thus, brain functional
activity is naturally described in terms of
networks, i.e., sets of nodes, representing
distinct subsystems, and links connect-
ing node pairs, representing relationships
between them.

Recently, brain function has started
being investigated using a statistical
physics understanding of graph the-
ory, an old branch of pure mathematics
(Newman, 2010). Within this framework,
network properties are independent of the
identity of their nodes, as they emerge
in a non-trivial way from their interac-
tions. Observed topologies are instances
of a network ensemble, falling into one of
few universality classes and are therefore
inherently statistical in nature.

Functional network reconstruction
comprises various steps: first, nodes are
identified; then, links are established
according to a certain metric. This gives
rise to a clique with an all-to-all connec-
tivity. Deciding which links are significant
is done by choosing which values of these
metrics should be taken into account.
Finally, network properties are computed
and used to characterize the network.

Each of these steps contains an ele-
ment of arbitrariness, as graph theory
allows characterizing systems once a net-
work is reconstructed, but is neutral as
to what should be treated as a system
and to how to isolate its constituent
parts.

Here we discuss some aspects related
to the way nodes, links and networks in

general are defined in system-level studies
using noninvasive techniques, which may
be critical when interpreting the results of
functional brain network analyses.

WHAT’S A NODE?
A node is a drastically coarse-grained rep-
resentation of an object, identifying it to a
structureless point, in a way similar to the
reduction of a whole mechanical system to
its center of mass, allowed by the system’s
symmetries.

Identifying nodes supposes that the
studied system can meaningfully be
decomposed into different parts, a chal-
lenging task when dealing with spatially
extended systems of largely unknown
organization and complex dynamics.

Defining a node generates qualitatively
different problems for different record-
ing techniques: for non-invasive system-
level electrophysiological techniques, the
main issue is how well sensors sample the
underlying dynamical system; for func-
tional magnetic resonance imaging ones,
the central question is how to best segment
the space.

SUB-SAMPLING
Studies using electrophysiological tech-
niques such as electro- (EEG) or magne-
toencephalography (MEG) identify nodes
with sensors and, as a consequence, dras-
tically undersample electrical activity at
a neuronal level and the corresponding
functional space.

The spatial sampling implicitly leads
to a coarse graining of the dynamics,
introducing a spatial scale irrespective of
the actual system organization, resulting

in spatial correlations in the topology of
reconstructed networks.

Even more importantly, sub-sampling
can severely affect topological network
properties (Stumpf et al., 2005; Lee et al.,
2006). While the functional networks
based on synchronization of MEG sen-
sors may be qualitatively similar to those
obtained after source reconstruction in
the anatomical space (Palva et al., 2010),
network topologies derived from surface
recordings may not reflect the topology
of the underlying network of neuronal
sources (Antiqueira et al., 2010), let aside
that of anatomical connections between
them (Ponten et al., 2010).

Limitations in the amount of data and
in the reliability of link estimation (either
due to the presence of noise, of common
sources or the inability of most estimators
to distinguish between direct and indi-
rect interactions with the same dynam-
ical subsystem) likely lead to the spuri-
ous addition, deletion or changes in the
nature of links. Spurious links between
nodes of similar degree may for instance
decrease the average shortest path length
and increase the clustering coefficient
(Lee et al., 2006). As a result, networks
may erroneously be classified as small-
world and assortative, even when their
true structure is disassortative (Bialonski,
2012).

Furthermore, randomly sub-sampled
scale-free networks generally turn out not
to be scale-free (Stumpf et al., 2005),
and multiple electrode recordings gener-
ally overestimate the true network small-
worldness, as each sensor picks up many
sources at small scales, while their number
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constrains the sampling on large ones
(Gerhard et al., 2011).

PARCELLATION
For functional magnetic imaging data,
delineating functionally separated brain
units, a task that goes under the name
of parcellation, may be nontrivial (Stanley
et al., 2013).

Anatomical methods define nodes by
averaging the time-series from all voxels
within a given anatomical area. However,
anatomical and functional spaces need not
be isomorphic.

Nodes may also be represented by
equally sized brain voxels. The time-
series recorded from each voxel is then
used to create the functional network.
Alternatively, node location may be identi-
fied with the peaks or centers of mass from
activation maps.

Due to the high data dimensionality
(∼105) induced by these two meth-
ods, a pruning of the set of nodes may
be required to reduce the computa-
tional cost and the amount of noise
introduced by irrelevant nodes, and
to ultimately improve the overall sig-
nificance of the analysis. The field of
data mining provides a range of fea-
ture selection techniques to perform this
pruning (Liu and Motoda, 2007). This
is generally accomplished by selecting
or generating the features with mini-
mum information redundancy, e.g., via
principal or independent component
analysis, or mutual information. Yet, it
is not clear to what extent deleting or
merging sets of nodes with similar dynam-
ics eliminates physiologically relevant
information.

On the one hand, the anatomo-
functional space is often segmented
with partitional clustering methods (Jain
et al., 1999), which represent inadequate
accounts of systems where the same region
can simultaneously participate in different
functional units. Furthermore, while a rel-
atively small number of localized regions
of interest can accurately capture dis-
tributed brain dynamics if their behavior
is representative of the underlying domi-
nant modes, reflecting the fact that brain
functions range from highly localized to
highly extended (Robinson, 2013), this is
not guaranteed a priori and hard to check
from experimental data.

Global topological properties such as
small-worldness may be robust to the par-
cellation technique and overall number of
nodes, but the quantitative aspect of these
properties may be grossly affected (Zalesky
et al., 2010).

Furthermore, functional activation
methods require that nodes be defined
in a time-varying fashion that reflects the
dynamics of functional brain activity. This
may lead to a fluctuating number of nodes,
and care should be taken when comparing
the associated topologies.

On the other hand, the brain has
complex fractal structure, showing self-
similarity or self-dissimilarity (Itzkovitz
et al., 2005) depending on the homogene-
ity of pattern formation rules, and it is
not clear whether information is stored
locally, e.g., in single nodes or motifs,
or non-locally, across widely separated
units. Thus, a complete picture of brain
functional activity requires that nodes be
defined at different coarse-graining lev-
els, revealing organizational principles at
different levels.

WHAT’S A LINK?
CHOOSING THE APPROPRIATE METRIC
Functional links are generally defined
using statistical relationships between
activity recorded at different brain sites or
sensors, and are given either a binary or a
continuous value. However, how different
connectivity metrics affect the topological
properties of the resulting networks and
how to elect the most appropriate metric
of brain activity out of the great number of
available ones are still poorly understood
issues.

Observed activity can be regarded
as a sequence of waxing and waning
synchronization and desynchronization
episodes between distant brain regions.
Synchronization would facilitate integra-
tive functions, by transiently binding
together spatially distributed neural pop-
ulations, while desynchronization may
allow the brain to flexibly switch from one
coherent state to another (Varela et al.,
2001).

Synchronization-based networks are
configurations evaluated locally in time,
with a single characteristic scale. However,
functional networks may be tempo-
rally non-local. When this is the case,
topological properties should not be

evaluated at single snapshots, but across
time. Furthermore, this approach fails
to account for multiscaleness of func-
tional brain activity, while considering
synchronization at different time scales
would help unveiling hierarchical neu-
ral communities (Arenas et al., 2006).
Finally, hub nodes may be undetectable
by single-scale synchronization metrics.
Functional hubs are densely connected
key components of information trans-
mission through the network, and work
as functional relay units. Multiple per-
turbations impair relay systems’ ability
to synchronize: relay units are either not
synchronized or synchronized with a time
delay or a complex coupling function, with
the systems they mediate (Vicente et al.,
2008; Gutiérrez et al., 2013). This may lead
to underestimating the hubs’ functional
connectivity.

PRUNING LINKS
The transformation of an all-to-all con-
nected clique into a functional network
generally requires a thresholding process,
leading to an adjacency matrix, and there-
fore crucially depends on the threshold
value.

A threshold value can either be fixed
a priori (Meunier et al., 2009), or cho-
sen after examining a range of values
(Horstmann et al., 2010; van Wijk et al.,
2010), or through an adaptive process
(Bassett et al., 2006), e.g., by choosing
its maximal value keeping the network
connected (Schindler et al., 2008). A quali-
tatively different strategy consists in select-
ing the threshold level that optimizes some
criterion, e.g., a data classification rate
(Zanin et al., 2012).

Thresholds imply sufficiently dichoto-
mous relations (Butts, 2009), a condition
that may not always be fulfilled, particu-
larly when the time-window within which
synchronization is discretized is of the
order of the average interval between syn-
chronization events.

Pruning connections by setting a
threshold has several serious, somehow
interrelated, potential consequences.

First, network properties are proba-
bility distribution functions. Too high a
threshold can prevent the convergence of
the sample distribution to the true asymp-
totic one and therefore the emergence of
the corresponding macroscopic property.
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Second, the percentage of considered
links, often set at ∼5% of the total ones,
may be very far from the percentage
of links which optimizes data classifica-
tion based on network properties, and
lie in a range where classification quality
is extremely vulnerable to fluctuations in
network parameters (Zanin et al., 2012).

Third, a threshold biases the analysis
towards certain scales and correspond-
ing topological properties, annihilating the
effect of other ones. Each network metric
is strongly associated with a preferred link
density. For instance, triangular motifs
cannot appear in very sparse networks,
while unconnected triangles disappear in
very dense networks. Similarly, hub-based
structures fade out for very high link
densities.

Finally, however chosen, a thresh-
old implicitly entails that there exists
an optimal description level for a
given system. However, the topological
properties of functional brain networks
qualitatively change when considering dif-
ferent threshold values. For instance, when
considering high threshold values, brain
activity appears hierarchically organized
into modules with large-world self-similar
properties, while the addition of only a few
weak links is enough to render the network
non-fractal and small-world (Gallos et al.,
2012).

REPRESENTING FUNCTIONAL SPACES
WITH NETWORKS
Perhaps the most important and nonethe-
less overlooked issue in functional brain
activity studies is that of defining the space
within which functional activity would
best be represented.

The ultimate goal of the analysis of
brain function is to describe the space of
functional processes (sensory, motor, cog-
nitive, etc.) associated with neural activity,
the nature of each of them, and of their
interactions.

Functional brain activity is typically
represented in a space isomorphic, in some
sense, to the anatomical one, with nodes
reflecting anatomically-related units, and
links a connectivity metrics. However,
connectivity may not necessarily be the
best descriptor of functional activity.
Rather than from connectivity, functional
brain activity may for instance emerge
from a collective property independent of

it (Fraiman et al., 2009). Furthermore,
there is no clear relationship between con-
nectivity and transfer or processing of
information.

The functional space itself could be of
a more abstract nature, where networks
need not be isomorphic to the topology of
the brain. For example, brain activity can
be represented as the motion of a diffusing
macroscopic particle in a complex high-
dimensional configuration space (Hsu and
Hsu, 2009; Papo, 2013). Network theory
may then be used to describe the phase
space in which brain activity lives. Brain
dynamics has been shown to be weakly
non-ergodic (Bianco et al., 2007), a con-
dition where the whole phase space is still
accessible, but the time to visit certain
regions may be much longer than typical
experimental ones (Bouchaud, 1992). The
fact that not all possible states are homoge-
neously populated makes the phase space
look like a network, with microscopic
dynamics restricted to nodes and links
(Thurner, 2005).

More generally, the space of functional
brain activity may take arbitrarily com-
plex forms, comprising information with
heterogeneous dimensionalities and pos-
sibly incommensurable natures. Viewing
this information set as a system may then
represent the most impervious step.

Identifying a system is a task in
many ways akin to identifying an object.
Gestalt theory (Köhler, 1929) showed that
humans recognize objects as whole forms,
using general grouping laws to define
boundaries, constituent parts and their
relationships. Complex functional spaces
may not be naturally amenable to object-
like grouping laws, hampering their treat-
ment as systems and, as a consequence, the
use of graph theory to study their proper-
ties. Graph theory can be generalized to a
class of non-Gestaltic systems, for instance
by building networks whose nodes repre-
sent features, and links quantify deviations
between two features and their typical rela-
tionship within a population (Zanin et al.,
2013). The structure of this generalized
functional space is ultimately embedded in
the topology of the reconstructed network.
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