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A series of computer simulations using variants of a formal model of attention
(Melara and Algom, 2003) probed the role of rejection positivity (RP), a slow-wave
electroencephalographic (EEG) component, in the inhibitory control of distraction.
Behavioral and EEG data were recorded as participants performed auditory selective
attention tasks. Simulations that modulated processes of distractor inhibition accounted
well for reaction-time (RT) performance, whereas those that modulated target excitation
did not. A model that incorporated RP from actual EEG recordings in estimating distractor
inhibition was superior in predicting changes in RT as a function of distractor salience
across conditions. A model that additionally incorporated momentary fluctuations in EEG
as the source of trial-to-trial variation in performance precisely predicted individual RTs
within each condition. The results lend support to the linking proposition that RP controls
the speed of responding to targets through the inhibitory control of distractors.
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INTRODUCTION
Identifying the neural mechanisms that enable flexible, goal-
directed behavior has been a fundamental aim of cognitive neu-
roscience (Kerns et al., 2004; Friston, 2009). Yet establishing
firm links between neural activity and its presumed cognitive
or behavioral consequences has proved challenging. One rea-
son is the ethical and technical limits (at least in humans) to
manipulating behavioral responses from presumed physiologi-
cal antecedents, relegating to merely correlational many linking
hypotheses regarding behavioral outcomes (Teller, 1984; Schall,
2004). The ambiguity inherent in interpreting event-related
potentials (ERPs), for example, hampers validation of linking
propositions in cognitive tasks requiring selective attention (e.g.,
Hopf et al., 2004; Martinez et al., 2006; Müller et al., 2006).
Here, ERP waves to attended signals typically evince greater volt-
age negativity than ERP waves to unattended signals, revealed
in an ERP difference component called Nd (see Näätänen, 1990,
for a review). As behavioral performance worsens with increas-
ing task difficulty the magnitude of Nd shrinks and its onset
latency lags. Thus, a specific physiological response (Nd magni-
tude) is associated with specific behavior outcomes (e.g., target
reaction time). Yet here as elsewhere the psychological mean-
ing of the neural activity is open to interpretation. Does Nd
reflect increased attentional focus to targets? Does it reflect active
inhibition of distractors? One goal of the present paper was to
perform a formal computational analysis of ERPs during selec-
tive attention to evaluate more carefully than hitherto several
hypothesized links between physiological activity and attentional
processing.

REJECTION POSITIVITY
Recent electrophysiological research has uncovered an ERP com-
ponent specifically associated with the processing of distractors
during tasks of selective attention (Münte et al., 2010; Mittag
et al., 2013; cf. Power et al., 2012). The component—named
rejection positivity (RP)—appears approximately 200 ms after
distractor onset and can last 400 ms or more thereafter. Originally
RP was identified in microscopic analyses of Nd: Relative to the
ERP wave in a non-attention control condition, ERP waves to
unattended stimuli in an attention task showed increased volt-
age positivity (Alho et al., 1987; Berman et al., 1989; Michie et al.,
1990; Alain and Woods, 1994; Berman and Friedman, 1995). As
depicted in Figure 1, rejection positivity thus served as the coun-
terpoint to the processing negativity (PN) accompanying ERP
waves to attended stimuli (Näätänen et al., 1978; Näätänen, 1982;
Bidet-Caulet et al., 2010). Alho et al. (1987) offered the interpre-
tation that the positivity reflected active suppression of rejected
signals, hence the term rejection positivity. However, it also is pos-
sible that the ERP waves elicited in the so-called non-attention
control condition are biased, either positively or negatively, thus
leaving room for alternative explanations of RP (e.g., Michie et al.,
1993; Alho et al., 1994).

Melara et al. (2002) were able to narrow the interpretive field
of RP using results from an attention-training paradigm, which
obviated the need for a non-attention baseline. Here, participants
underwent 3 weeks of training to exercise skills of either audi-
tory discrimination or distractor suppression, before and after
being tested in discrimination and selective attention tasks. Thus,
each participant served as his or her own baseline, against which
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FIGURE 1 | Graphic depiction of rejection positivity (RP) to distractors

and processing negativity (PN) to targets in an auditory selective

attention task (after Bidet-Caulet et al., 2010). Top panel: Grand
averaged ERPs to attended (in green), control (i.e., non-attention, in black),
and ignored (in red) stimuli reveal attention-induced separation of
waveforms beginning with the P2 component, 200 ms after stimulus onset.
Bottom panel: Difference of ignored vs. control waves (in red), depicting
RP, and attended vs. control waves (in green), depicting PN.

RP could be revealed as the product of suppression training.
Melara et al. found that suppression training, but not discrim-
ination training, enhanced RP to distractors (but not PN to
targets) beginning 200 ms after distractor onset. They further
demonstrated that RP closely co-varied with improved behavioral
performance during selective attention: The greater the positivity
to distractors, the faster, less biased, and more accurate partic-
ipants were in identifying targets. Since targets and distractors
never overlapped in time, the authors suggested that RP regulates
the salience of distractors held in working memory in the face
of responses to currently perceived targets. More recently, Melara
et al. (2012) showed that the effects of suppression training on RP
peak several months after the final training session. The results
of these studies suggest that RP is linked to a participant’s ability
to actively inhibit recent memories of distractors during selective
attention to targets.

Other recent research has focused on the neural sources of
RP. Bidet-Caulet et al. (2010) examined scalp topographies to
attended and ignored ERP waves subtracted from non-attention
baseline ERP waves (see Figure 1). The PN to attended tones had
an earlier onset (150 ms) and a more anterior topography than
the RP to ignored tones (200 ms). Nevertheless, the center-of-
mass to both components was concentrated on frontal electrode

sites. For RP, such activation may represent an executive con-
trol signal sourced in the frontal cortex, yet aimed at dampening
activity in sensory cortex. In keeping with this interpretation,
Chait et al. (2010), using MEG, recently found that distractor
tones inserted temporally between two comparison tones elicited
a magnetic RP component in the supra-temporal auditory cortex
beginning 150 ms after distractor onset. The authors concluded
that RP activity here reflected the sensory consequences of frontal
inhibitory control mechanisms (see also Melara et al., 2002;
Theeuwes and Chen, 2005).

MANIPULATING DISTRACTOR SALIENCE IN WORKING MEMORY
In an investigation of monkeys trained to perform visual search,
Ipata et al. (2006) reported slower and weaker activity to LIP neu-
rons responsive to salient (popout) vs. non-salient distractors on
days when the monkeys could successfully ignore the popout.
Conversely, these LIP neurons were unusually active to popout
distractors on days when the monkeys were unable to ignore
them. The authors concluded that frontal control signals serve
to suppress visual distractor activity on a parietal salience map
(Gottlieb et al., 1998) thereby permitting easier target search (see
also Bisley and Goldberg, 2003).

ERP evidence in humans indicates that RP is modulated
by the salience of distractors in working memory. Melara
et al. (2005) investigated salience by manipulating dimensional
imbalance—that is, the psychophysical change along the dis-
tractor dimension relative to the target dimension (Melara
and Mounts, 1993; Algom et al., 1996; Sabri et al., 2001).
Here, targets and distractors never overlapped in time, ensur-
ing that the influence of distractors on the processing of targets
resided in memory. As the remembered salience of distrac-
tors increased from low to medium to high (across separate
blocks of trials), participants’ behavioral performance to per-
ceived targets progressively deteriorated: They responded more
slowly and committed more misidentifications of targets. These
behavioral changes across conditions were accompanied by a
monotonic reduction in RP occurring 400 to 600 ms after
distractor onset. The authors concluded that as the salience
of remembered distractors sharpened it became steadily more
difficult for participants to inhibit in working memory, that
is, which consequently undermined their task performance to
targets.

As with many linking propositions, Melara et al.’s (2005) con-
clusion linking RP to inhibitory control of working memory
rests solely on correlational evidence, that is, the finding that
differences in levels of salience were associated both with corre-
sponding changes in neural activity (RP magnitude) and behavior
(RT and accuracy). However, these associations themselves spring
largely from the joint effects created across the different salience
conditions. Thus, the authors’ attribution of inhibitory control
was merely inferred from group averages. An alternative inter-
pretation is that RP gauges perceived stimulus salience but plays
no causal part in managing attentional control. The goal of the
present study was to explore more precisely the possible role of
RP in the inhibitory control of distraction in memory using a
computational model that permitted microscopic (trial-to-trial)
analyses of the connection between physiology and behavior.
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MODEL-BASED CONNECTIONS BETWEEN NEURAL ACTIVITIES AND
BEHAVIORAL PERFORMANCE
Model-based cognitive neuroscience represents a powerful new
approach to evaluate linking hypotheses (Gold and Shadlen, 2000,
2003; Forstmann et al., 2011). Here, cognitive constructs are for-
malized mathematically, connecting brain activation computa-
tionally with behavioral outcomes (e.g., Holroyd and Coles, 2002;
Roitman and Shadlen, 2002; Wang, 2002; Sugrue et al., 2004;
Purcell et al., 2010; van Maanen et al., 2011). Purcell et al. (2010),
for example, formalized the construct of (target and distractor)
evidence accumulation, which mathematically linked spike activ-
ity in monkey frontal eye fields (FEF) to saccadic latency during
visual search. Variants on the model distinguished the form of evi-
dence accumulation (e.g., perfect, leaky, gated, etc.); goodness of
fits between observed and predicted RT distributions successfully
discriminated among model variants. The analysis supported the
authors’ linking proposition that neurons in FEF accumulate per-
ceptual evidence until threshold, triggering saccadic movement
toward target or distractor locations.

The current study formalizes inhibitory control in working
memory using the computational model proposed by Melara and
Algom (2003). As shown in Figure 2, here attentional selection
is conceived as a dual process, concurrently involving excita-
tion of the current target and inhibition of all trial-irrelevant
information, including all previous distractors held in memory.
Distractor salience (among other factors) influences the buildup
of excitation to the current target and inhibition to distracting
information. A decision variable connects target choice to a pre-
defined stopping rule of the ratio of activations between target
and non-target stimulus values (see Method for details). Thus,
the speed of responding is intrinsically linked in the model to the
rate of growth in excitatory and inhibitory activity.

THE CURRENT MODELING STUDY
In the original version of the model, Melara and Algom (2003)
used free mathematical parameters to estimate the rates of exci-
tatory and inhibitory activity. However, in the current study, we
used a brain variant of the model to evaluate the linking propo-
sition that RP is associated as salience grows with the loss of
inhibitory activation to distractors. Here, recorded values of RP
substituted for the free parameters in determining the rates of
activation to distractors. Inhibitory activation thence contributes
to the weight of evidence (Gold and Shadlen, 2007) the perceiver
considers about how to respond to the target stimulus. In this way,
the model connects RP to behavioral decisions through the con-
struct of inhibitory activation. We asked whether an alternative
model in which recorded values of PN were used to set excitatory
activation of targets could equally predict the effects of distractor
salience on behavioral performance. Thus, we ask, does RP or PN
better explain the variance in behavioral effects from distractor
salience?

We sought in the current study to predict behavioral responses
from physiological data at both the condition level and the
individual-trial level. Our behavioral outcome variable was reac-
tion time (RT). At the condition level, we used RP (and PN) to
simulate overall behavioral performance in each condition. At
the individual-trial level, we used momentary fluctuations in the

FIGURE 2 | Graphic depiction of the time course of activation on a

filtering trial. Presentation of a target stimulus simultaneously triggered
excitation of the target’s perceptual representation and inhibition of
memory representations of previous targets and distractors. The time to
reach threshold is classification RT, modeled as the number of cycles t
needed to satisfy the stopping rule, which was set in all simulations here to
β = 1.0. Imagine moving the vertical threshold line progressively from left
to right until β = 1.0. Where the line stops (β = 1.0) is the predicted RT on
the trial.

low-frequency oscillations to distractors that give rise to RP (i.e.,
RP calculated from single trial EEG, hereafter, RP-noise) to simu-
late the RT of each participant on each trial. Our modeling efforts
rest on the assumption that RP-noise is not merely random varia-
tion in the bioelectric signal, but is in fact meaningfully associated
with stochastic behavioral processes. We evaluated this assump-
tion by comparing model simulations that predict behavioral
variation using RP-noise with those using random noise drawn
from either Gaussian (hereafter, Gaussian-noise) or rectangular
(hereafter, Rectangular-noise) distributions. Our final version of
the model combined EEG-based estimates of inhibitory activity
with RP-noise to examine how well a fully linked neurobehav-
ioral model could predict the individual RTs on every trial of every
participant in every condition.

METHODS
DATA SOURCE
The empirical data used in our simulations were reported as
Experiment 1 in Melara et al. (2005). Eleven participants were
tested. Stimuli were rectangular-wave tones in the 1-kHz range,
100 ms in duration (10 ms rise/fall) presented binaurally at 73 dB,
digitized to 16 bits at a sampling rate of 48 kHz. The stimulus
set, which appears in Table 1, was used to construct one base-
line condition (single distractor) and three filtering conditions
(multiple distractors) of the so-called Garner paradigm (Garner
and Felfoldy, 1970; Garner, 1974; see Figure 3). Each condition
included three targets of differing auditory frequency (962 Hz,
1000 Hz, and 1040 Hz); targets were the same across the four
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Table 1 | Auditory frequencies (in Hz) in each of four conditions (Baseline, Filtering 1, Filtering 2, and Filtering 3).

Condition Target 1 Target 2 Target 3 Distractor 1 Distractor 2 Distractor 3

Baseline 962 1000 1040 1020 1020 1020

Filtering 1 962 1000 1040 982 1020 1060

Filtering 2 962 1000 1040 954 1020 1090

Filtering 3 962 1000 1040 929 1020 1120

FIGURE 3 | Graphic depiction of the modified Garner paradigm used as

the data source in the current modeling study. Each filtering task
contained three distractors, with the middle distractor (D2) the same as in the
baseline task (1020 Hz), but the pitch range (marked by D1 and D3) increasing

progressively from the low-imbalance filtering task (Filtering 1: D1 = 982 Hz,
D3 = 1060 Hz) to the high-imbalance filtering task (Filtering 3: D1 = 929 Hz,
D3 = 1120 Hz). Note: Filtering 2 (i.e., medium-imbalance task) is absent in the
depiction.

conditions. In the baseline condition, the distractor was always
1020 Hz. In each filtering condition, the distractor set contained
three tones, the middle one matching the baseline distractor.
The low and high tones in the distractor set differed increas-
ingly in within-channel discriminability (physical distance) across
the three filtering conditions, as summarized in Table 1, creat-
ing low (Filtering 1), medium (Filtering 2), and high (Filtering
3) imbalance relative to the target set. Differences between tar-
gets and distractors were defined by the timbre of the tones,
targets having a duty cycle of 36%, distractors 18%. Each con-
dition contained 300 trials, 150 target trials (50 trials per target
stimulus, P = 0.17) and 150 distractor trials (50 trials per dis-
tractor stimulus in filtering, P = 0.17, 150 in baseline, P = 0.50).
Stimuli were selected at random from the target or distractor
set; targets never appeared together in time with distractors. The
onset-to-onset interval between any two stimuli ranged randomly
between 1450 ms and 1600 ms in rectangular distribution. The
task requirements were identical in each condition: identify each
stimulus to be one of three targets by pressing one of three keys on
a keyboard (designated low, medium, and high) with the index,
middle, and ring fingers of the dominant hand, while ignoring

and withholding responses to all distractors. Participants listened
for the frequency differences among targets and the timbre differ-
ences between targets and distractors using an interactive display
presented before each block of trials. Each participant was asked
to respond to targets as quickly as possible while maintaining
accuracy. Response keys were counterbalanced across partici-
pants. EEG recordings were time-locked to each stimulus (targets
and distractors); behavioral performance (RT and accuracy) was
measured to each target. We only simulated target trials involving
a correct response (range from 317–568 trials across participants,
with an average of 474 correct trials in any condition for each
participant).

The EEG was recorded from 13 scalp locations (Fz, F3, F4, Cz,
C3, C4, Pz, P3, P4, T3, T4, T5, and T6 of the International 10–20
System) with tin electrodes mounted in a stretch cap (Electro-Cap
International). Only the Fz site was used in modeling. The elec-
trodes were referenced to linked mastoids (LM and RM) off-line
with the Fpz as the ground electrode. Impedance was main-
tained below 2 k� across all sites. Blinks and other eye movements
were monitored by electrooculogram (EOG) from two electrode
montages, one on the infra- and supra-orbital ridges of the left
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eye (VEOG), the other on the outer canthi of each eye (HEOG).
EEG and EOG signals were analog filtered with a band pass from
0.1 to 100 Hz (–3 dB cutoffs) and digitized at 250 Hz. Trials con-
taining EEG or EOG activity exceeding 100 μV was rejected as
artifacts. The EEG was averaged for each condition from 100 ms
before the stimulus to 700 ms post-stimulus, using the 100 ms
pre-fixation period as baseline, with RP amplitude calculated as
the mean voltage in the 400–600 ms post stimulus window at Fz
(Figure 4).

ACTIVATION FUNCTION TO THE CURRENTLY PRESENTED TARGET
Our overall approach to theorizing and model fitting followed
Melara and Algom (2003). As depicted in Figure 2, we assumed,
as they did, that presentation of a target stimulus simultaneously
triggers activation of the current target’s representation, as well
as representations of targets from previous trials, and represen-
tations of distractors from previous trials. The perceived target
on a trial receives excitatory processing with the activation value
increasing until asymptote or until a decision is made:

Act(Ti, t) = 1

[1 + exp ( − slopeTi
∗t)]10

, (1)

where the inverse logistic function is raised to a scaling constant
of 10, Ti is the stimulus value on a target trial (i = 1, 2 or 3, with
one of three possible targets appearing on each target trial in each
condition), slopeTi is the slope of activation for Ti, and Act(Ti,t)
is the activation value for Ti at time t.

ACTIVATION FUNCTION TO NON-PRESENTED TARGETS ON TARGET
TRIALS
In simulating the target trials, each non-presented stimulus,
including both distractor and non-presented targets, is inhibited
from target onset. The inhibitory activation value to currently
non-presented targets in the stimulus set (Tj, j = 1. . . 3 and j �= i)
decreases until asymptote or until a decision is made:

Act(Tj, t) = −1

[1 + exp ( − slopeTj
∗ t)]10

(2)

where slopeTj is the slope of the activation function to currently
non-presented target Tj and Act(Tj,t) is the activation value for
Tj at time t. Unlike Melara and Algom (2003), we constrained
the slope of Tj—a target value not currently presented—to equal
the slope of the same target on trials in which it had actually
been presented (i.e., Ti). Thus, the activation functions in these
two situations (i.e., perceived and remembered) differ only in
direction of activation, that is, increasing (toward an asymptotic
bound of +1) for perceived targets (Equation 1), reflecting an
excitatory process, and decreasing (toward a bound of −1) for
remembered targets (Equation 2), reflecting an inhibitory pro-
cess. This simplifying assumption reduced free parameters while
minimally affecting model fits.

ACTIVATION FUNCTION TO DISTRACTORS ON TARGET TRIALS
As in the case of non-presented targets, we modeled distrac-
tor processing as inhibitory activation from the onset of each
target trial. However, to better equate comparisons with target

FIGURE 4 | Grand-averaged waveforms (in AV) of ERPs from midline

electrode sites (Fz, Cz, and Pz) elicited by distractors in each of the

four conditions (baseline; low, medium, and high filtering) of the

target-constant tasks in the source data. Increased distractor
discriminability reduced RP: a frontal inhibitory slow-wave component
(400–600 ms after stimulus onset).
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processing, here we estimated a single inhibitory slope1 to the
three different distractors on each target trial, which elevated the
inhibitory bound of activation to −3:

Act(Ds, t) = −3

[1 + exp ( − sloped ∗ t)]10
(3)

where sloped is the average slope of inhibitory activation across
the three distractors and Act(Ds,t) is the distractor activation
value on a target trial at time t.

TRANSFORMATION OF ACTIVATION INTO WEIGHT OF EVIDENCE
The decision variable about how to respond to the presented tar-
get is a weight of evidence derived from the log ratio of two types
of activation: The ratio’s numerator contains evidence favoring
the perceived target, the denominator evidence against the per-
ceived target which, in the current study, amounts to transformed
activations of remembered (currently non-presented) targets and
distractors. Suppose that target Ti appears on the current trial. We
assume that the representation for Ti is activated in the form of
excitation, and that the representations for all the other stimuli in
memory are inhibited. The momentary goal of the decision mech-
anism is to determine whether the weight of evidence favoring Ti

meets a preset stopping rule β at each time t. The goal is achieved
by a decision variable that integrates the excitatory evidence for Ti

with evidence against Ti supplied by inhibitory activation values
from the other stimuli in the set:

Evidence(Ti, t) = In
Act(Ti, t) + constant∑

j Act(Tj, t) + Act(Ds, t) + constant
,

(j = 1... 3, and j �= i) (4)

where Act(Ti,t) is the activation value for the currently pre-
sented target Ti at time t (calculated according to Equation 1),
Act(Tj,t) is the activation value for each currently non-presented
target Tj (j = 1 . . . 3, and j �= i) at time t (Equation 2), and
Act(Ds,t) is the activation value for the currently non-presented
distractors at time t (Equation 3). (constant = 6.0 for all simu-
lations to scale evidence within the range of the stopping rule).
Expanding the evidence function into its three different terms
(i.e., Equations 1–3):

Evidence(Tj, t) =

In

1

[1 + exp ( − slopeTi
∗ t)]10

+ 6

∑
j

−1

[1 + exp( − slopeTj
∗ t)]10

+ −3

[1 + exp ( − sloped ∗ t)]10
+ 6

(j = 1... 3, and j �= i) (5)

1It is possible that some distractors were attentionally more disruptive
than others. Yet in the original empirical experiment (Melara et al., 2005,
Experiment 1), the main source of performance errors was within-target
misidentifications (e.g., confusing a high-pitched target with a middle-pitched
target), not errors of commission (falsely identifying a distractor as a tar-
get). The false alarm rate was less than 5% across conditions (though slightly
higher, 8%, in Filtering 3), and did not differ by distractor stimulus within
condition. By contrast, target misidentifications were over twice this rate.
For this reason, and also to reduce modeling complexity, in each filtering
condition we simulated the joint effects of the three distractors.

A decision is made and a response emitted once Evidence (Ti,t)
reaches the decision threshold β. The time it takes to reach the
threshold is the classification RT, modeled in the present study
as the number of cycles t (repeated iterations of Equation 5 with
increasing values of t) needed to reach the decision threshold. For
all simulations in the present study, the stopping rule was set to
β = 1.0 (see Figure 2).

MODEL-FITTING PROCEDURE
For each simulated target trial j four slopes (slopeT1, slopeT2,
slopeT3, and sloped) are needed to calculate the decision vari-
able for each participant (see Equation 5). The equations used
to obtain these slopes were modifications of those used by Melara
and Algom (2003):

slopeTi
[j] = 1

1 + exp ( − (tstartTi + tswell ∗ x))
∗ 0.023 (6)

(i = 1, 2, or 3)

sloped[j] = 1

1 + exp ( − (dstart + dswell ∗ x))
∗ 0.023 (7)

where the logistic function scales the slope and tstartTi (i = 1, 2,
or 3), tswell, dstart, and dswell are mathematical parameters mod-
ulating the rate of exponential growth in slope as a function of
stochastic variability, estimated in the current study either from
the model-fitting procedure or from actual EEG data. By control-
ling the rate of target and distractor activation these parameters
served as the primary basis of differences among the excitatory
and inhibitory models explored in the current study. The multi-
plicative constant of 0.023 replaced two additional free param-
eters in Melara and Algom, thus simplifying the basic model.
x is the value of a random variable denoting noise on trial j.
Changes in the value of x from one trial to the next were the
basis of trial-to-trial variability in RTs, yielding a predicted RT on
each individual trial. In simulations using random noise, values
of x were generated from a Gaussian or a rectangular distribu-
tion. In simulations using RP-noise, values of x were obtained
from EEG data as the average voltage 400–600 ms after stimulus
onset (Figure 4), individually for each artifact- and response-free
distractor trial.

We performed model fitting in each simulation using first
a parameter-estimation stage and then a backfit solution stage.
The mathematical goal of the parameter-estimation stage was to
minimize the following objective function:

objFunc =
N∑

h = 1

[(β − Evidence (Ti(h), t)2] (8)

where Evidence (Ti,t) is defined as in Equation 5, yet substituting
the observed RTs for t. Ti is the target on the hth trial, denoted
as Ti(h), β = 1.0, t is the observed response time on the hth trial,
and N is the number of trials in a condition. Parameter estimates
were defined as those values of tstartTi (i = 1, 2, or 3), tswell,
dstart, and dswell that minimized Equation 8 for a given par-
ticipant within a given condition. The minimization procedure
for parameter estimation used the Downhill Simplex method of
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Nelder and Mead (1965; see also Press et al., 1992; Vetterling et al.,
1992; Gershenfeld, 1999). In a subsequent backfit solution stage,
the parameter estimates derived in the earlier stage were inserted
into Equations 6 and 7 with t as an unknown, so that the simulta-
neous system of equations could then be solved trial-by-trial for
t in Equation 8. The value of t on trial h that minimized objFunc
served as the predicted RT to target Ti on that trial.

MODEL EVALUATIONS
We used two techniques to evaluate model fit: group RT dis-
tributions and distributional moments. First, to evaluate each
simulation at the condition level, we compared the averaged
observed vs. predicted RT distributions. The technique resem-
bles that devised by Vincent (1912) for viewing learning curves
and so is often referred to as Vincent’s procedure or Vincentizing
(Ratcliff, 1979). In the current analysis, each participant’s RTs
were first sorted in ascending order and then divided into 20
quantiles, such that the first 5% of RTs comprised the first quan-
tile, the second 5% the second quantile, and so on. RTs were then
calculated by separately averaging RTs in each of 20 individual
quantiles for each participant in each condition. A group distri-
bution for each condition was obtained by averaging RTs across
participants in each quantile. An analogous group distribution
was derived from the predicted RTs in each simulation. To high-
light differences among simulations, we depicted the group RT
probability density functions as smooth line graphs with each
quantile probability calculated as:

P(i) = 50

RT(i + 1) − RT(i)
(i = 1, 2, ... n − 1) (9)

where P(i) is the probability of the ith group quantile, RT(i)
is the quantile RT for the ith group quantile (in ms), and n is
the number of quantiles. To evaluate the goodness-of-fit of each
simulation statistically, we compared the observed vs. predicted
group distributions using chi-square analysis.

Second, to assess how closely predicted and observed RTs
corresponded at the level of individual trials, we examined
the first four moments (mean, variance, skewness and kurto-
sis) of the individual participant (unaveraged) RT distributions.
Skewness and kurtosis were calculated using the following equa-
tions (Cramer, 1946):

skewness =
∑n

i = 1 (RTi − mean)3

n ∗ δ3

kurtosis =
∑n

i = 1 (RTi − mean)4

n ∗ δ4
− 3

where n is the number of trials in the condition, RTi is the reaction
time for the ith trial, mean is the average RT across the n trials, and
δ is square root of the RT variance in the condition. For each sim-
ulation, we conducted a repeated-measures analysis of variance
(ANOVA) on moment values, with Moment (4 levels; mean, vari-
ance, skewness and kurtosis), Simulation (2 levels: observed vs.
predicted), and Condition (4 levels: baseline, filtering 1, 2, and 3)
as within-subject factors. Statistically significant main effects or
interactions involving Simulation indicate poor model fit. The

analysis of distributional moments provides finer granularity and
greater rigor in model evaluation than is possible when examining
sets of correlation coefficients between observed and predicted
RTs, where a separate coefficient (from ∼475 data points) is
needed for each participant in each condition. The microanalysis
of moments complemented the condition-level analysis of group
distributions by isolating in each model the four central sources
of trial-to-trial change in behavioral performance (Sternberg,
1969a,b; Ratcliff, 1979).

RESULTS
EXCITATORY ACTIVATION vs. INHIBITORY ACTIVATION IN THE FACE OF
DISTRACTION
The aim of the first pair of computer simulations was to com-
pare fits of an excitation-only model to fits of an inhibition-only
model as a means of assessing whether participants primarily
coped with the increasing distractor salience across conditions by
varying excitation to the targets or by modulating inhibition of
the distractors. Each model assumes that both short- and long-
term memory processes determine rates of activation to target
or distractor representations. The current paper evaluates the
role of long-term memory in selective attention failure. Roughly,
the start parameters (tstart in Equation 6, dstart in Equation 7)
reflect the influence of long-term memory on target or distrac-
tor activations, respectively, whereas the swell parameters (tswell
and dswell) describe the interaction of short- and long-term
memory, with x reflecting momentary fluctuations in short-term
memory. The excitation-only model emphasizes the relative influ-
ence on performance of target activations in long-term memory,
whereas the inhibition-only model emphasizes executive control
of distractor activations in long-term memory.

We began each simulation by estimating a set of six free
parameters in the baseline (i.e., single distractor) condition: four
parameters (i.e., tstartT1, tstartT2, tstartT3, and tswell in Equation
6) controlled the excitation of the targets and two parameters (i.e.,
dstart and dswell in Equation 7) the inhibition of the distractors.
In the inhibition-only version, the distractor parameter dstart
was estimated separately in each of the four conditions, whereas
the estimates made at baseline to the remaining five parameters
(i.e., dswell, tstartT1, tstartT2, tstartT3, and tswell) were applied
to each of the three filtering (i.e., multiple distractor) conditions.
The inhibition-only model thus required 9 free parameters. In the
excitation-only version, the tstart parameter to each target (T1,
T2, and T3) was estimated separately in each condition, whereas
baseline estimates of the remaining three parameters (i.e., dstart,
dswell, and tswell) were used in each of the three filtering con-
ditions. The excitation-only model required 15 free parameters.
In both models both inhibitory and excitatory processes were
activated on each trial.

Figure 5 depicts density functions of the observed and pre-
dicted RTs of the inhibition-only and excitation-only models,
with each panel illustrating a different condition. Chi-square
tests were performed between observed and predicted RTs
in each condition to evaluate the goodness-of-fit of each
model. The two models are identical in the baseline con-
dition, so produced equally good fits in Figure 5A [χ2

(17) =
4.25]. However, fits of the two models diverged in the three
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FIGURE 5 | Probability density functions of observed RTs together with predicted RTs for the Inhibition-Only Model (Gaussian noise) and the

Excitation-Only Model (Gaussian noise), each panel representing one of four conditions (A = Baseline, B = Filtering 1, C = Filtering 2, and D = Filtering 3).

Table 2 | The first four distributional moments (mean, variance,

skewness, and kurtosis) of the observed RT in each of four conditions

(Baseline, Filtering 1, Filtering 2, and Filtering 3).

Condition Mean Variance Skewness Kurtosis

Baseline 696.761 141.345 0.833 0.734
Filtering 1 720.994 153.733 0.704 0.283
Filtering 2 738.285 157.574 0.628 0.112
Filtering 3 748.382 155.825 0.612 0.040

filtering conditions (Figures 5B–D), with the analysis of pre-
dicted RTs in the excitation-only model revealing relatively poor
fit in each condition [Filtering 1, χ2(17) = 21.35; Filtering 2,
χ2

(17) = 26.79; Filtering 3, χ2
(17) = 23.44]. By contrast, predicted

RTs of the inhibition-only model, notwithstanding its 6 fewer
parameters, more closely corresponded to the observed RTs
[Filtering 1, χ2

(17) = 10.06; Filtering 2, χ2
(17) = 9.13; Filtering 3,

χ2
(17) = 5.41].

Further insight is gained from an analysis of distribu-
tional moments. Table 2 summarizes the four distributional

Table 3 | Difference between predicted and observed moments in RTs

(mean, variance, skewness, and kurtosis) for the Inhibit ion-Only

Model and the Excitation-Only Model.

Condition Mean Variance Skewness Kurtosis

INHIBITION-ONLY MODEL (GAUSSIAN NOISE)

Baseline −0.164 −0.543 −0.012 0.282

Filtering 1 −1.884 −16.056 −0.176 −0.253

Filtering 2 −1.717 −12.208 0.102 0.688

Filtering 3 0.365 −2.351 −0.017 0.088

EXCITATION-ONLY MODEL (GAUSSIAN NOISE)

Baseline −0.164 −0.543 −0.012 0.282

Filtering 1 −19.732 −25.176 −0.111 −0.137

Filtering 2 −25.608 −22.109 0.170 0.877

Filtering 3 −24.014 −26.100 0.073 0.491

parameters (mean, variance, skewness and kurtosis) of the
observed RTs in each condition. Table 3 tallies the differences
between observed and predicted moments for each model. As
one can see, the excitation-only model underestimated in each
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filtering condition both the mean RT and the RT variance
(mean RT underestimated by 20 ms, 26 ms, and 24 ms in the
Filtering 1, Filtering 2, and Filtering 3 conditions; RT variance
by 25 ms, 22 ms, and 26 ms). RT predictions of the inhibition-
only model led to slightly compressed estimates of variance,
but only in the Filtering 1 and 2 conditions; otherwise the
model more closely mimicked all four distributional moments.
Overall, despite its 6 fewer parameters, the inhibition-only model
edged the excitation-only model in capturing distributional char-
acteristics of each participant in each condition. Nevertheless,
ANOVA indicated that neither model yielded exceptional fits
to the observed data, with both simulations evincing statis-
tically significant differences between observed and predicted
moment values [Excitation-Only: Simulation, F(1, 10) = 36.1,
p < 0.001; Simulation × Condition, F(3, 30) = 15.07, p < 0.001;
Simulation × Moment, F(3, 30) = 30.57, p < 0.001; Simulation ×
Condition × Moment, F(9, 90) = 12.21, p < 0.001; Inhibition-
Only: Simulation, F(1, 10) = 9.34, p < 0.01; Simulation ×
Condition, F(3, 30) = 6.5, p < 0.001; Simulation × Moment,
F(3, 30) = 11.36, p < 0.001; Simulation × Condition × Moment,
F(9, 90) = 7.12, p < 0.001].

REJECTION POSITIVITY vs. PROCESSING NEGATIVITY
The aim of the second pair of simulations was to evaluate the link-
ing hypothesis that RP is a biomarker of inhibitory control during
tasks of selective attention, ultimately affecting the speed to decide
target identity. To achieve this goal, we estimated sloped in each
condition using actual RP amplitudes. Parameter estimation for
the RP model began with a linear regression in which the esti-
mates of dstart from the four conditions of the inhibition-only
simulation were used to predict slow-wave amplitude of each par-
ticipant’s averaged ERP waves at Fz, 400–600 ms after distractor
onset (see Melara et al., 2005). By estimating only the regression
coefficient and the Y intercept we were able to reduce the total
number of free parameters of the inhibition-only model from 9
to 7. For example, a participant’s dstart in the Filtering 1 condi-
tion equaled the Y intercept added to the product of the regression
coefficient and the average RP amplitude in that condition. After
obtaining dstart values, the tstart, tswell, and dswell parameters
of Equations 6 and 7 were re-estimated in the baseline condi-
tion using Downhill Simplex to obtain the best baseline fit. As
comparison, we simulated a PN model in which slopeT1, slopeT2,
and slopeT3 in each condition were estimated using magnitudes
of target PN, that is, each participant’s slow-wave ERP amplitude
to the target at Fz, 400–600 ms after target onset. We used a lin-
ear regression method analogous to that used in the RP model to
estimate the tstart parameters in each condition, which reduced
the total number of free parameters of the excitation-only model
from 15 to 9. This approach allowed us to evaluate a neurobe-
havioral model of inhibition-only (RP model) directly against a
neurobehavioral model of excitation-only (PN model).

Figure 6 contains the Vincentized RT density distributions
from the predictions of the RP and PN models. Results
with these neurobehavioral models mirror those obtained
with their parameterized counterparts: Fits of the RP model
with observed data were relatively good [Baseline, χ2

(17) =
3.91; Filtering 1, χ2

(17) = 11.85; Filtering 2, χ2
(17) = 11.96;

Filtering 3, χ2
(17) = 6.65], whereas those of the PN model aligned

with observed RTs only in the baseline condition [Baseline,
χ2

(17) = 5.12; Filtering 1, χ2
(17) = 34.16, p < 0.01; Filtering 2,

χ2
(17) = 31.52, p < 0.05; Filtering 3, χ2

(17) = 41.91, p < 0.01].
Inspection of distributional moments (Table 4) indicated, once
again, that the excitation-based (PN) model was poor during
filtering at reproducing measures of central tendency and vari-
ability (except in Filtering 3; mean RT underestimated by 31 ms,
31 ms, and 26 ms in the Filtering 1, Filtering 2, and Filtering 3
conditions; variance in RT by 34 ms, 35 ms, and 1 ms). The RP
model, on the other hand, accurately reproduced all moments,
with the exception of variance in the Filtering 1 (−19 ms) and
Filtering 2 (−14 ms) conditions, reminiscent of the inhibition-
only model (cf. Table 3). As we shall see, underestimation of
RT variance in the two inhibition models may owe to proper-
ties of the underlying (Gaussian) noise distribution. In any case,
it is worth noting that the RP model, with only 7 free param-
eters, was at least as good in capturing the RT distributions as
the inhibitory-only model with 9 free parameters, and better
than the PN model, also with 9 free parameters. This outcome
illustrates that actual RP voltage is viable in predicting specific
properties of RTs in auditory selective attention tasks, suggest-
ing that RP activity serves as a brain biomarker of processes of
distractor inhibition. Still, ANOVA uncovered statistically signif-
icant differences between observed and predicted moment values
in both the PN and RP models [PN: F(1, 10) = 6.12, p < 0.05; RP:
F(1, 10) = 25.31, p < 0.001].

RANDOM NOISE vs. EEG NOISE
Each of the foregoing simulations employed Gaussian noise—
computer-generated random numbers from a standard normal
distribution—to induce change in RT from one trial to the next.
The third set of simulations aimed to evaluate the linking hypoth-
esis that momentary distractor-evoked fluctuations in RP voltage
are meaningfully associated with stochastic behavioral processes.
We evaluated this hypothesis by comparing the initial inhibition-
only model using Gaussian-noise with a comparable model that
predicted behavioral variation using RP-noise. An additional sim-
ulation implemented a third variant of the inhibition-only model,
one that generated RT variability from Rectangular-noise. An RP
distribution was created for each participant in each condition
using a single-trial EEG analysis (see Parra et al., 2002; Philiastides
and Sajda, 2006) in which the amplitude in microvolts of RP at
Fz 400–600 ms after stimulus onset was obtained to each distrac-
tor trial in which the participant correctly withheld a key press
and rescaled by multiplying a constant. In extracting single-trial
EEG signals to solitary distractors we eschew any inherent physio-
logical information about response processing, such as the motor
activity to targets.

Each model contained 9 free parameters. In each of the three
simulations, RTs were sorted from shortest to longest for each
participant in each condition, without regard to the particular
target (T1, T2, or T3) presented on a trial. A set of n values from
each of the three distributions (Gaussian, RP, and Rectangular)
was selected and sorted from smallest to largest. The backfit
solution procedure was then applied such that, for each trial,
one of the n distributional values served as the value of x in
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FIGURE 6 | Probability density functions of observed RTs together with predicted RTs for the RP Model (Gaussian noise) and the PN Model

(Gaussian noise), each panel representing one of four conditions (A = Baseline, B = Filtering 1, C = Filtering 2, and D = Filtering 3).

Table 4 | Difference between predicted and observed moments in RTs

(mean, variance, skewness, and kurtosis) for the RP Model and the

PN Model.

Condition Mean Variance Skewness Kurtosis

RP MODEL (GAUSSIAN NOISE)

Baseline −0.164 −0.543 −0.012 0.282
Filtering 1 −1.884 −16.056 −0.176 −0.253
Filtering 2 −1.536 −14.241 0.121 0.847
Filtering 3 −5.960 −7.300 −0.003 0.214
PN MODEL (GAUSSIAN NOISE)

Baseline 0.001 −2.038 −0.109 0.051
Filtering 1 −31.380 −33.911 −0.089 0.302
Filtering 2 −31.083 −35.336 0.149 0.788
Filtering 3 −26.222 1.102 0.896 7.116

Equations 6 and 7, with the smallest random number assigned
as x to the trial having the shortest RT, and so on through the
set. Density functions of predicted RTs from each model appear
with observed RTs in the panels of Figure 7. The commonly
used Gaussian-noise model, as already noted, underestimated

RT variance in two of the three filtering tasks. One can see in
Figure 7 that this model was particularly lackluster in simulat-
ing RTs in the 600–800 ms range. The Rectangular-noise model,
however, proved even worse in fitting the observed data in each of
the four conditions [Baseline, χ2

(17) = 43.11, p < 0.01; Filtering

1, χ2
(17) = 45.92, p < 0.01; Filtering 2, χ2

(17) = 37.66, p < 0.01;

Filtering 3, χ2
(17) = 22.13, ns]. Predicted RT distributions cre-

ated from Rectangular-noise were too platykurtic and skewed
excessively toward the positive tail (see Table 5). Interestingly, we
found that a model using fluctuations in EEG as the source of
trial-to-trial variation in RT yielded the best fit. Simulated RTs
from the RP-noise model quite accurately mirrored observed RT
variance (together with the other three moments) across condi-
tions. In fact, ANOVA revealed no significant differences between
observed and predicted moment values in the RP-noise model
[F(1, 10) = 1.47, ns], and no interactions of Simulation with
Moment [F(3, 30) = 2.29, ns], Condition [F(3, 30) = 0.59, ns], or
both [F(9, 90) = 0.95, ns]. This finding suggests that momentary
RP activity to distractors is closely associated with trial-to-trial
variability in speed of responding to targets.

Why did RP-noise provide a better fit than Gaussian-noise
(or Rectangular-noise)? We examined standardized probability
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FIGURE 7 | Probability density functions of observed RTs together

with predicted RTs for the Inhibition-Only Model using three

methods for generating inter-trial variability: Gaussian noise, RP

noise, and Rectangular Noise. Each panel represents one of four
conditions (A = Baseline, B = Filtering 1, C = Filtering 2, and
D = Filtering 3).

distributions of RP-noise, Gaussian-noise, and observed RTs in
each condition. The observed data more consistently resem-
bled the RP-noise distributions in both variance and skewness
across conditions, with distributional co-variation slightly higher
between RT and RP-noise probabilities (accounting for 96% of
the variance) than between RT and Gaussian probabilities (94%
of variance). This slender advantage was enough to give the RP-
noise simulations the edge in predicting individual RTs on a
trial-by-trial basis.

FULLY LINKED SIMULATION
We found in the previous set of simulations that a model imple-
menting RP-noise provided a closer match to observed RTs than
one implementing Gaussian-noise. Earlier simulations showed
that models that modulate distractor inhibition—in the form of
either the inhibition-only model or the RP model—offered better
fits than models that varied target excitation. In the final pair of
simulations we incorporated RP-noise into the two models that
modulate distractor inhibition, namely, (1) an inhibition-only

version that estimates dstart using only free parameters and (2)
an RP version that estimates dstart using each participant’s signal-
averaged RP component. The aim of these simulations was to
assess the viability of a fully neurobehavioral model: the RP model
with RP-noise. We expected that this model, with 7 parameters,
would fit the data as well as the inhibition-only model with RP
noise, with 9 parameters, our best model to date. This comparison
thus provides an especially strong test of the linking hypothesis
under study.

Figure 8 reveals that both models provided excellent fits to
the observed data. Analysis of distributional moments, depicted
in Table 6, confirms that the models captured key distributional
properties of the data, particularly with regard to variability
and skewness, with neither model showing significant differences
between observed and predicted moment values [Inhibition-Only:
F(1, 10) = 1.47, ns; RP: F(1, 10) = 3.51, ns]. A common feature
of the two models was the slight overestimation of peakedness
during performance of the filtering tasks, creating predicted dis-
tributions more leptokurtic than the observed distributions (see
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Table 5 | Difference between predicted and observed moments in RTs

(mean, variance, skewness, and kurtosis) for theGaussian-noise,

RP-noise, and Rectangular-noise simulations of the Inhibition-Only

Model.

Condition Mean Variance Skewness Kurtosis

GAUSSIAN NOISE

Baseline −0.164 −0.543 −0.012 0.282

Filtering 1 −1.884 −16.056 −0.176 −0.253

Filtering 2 −1.717 −12.208 0.102 0.688

Filtering 3 0.365 −2.351 −0.017 0.088

RP NOISE

Baseline −0.223 −0.848 −0.038 −0.007

Filtering 1 0.157 −3.274 0.111 0.592

Filtering 2 −0.525 −7.011 0.114 0.574

Filtering 3 −0.192 −5.820 0.088 0.484

RECTANGULAR NOISE

Baseline 1.415 −5.574 −0.516 −1.809

Filtering 1 1.378 −9.102 −0.415 −1.383

Filtering 2 0.688 −10.003 −0.305 −1.178

Filtering 3 1.912 −2.711 −0.245 −1.088

Table 6). Nevertheless, the correlation between observed and pre-
dicted RTs exceeded 0.98 for both models. Thus, with two fewer
free parameters, the RP model with RP noise was as good as
the inhibition-only model with RP noise at characterizing the
observed RT distributions.

DISCUSSION
Four sets of computer simulations using variants of a formal
model of selective attention (Melara and Algom, 2003) probed
the role of RP in the inhibitory control of distraction. The sim-
ulations used behavioral and electrophysiological data recorded
in an earlier study where the degree of distractor salience var-
ied as participants performed an auditory selective attention task
involving asynchronous presentation of targets and distractors
(Melara et al., 2005). Each simulation sought to predict RTs
to targets in the face of different degrees of distraction. The
first pair of simulations compared predictions of an inhibition-
only vs. excitation-only version of the model, in each case using
free parameters to set levels across conditions of inhibitory or
excitatory activity, respectively. We found that the inhibition-
only model alone accounted satisfactorily for detailed features
of the observed RT distributions as distractor salience changed.
A second pair of simulations implemented two neurobehavioral
versions of the model: an RP model, which incorporated each par-
ticipant’s averaged slow-wave activity to distractors in estimating
slopes of distractor inhibition, vs. a PN model, which incorpo-
rated averaged slow-wave activity to targets in estimating slopes of
target excitation. The RP model, but not the PN model, captured
changes in RT performance closely as a function of distractor
salience.

The third set of simulations explored how well different
sources of stochastic variation predicted individual RTs. One
source was the momentary fluctuations in slow-wave RP activ-
ity (RP-noise) measured using single-trial EEG analysis. We

compared RP-noise with Gaussian-noise and Rectangular-noise,
with values drawn randomly from computer-generated nor-
mal and rectangular distributions, respectively. We found that
RP-noise mimicked inter-trial RT variation more closely than
Gaussian-noise and, especially, Rectangular-noise. Finally, in a
fully linked simulation, we showed that a version of the RP model
that included RP-noise provided an exceptionally good fit to the
behavioral data, with the fewest free parameters. Our results are
consistent with the hypothesis that RP activity influences the
speed of responding to targets during selective attention through
the inhibitory modulation of distractors.

COMPUTATIONAL LINKS BETWEEN PHYSIOLOGY AND BEHAVIOR
Melara et al. (2005) found that behavioral performance to tar-
gets changed systematically as a function of distractor salience,
and was accompanied by a progressive change in RP amplitude
to distractors, but not in PN amplitude to targets. The authors
concluded that RP serves to suppress intrusions from previ-
ously presented distractors as participants make decisions about
currently perceived targets. However, average RP amplitude was
merely correlated in their study with levels of distractor salience.
Thus, it is conceivable that RP functions simply to monitor stim-
ulus salience, playing no causal role in distractor inhibition. The
primary contribution of the current study is in showing that the
magnitude of RP to distractors closely predicts an individual’s RT
to targets through modulation of inhibitory control. We there-
fore were able to link RP explicitly to behavior in the context of
a formal computational model of distractor processing. Equally
important, we found that PN to targets was relatively ineffective
in predicting RTs through the modulation of target activity. Thus,
here at least, distractor processing (RP) was more diagnostic of
target behavior during selective attention than target processing
itself (PN). Later we discuss possible reasons for this result.

The current study focused on a single behavioral measure: RT.
A host of recent electrophysiological studies have pointed to the
connection between response latency and the amplitude of var-
ious ERP components, including N1 (e.g., Melara et al., 2005),
P2 (e.g., Sheehan et al., 2005; Tong et al., 2009), MMN (e.g.,
Atienza et al., 2002), and P3b (e.g., Alain et al., 2007). Ours is
among relatively few studies (e.g., Holroyd and Coles, 2002) able
to demonstrate the link between EEG amplitude and microscopic
changes in RT. Still, other EEG measures, including Nd onset
latency and power in EEG bands, and other behavioral measures,
including target misses and distractor false alarms, are sensitive
to attention manipulations, such as distractor salience. Indeed,
in the study that served as the empirical basis of the current
simulations, Melara et al. (2005) identified several connections
between physiology and behavior. The goal of the current study
was to concentrate on a single linking hypothesis. Future stud-
ies should aim to relate internal processes to other response
measures, including target accuracy, false alarms, misses, and
incorrect identifications.

REPRESENTING STOCHASTIC BEHAVIORAL PROCESSES USING
NEUROPHYSIOLOGICAL ACTIVITY
A further contribution of the current study was in demonstrat-
ing the feasibility of incorporating momentary fluctuations in

Frontiers in Human Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 585 | 12

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Chen and Melara Computational model of inhibitory control

FIGURE 8 | Probability density functions of observed RTs together with predicted RTs for the Inhibition-Only Model (RP noise) and the RP Model (RP

noise), each panel representing one of four conditions (A = Baseline, B = Filtering 1, C = Filtering 2, and D = Filtering 3).

neurophysiological activity into a formal model to predict trial-
level performance during selective attention. Our simulations
using RP-noise revealed that electroencephalographic measure-
ments excelled over random Gaussian or rectangular activity in
capturing trial-to-trial variations in RT to targets. Indeed, a fully
neurobehavioral version of the model (RP model with RP-noise)
was able to account successfully for the RTs of every participant
on every trial in every condition of the study.

To be sure, the fidelity of RT prediction from random
noise was perforce determined by statistical characteristics of
the computer-generated distributions we implemented. Had
the stochastic processes been modeled using a probability dis-
tribution with a slightly different skewness and kurtosis the
results perhaps would imitate those with RP-noise. Our aim
was not to abandon the use of random noise distributions
in modeling stochastic behavioral processes. Nevertheless, the
success of RP-noise in predicting RT variability in the cur-
rent study serves, at the very least, as proof of concept

that nuanced behavioral performance during selective atten-
tion can be linked closely to internal neurophysiological
events.

Moreover, our results hold potential theoretical significance
in suggesting that RP-noise involves activation of distractor rep-
resentations that, ultimately, carry behavioral consequences. On
this view, variability in responding to a currently presented target
is due in part to the moment-to-moment changes in activation
of recently presented distractors, presumably held in working
memory. Fluctuations in distractor activation contribute to the
uncertainty inherent on target trials, captured in the model
as trial-to-trial shifts in the rates of activation to both targets
(slopeT1, slopeT2, slopeT3; see Equation 6) and distractors (sloped;
see Equation 7). In this context, one might characterize RP-noise
as reflecting the momentary success or failure of endogenous
attentional processes (such as inhibitory control) in suppressing
distractor representations while maintaining representations of
target relevance.
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Table 6 | Difference between predicted and observed moments in RTs

(mean, variance, skewness, and kurtosis) for the Inhibition-Only

Model with RP Noise and the RP Model with RP Noise.

Condition Mean Variance Skewness Kurtosis

INHIBITION-ONLY MODEL (RP NOISE)

Baseline −0.223 −0.848 −0.038 −0.007

Filtering 1 0.157 −3.274 0.111 0.592

Filtering 2 −0.525 −7.011 0.114 0.574

Filtering 3 −0.192 −5.820 0.088 0.484

RP MODEL (RP NOISE)

Baseline 7.253 1.018 −0.055 −0.002

Filtering 1 −1.074 −4.641 0.115 0.707

Filtering 2 −5.741 −10.161 0.111 0.657

Filtering 3 −2.928 −9.387 0.079 0.544

COMPARISON WITH OTHER ATTENTION THEORIES: BIASED
COMPETITION AND ATTENTIONAL TRACE THEORY
The biased competition model (Desimone and Duncan, 1995;
Reynolds et al., 1999) has been the theory of choice in explaining
evidence of attentional modulation using single- and multi-unit
recordings of neurons in primary and secondary areas of visual
cortex (see Reynolds and Chelazzi, 2004, for a review). A canon-
ical paradigm for these studies is visual search, in which animals
peruse a field of images in search of a target object (e.g., Moore
and Fallah, 2001, 2004; Bichot et al., 2005; Hayden and Gallant,
2005). The model predicts that representations of the target object
in working memory bias the competition among items within
the receptive field to favor cortical cells responsive to the spatial
location of the target, perhaps through gain control. The closer
the match between the target representation and an item within
the receptive field (or, conversely, the stronger the mismatch with
other competing items) the greater the competitive edge the item
enjoys in activating spatially corresponding cells in visual cortex.

Simulations in the current study relied on a different model
of attention: the tectonic theory of Melara and Algom (2003).
Tectonic theory also emphasizes competition in working mem-
ory between target and distractor representations as the basis
of attentional control. However, in contrast to the biased com-
petition model, the theory discounts target-distractor similarity
as the primary source of competition, and space-based modula-
tion as the primary mechanism of attentional control (see also
Treue and Martínez-Trujillo, 1999). Instead, in tectonic theory
the chief threats to inhibitory control are distractor salience and
stimulus uncertainty. On this view, representational variability
in targets or distractors, rather than representational compari-
son processes pitting targets against distractors, best characterizes
the dynamic relationship between attention and working mem-
ory. In fact, Melara et al. (2005) used their empirical results
to claim that representational variability (tectonic) dominates
target-distractor similarity (biased competition) in undermining
selective attention. The current results go further in demonstrat-
ing that control mechanisms lawfully govern distractor variability
in working memory at both the individual-trial level and the
condition level.

Why is biased competition a less satisfactory account here
compared with its other applications? One possibility consid-
ers the specific processing demands of the attention paradigm
employed. Kahneman and Treisman (1984) divided the selec-
tion paradigms most commonly used in attention research into
two categories: filtering and selective set. In filtering paradigms,
including the dual-channel task used by Melara et al. (2005),
participants are asked to focus on signals from a task-relevant
channel (e.g., auditory frequencies of a certain timbre) while dis-
regarding signals from a task-irrelevant channel (e.g., frequencies
of a different timbre). In selective-set paradigms, including visual
search (e.g., Chelazzi et al., 2001; Bichot et al., 2005), participants
anticipate or must locate one stimulus among several possible
other stimuli. The two paradigms impose different information
processing burdens on working memory. During selective set,
working memory acts as a convenient hub for testing the degree
of alignment between an expected or sought-after stimulus and
one currently within gaze or awareness. Here, a premium is placed
on mechanisms of comparison, so distractors that resemble those
expected or searched should impair processing efficiency. By con-
trast, during filtering, working memory acts as a sorting center to
separate signal (task relevant) from noise (task irrelevant). Here, a
premium is placed on mechanisms of suppression, so distractors
high in noise (variability) should impair processing efficiency. On
this view, models of target-distractor similarity, such as biased
competition, would emerge most naturally from results obtained
with selective-set paradigms, whereas models of representational
variability, such as tectonic theory, would emerge from results
obtained with filtering paradigms.

One notable counterexample is Näätänen’s (1982, 1992) atten-
tional trace theory, which holds that selective attention perfor-
mance in filtering paradigms is determined by how closely stimuli
in a task-irrelevant channel match the trace in working memory
representing stimuli in the task-relevant channel. The closer the
match, the larger is the amplitude of PN, indicating greater fil-
tering task difficulty. In this way, attentional trace theory uses
target-distractor similarity during filtering to explain competition
in working memory between task-relevant and task-irrelevant
signals. Here one must distinguish, however, between two types of
target-distractor similarity: within channel and between channel
(see Melara, 1992). Attentional trace theory focuses on between-
channel similarity: PN is greater the smaller the physical separa-
tion between signals defined as task relevant vs. task irrelevant
(e.g., greater PN for 50 Hz separation between channels than
400 Hz separation; see Hansen and Hillyard, 1983). Melara et al.
(2005), on the other hand, manipulated within-channel simi-
larity: Targets defined by one dimension (e.g., timbre) could be
more or less similar to distractors along the dimension requiring
identification (e.g., pitch).

Using this distinction, one might reason that mechanisms
of comparison operate in attention systems whenever similar-
ity between target and distractor channels must be resolved—
common in selective-set paradigms—whereas mechanisms of
suppression operate in attention systems whenever representa-
tional variability within distractor channels must be controlled—
common in filtering paradigms. In line with this reasoning, we
found in this study of within-channel filtering that RP, indicative
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of distractor suppression, was highly predictive of individual RTs
to targets whereas PN, indicative of target-distractor comparison,
was not. We might expect the fit of PN neurobehavioral mod-
els to improve when simulating paradigms where the similarity
between target and distractor channels is varied systematically,
whether employing selective-set or filtering paradigms.

CONCLUSIONS
Computational analysis revealed that modulation of distractor
inhibition using RP voltage accurately predicts the speed of target
responding as a function of distractor salience. Our analysis fur-
ther revealed that oscillations in RP account well for trial-to-trial
variations in target performance. In using actual neural activity
to computationally model inhibitory control between trials and
between tasks, the current study establishes a solid link between
RP magnitude and RT performance during selective attention.
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