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High gamma oscillations (70–150 Hz; HG) are rapidly evolving, spatially localized neurophys-
iological signals that are believed to be the best representative signature of engaged neural
populations. The HG band has been best characterized from invasive electrophysiological
approaches such as electrocorticography because of the increased signal-to-noise ratio
that results when by-passing the scalp and skull. Despite the recent observation that
HG activity can be detected non-invasively by electroencephalography (EEG), it is unclear
to what extent EEG can accurately resolve the spatial distribution of HG signals during
active task engagement. We have overcome some of the limitations inherent to acquiring
HG signals across the scalp by utilizing individual head anatomy in combination with an
inverse modeling method. We applied a linearly constrained minimum variance (LCMV)
beamformer method on EEG data during a motor imagery paradigm to extract a time-
frequency spectrogram at every voxel location on the cortex.To confirm spatially distributed
patterns of HG responses, we contrasted overlapping maps of the EEG HG signal with
blood oxygen level dependence (BOLD) functional magnetic resonance imaging (fMRI)
data acquired from the same set of neurologically normal subjects during a separate
session.We show that scalp-based HG band activity detected by EEG during motor imagery
spatially co-localizes with BOLD fMRI data.Taken together, these results suggest that EEG
can accurately resolve spatially specific estimates of local cortical high frequency signals,
potentially opening an avenue for non-invasive measurement of HG potentials from diverse
sets of neurologically impaired populations for diagnostic and therapeutic purposes.
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INTRODUCTION
The HG band (70–150 Hz) is a rapidly evolving, spatially localized
signal (Crone et al., 1998; Miller et al., 2009) that is thought to be
associated with local neuronal processing (Manning et al., 2009;
Miller et al., 2009). This high frequency activity has been found
across the cortex reflecting local computation across a number
of functional domains including sensory processing, attention,
memory, and movement control. Additionally, invasive studies
with electrocorticography (ECoG) have shown that motor imagery
elicits HG activity in the motor cortex (Miller et al., 2010). Com-
bined with the rapidly evolving, spatially constrained nature of
the signal this makes HG band responses an attractive candidate
for BCI control. Unfortunately, HG activity overlaps entirely with
the spectral bandwidth of muscle activity (20–300 Hz) leading
to artifacts from muscle activity in non-invasive EEG record-
ings from the scalp. In addition, the high frequency band has a

Abbreviations: BCI, brain-computer interface; BEM, boundary element model;
BOLD, blood oxygen level dependence; CAR, common average reference; EEG, elec-
troencephalogram; EMG, electromyography; fMRI, functional magnetic resonance
imaging; HG, high gamma.

low signal-to- noise ratio (SNR) in EEG recordings due to the
attenuation and smearing of electrical potentials when they dif-
fuse through the intervening tissues (dura, skull, and scalp) to the
surface recording electrode (Buzsáki et al., 2012). Therefore, the
bulk of the work done to date on HG activity has used invasive
recording modalities where the SNR is greater and muscle artifacts
almost non-existent.

It has recently been shown that HG activity can be detected
non-invasively by EEG and magnetoencephalography (MEG). HG
activity was found in the primary motor cortex prior to finger
movements in EEG recordings (Ball et al., 2008; Darvas et al., 2010)
and MEG studies have demonstrated that high frequencies peak
around 70–80 Hz in the primary motor cortex, with a bandwidth
of ∼40 Hz, during self-paced movements of the upper and lower
limbs (Cheyne et al., 2008; Dalal et al., 2008). These peak frequen-
cies and bandwidth were found to vary across individuals and the
limb that is moved.

During motor execution, as well as mental motor imagery,
event-related desynchronization (ERD) can be detected both inva-
sively and non-invasively in the mu (8–13 Hz) and the beta
(18–30 Hz) frequency ranges (McFarland et al., 2000; Neuper and
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Pfurtscheller, 2001; Neuper et al., 2005). High frequency signals
in motor cortex during motor execution and imagery have been
detected using invasive modalities including ECoG (Miller et al.,
2010), but have not yet been reported for non-invasive record-
ing methods during motor imagery. However, other studies have
shown, e.g., visual cortex activity in the HG range during a mental
rotation task(de Lange et al., 2008), using MEG.

In order to examine the relationship between fMRI and the
underlying neurophysiological responses several studies have com-
pared local field potentials (LFPs), single-unit and multi-unit
spiking activity in functionally relevant areas of cortex with BOLD
signal responses (Logothetis et al., 2001; Mukamel et al., 2005;
Niessing et al., 2005). These studies found a positive correlation
between the high frequency power changes in the LFPs and BOLD
signal changes. However, the cortical regions surrounding the
functionally relevant areas were not examined and it is unclear
whether these regions have neurophysiological correlates as well.
It may be expected that they do because typical BOLD activity
maps display large BOLD signal changes in cortical areas known
to be related to the behavior being performed, as well as weaker,
more variable signal changes in the surrounding areas (Rombouts
et al., 1997; Saad et al., 2003).

Two recent studies (Conner et al., 2011; Hermes et al., 2012)
examined the correlation of the BOLD signal and spectral power
changes measured by ECoG. Hermes et al. (2012) found that spec-
tral power increases in the high frequency range co-localized with
spatially focal BOLD peaks on primary sensorimotor areas, while
Conner et al. (2011) showed positive correlation of bold with
HG in pre and post-central areas (i.e., covering motor area) and
negative correlations with the beta band.

However, ECoG recordings only provide a limited neurophysi-
ological correlation because they do not record from the whole
brain. Non-invasive studies with simultaneous EEG and fMRI
have reported negative correlations with BOLD in the low fre-
quency (4–30 Hz) range of the spectrum (Yuan et al., 2010), but
the spatial association between whole-brain HG band neural activ-
ity detected by EEG and the hemodynamic changes of the fMRI
BOLD signal has not been reported.

Here we present an analysis of HG activity during motor
imagery using non-invasive EEG in healthy subjects. The EEG
inverse mapping results were contrasted with fMRI BOLD
response for the same paradigm from the same subjects.

MATERIALS AND METHODS
SUBJECTS
Data were recorded from 10 healthy adult subjects (four males,
mean age = 24.9 years, range = 20–30 years). Nine subjects
were right-handed and one subject was left-handed. Subjects gave
their informed consent according to the protocol approved by the
Institutional Review Board (IRB) of the University of Washington.

TASK
For both fMRI and EEG sessions, subjects were cued to imagine
moving their fingers in a tapping sequence: pinch thumb to each
digit once from proximal to distal and then ending the sequence
by pinching thumb to ring-finger. Subjects imagined moving both
their left and right hands. During the EEG session, subjects were

seated in a recliner and four blocks of 25 right and 25 left hand
trials were recorded, totaling 100 trials per hand. The subjects
had their eyes open and fixated on a fixation cross or cue. Each
trial consists of a rest period of 2 s, during which a fixation cross
was shown. At the end of that rest period the fixation cross was
changed to a written instruction, i.e., the cue, which was either
“right” for right hand imagery or “left” for left hand imagery. The
cue was shown for 3 s and then changed back to a fixation cross,
which concluded the trial. During each block “left” and “right”
cues were presented in random order, for a total of 50 cues per
block.

MRI/fMRI DATA ACQUISITION
Scanning was conducted at 3T (Philips Achieva) using an
8-channel head-coil. For source estimation and cortical sur-
face reconstruction, T1-weighted 3-dimensional high-resolution
multi-echo MPRAGE (MEMPRAGE) structural images (with
a four echo read out with echo times starting at 2 ms and
stepped every 2 ms) and two Fast low-angle shot (FLASH)
sequences (Haase et al., 1986) starting at both TE 5 and 30 ms
respectively, (each with an echo train of 6, stepped every
2 ms) were acquired. All sequences were reconstructed into a
1 × mm × 1 × mm 1 × mm tissue space before head model
reconstruction.

Whole brain functional images for each task-based scan
were collected using a gradient echo T2∗ weighted sequence
(TE/TR = 21/2000 ms, matrix size 80×80). Subjects participated
in a standard block-designed fMRI task of imagined movement,
with randomly presented blocks of left and right imagery as well
as rest. A total of 15 blocks were presented, with each conditional
block being presented five times. No condition was repeated. Each
block consisted of 10 visually presented cues (left, right, or rest) in
the center of the screen for 2 s followed by a 2 s inter-trial interval.
Each block lasted for 40 s. The experiment began and terminated
with a 40 s rest period.

EEG/EMG DATA ACQUISITION
EEG data was continuously recorded from 54 electrodes
[BrainProducts 64-channel actiCAP (BrainProducts, Gilching,
Germany)] during each block. The actiCap has a subset of elec-
trodes based on the 10–20 system. A schematic of the montage
is shown in Figure 1. Data was sampled at 1200 Hz, using four
GugerTec (GugerTec, Graz, Austria) EEG amplifiers recorded
in DC, from −250 to +250 mV. Impedance values were kept
below 20 k�. In parallel, we recorded at the same sampling
rate the EMG from the flexor indices from both hands and EOG
(electro-oculogram) in bipolar configurations.

A 3D localizer (Patriot, Polhemus, Colchester, VT, USA) was
used to determine the electrode positions for each subject as well
as the positions of three anatomical landmarks: nasion, and the
left and right pre-auricular points.

EEG/EMG DATA SEGMENTATION
For each block, data was segmented into 5 s long segments, with
time 0 s centered at the presentation of the cue, i.e., “left” or “right”
hand imagery, resulting in a within-trial time axis ranging from
−2 to 3 s. The motor imagery was taking place anywhere between
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FIGURE 1 | Schematic view of the EEG montage and cortical surface

used for EEG data acquisition.

0 and 3 s. The same segmentation was applied to EMG and EOG
data.

HEAD MODELING
A 3D structural headmodel was created for each participant by
averaging across all acquired echo times within the MEMPRAGE
scan and incorporating two FLASH sequences (flip angle = 5
and 30◦). We used the FreeSurfer1 reconstruction software for an
automated segmentation of the MR into separate tissue types and
boundary surfaces, specifically scalp, outer skull, inner skull, and
white matter/gray matter interface. The latter served as a source
space for EEG source reconstruction. The BrainStorm software
package (Tadel et al., 20112) was then used to compute a real-
istic BEM for each subject. The final BEM output was used to
create a forward model for each subject, which is a requirement
for any inverse mapping of activity from the EEG sensors to the
cortex. Scalp electrode positions, measured with a Polhemus Fast-
Trak device (Polhemus, Colchester, VT, USA), were co-registered
with the MR images and thus with the headmodel through three
anatomical landmarks: nasion, left pre-auricular point, and right
pre-auricular point.

SOURCE MAPPING
We used a linearly constrained minimum variance (LCMV) beam-
former to map from the EEG channel domain onto the white/gray
matter interface. Similar to a minimum norm least squares

1http://surfer.nmr.mgh.harvard.edu/
2http://neuroimage.usc.edu/brainstorm

(MNLS) estimate mapping, the LCMV provides a transfer matrix
from channel domain to source domain, which is essential for
fast computation of source maps, but produces more focal results
(Darvas et al., 2004). ECoG studies (Crone et al., 1998; Miller
et al., 2007) have shown HG to be typically focal in nature and
thus the LCMV provides a more accurate mapping of this focal
source type than, e.g., the MNLS method. Similar to (Darvas et al.,
2013), we compute a map of cortical activity for a specific fre-
quency from a wavelet transform of the data, using the complex
Morlet wavelet for the time-frequency decomposition. The beam-
former weights were computed based on the broadband signal,
which yields a single set of channel weights for each cortical source
location, which are then applied to each of the complex wavelet
transformed data. Due to the linearity of the mapping transform,
the complex wavelet coefficients for a specific frequency for the
channel data can be mapped into source space by multiplication
of the transfer matrix to the time by channel vector of complex
coefficients, i.e.,:

ji(t , f ) = T di(t , f ),

where d is the complex wavelet transform of recorded data at time
t and frequency f, T is the transfer matrix and j is the resulting
cortical map of complex coefficients for the ith trial. The average
time varying power or amplitude is then computed as:

p(t , f ) =
∑

N
i=1 |ji (t , f )|2 (power) or

a(t , f ) =
∑

N
i=1 |ji (t , f )| (amplitude),

where N is the number of trials. Here we compute amplitudes, to
reduce the sensitivity to outliers. We normalize the resulting cor-
tical amplitude map with respect to a baseline interval (−1 to 0 s)
to equalize the amplitude differences across voxels of the map, by
computing Z-scores (see Bar et al., 2006) for similar application).
The Z-scores of the amplitude time series represent changes in
a given frequency relative to the baseline, measured in units of
the standard deviation (over time) of the baseline. Unlike a rela-
tive percent change measure, which is frequently used in ERD/S
analysis, the Z-scores take into account the variability of the base-
line and thus provide a more realistic assessment of the relative
change.

STATISTICAL ANALYSIS
fMRI/MRI
fMRI data processing was carried out using FEAT (FMRI Expert
Analysis Tool) Version 5.98, part of FSL (FMRIB’s Software
Library3). The preprocessing pipeline included motion correc-
tion, high-pass temporal filtering for removal of liner drift, a
spatial filter of 5 mm full-width half maximum (FWHM) and a
pre-whitening filter to remove signal autocorrelations throughout
the time-course. BOLD responses were estimated on an individual
subject basis by applying a box-car, general-linear model design
with a standard hemodynamic response convolution. Whole-brain
BOLD activity was contrasted between active (left or right) and rest
periods, converted into Z-scores and with a threshold at Z > 2.3
(uncorrected). Clusters of significant activity were masked into

3http://www.fmrib.ox.ac.uk/fsl
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regions of interest (ROIs). For each participant, all functional
data sets were co-registered into native MPRAGE space using
a rigid-body (6 degrees of freedom) registration and trilinear
interpolation.

EEG
EEG signals, especially in the HG range, are highly susceptible to
noise originating from non-cortical sources. Of particular con-
cern is that of muscle activity (EMG), which overlaps the HG
frequency range and exceeds cortically generated HG power by
orders of magnitude. EMG artifacts can arise from neck muscles,
facial muscles, particularly the jaws and are difficult to control.
During the course of the experiment, inevitably these artifacts will
contaminate a number of trials, even in the overall absence of
gross motion or position shifts of the subject. Since the sources
of these artifacts are random, removal of these artifacts from
the signal of interest based on stable spatial patterns across the
sensors is difficult. In order to control for these artifacts, we
remove any contaminated trials from the study. Unlike cortical
sources, the EMG spectrum increases in power over a much wider
range, thus excessive increase in power above 100 Hz, very large
increases in HG power (>99 percentile of the overall HG power
over time) or synchronous increases in multiple channels were
identified as artifacts. Artifact contamination in the analysis of
event related synchronization (ERS) is additionally confounded
by the fact that we average over powers, i.e., the errors in the
average due to artifacts do not cancel out. Therefore significant
changes in mean amplitude or power, e.g., in the time evolution of
HG power can easily be attributed to a single artifact contaminated
trial.

To ensure the stability (across trials) and significance of HG
changes during motor imagery, we applied a permutation test. We
tested for a significant increase of HG amplitude during the period
of the paradigm where the subject was instructed to imagine move-
ment. Here we consider an interval from t = 0 (presentation of
instruction, i.e., cue, to imagine either left or right hand move-
ment) to 1 s. The permutation test has the advantage of not having
to make any assumptions about the null hypothesis, i.e., HG activ-
ity during periods of non-motor imagery. Furthermore, it allows
us to test for non-linear statistics of the data (here the maximum
HG power change over the cortical volume and over time) and
it is less sensitive to outliers in single trials, thus ensuring trial-
to-trial stability of the average HG power. For the permutation
test, which is described in detail in (Pantazis et al., 2005), we ran-
domly exchange a one second interval from (−1 to 0 s) of the
base line with the signal interval (0 to 1 s) for half of all the trials,
before computing the average time varying amplitude for a given
frequency across trials.

Such a surrogate signal is computed for every voxel in our
cortical map. By repeating this step n times, we can build up
a histogram for any statistic we wish to compute on the ampli-
tude Z-scores. Since we postulate an increase in HG amplitude
in the signal interval, we chose the maximum of the Z-score
over the signal period. Since motor imagery is subject initiated,
we expect onset times of any HG changes to vary substan-
tially between subjects. By taking the maximum over the signal
interval, our statistic is independent of individual variation in

that period. Also, for the permutation test, we avoid having
to correct resulting p-values of the test for multiple compar-
isons across, e.g., different time points. Non-invasive, scalp-based
approaches (Cheyne et al., 2008; Darvas et al., 2010, 2013) have
shown that HG activity in the motor system is relatively narrow
band and can vary across individuals. Therefore, for the per-
mutation test, we test over the whole band from 70 to 100 Hz
in 1 Hz steps and again, choose the maximum Z-score across
frequencies. Finally, due to the variant spatial resolution of the
inverse mapping, we also select the maximum across all vox-
els of the map, i.e., the whole cortex. By building a histogram
over the maximum in time, frequency and space, we avoid hav-
ing to correct the resulting p-values for any multiple comparisons.
The permutation test also implicitly examines trial-to-trial sta-
bility of the average. That is, since any outlier trial with large
HG power in the signal interval, which could cause the aver-
age HG power to be high as well, has a 50% chance of being
permuted with a baseline segment and would skew the baseline
HG power distribution in the same manner, the resulting average
power would consequently no longer be in the tail end of the base-
line distribution. Therefore, increases in the average HG power
over trials in the signal period due to outliers will be tested as
non-significant

EMG/EOG data processing
EMG and EOG are sources of noise in the HG band and can
exceed the cortical signal considerably. EOG electrodes were placed
approximately 1 cm above the left and right brows and 1 cm below
left and right eyes. Through the permutation test on the EEG
data, we can make sure that any significant HG effects observed
in the data are not due to, e.g., transient, non-stimulus induced
HG activity originating from either EMG or EOG. However, any
stimulus-induced, systematic EMG or EOG activity that would
introduce an artifact into the EEG would still pass the permuta-
tion test. In order to rule out such systematic contamination, we
compute the average EMG and EOG HG power over all trials. This
was then subsequently entered into into the EEG source analysis
to identify systematic increases in HG in the EMG and EOG chan-
nels. Since EMG and EOG are typically of broadband nature, in
the range from 70 to 100 Hz, we band pass filtered both signal types
for each subject and side and computed the mean amplitude from
the Hilbert transform of the 70–100 Hz filtered signals. Because
the human brain’s power spectrum recorded non-invasively hits
the noise floor at around 100 Hz, this 70–100 Hz band pass filter
was applied to EEG recordings.

Determining goodness of match between EEG HG and fMRI and its
significance
In order to determine how well the HG EEG map and the fMRI
match, we group the significant fMRI activity and significant HG
activity (i.e., at p < 0.1) into contiguous clusters on the corti-
cal surface. For each cluster we compute a centroid position and a
mean spherical radius, i.e., the mean distance of each cluster mem-
ber from the center. For each EEG and fMRI cluster, we compute
the distance between modalities as the distance between the cen-
troids minus the sphere-radius for each cluster. Negative distances,
due to overlap of clusters, are set to zero. For all fMRI clusters,
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we select the distance to the nearest EEG cluster. If there are
more fMRI clusters than EEG clusters, we select smallest distances,
matched to the number of EEG clusters. A compound measure is
formed by taking the median across these minimal distances. This
will serve as our assessment of the goodness of match between
solutions.

Using 3D distances instead of actual geodesic distances on the
folded cortical surface is a simplification of the ground truth
match between modalities. However, deviations from the “true”
distance are expected to be small, as we expect this value to be
dominated by gross mismatches on the order of several centime-
ters and our measure merely serves as proxy for the goodness of
match.

To compute statistical significance for our goodness-of-fit mea-
sures, we resampled the fMRI clusters on the cortical surface for
each subject and condition (left or right imagery), where we keep
the number of clusters and the cluster size constant between our
permutation and the original. Thus we can build a histogram of
goodness of match values for arbitrary fMRI solutions of simi-
lar shape to the original. A p-value, and thus a measure of the
specificity of the actual match, is derived by comparing the actual
measure vs. the resampled value. We generate 1000 resamples per
subject and condition to provide for a sufficient accuracy of the
computed p-values.

RESULTS
HG EEG ACTIVITY
EEG and fMRI data were collected on separate days in the same
group of ten subjects using identical behavioral protocols (see
Figure 1 for the EEG montage used). The only significant task
induced EMG activity between 0 and 2000 ms after motor imagery
cue onset was found in subject 4 (Figures 2 and 3). There was
significant increase in EOG activity in subject five after 2000 ms,
but also not overlapping with any cortical HG activity (Figures 4
and 5).

The EEG results show significant power increases in the HG
band during motor imagery (Figure 6 for subjects 5 and 8.
For the remaining eight subjects, see Figures 7 and 8). These
power increases were spatially focal and mostly restricted to
the sensorimotor areas of the contralateral cortex, but do cover
other cortical areas, not typically associated with motor imagery
as well. Single-subject fMRI activity, which is also shown in
Figures 5–8, also does overlap in most subjects with the EEG
reconstruction, but also shows unrelated activity. We find at
least one cluster with p < 0.05 in 9 out 10 subjects for right
hand imagery and in 8 out of 10 subjects for left hand imagery.
Two subjects had only HG activity with p < 0.1 for one side
(subject 6 for left hand imagery and subject #9 for right hand
imagery). Subject #10 had no significant HG activity for left hand
imagery.

Significant HG increases were found to occur between 0.3 and
1.0 s during the task period. Baseline was selected from −1 to 0 s
and the cortical distributions of relative change in the HG band
were determined. Peak HG frequencies for each subject are shown
in Table 1. Time-frequency representations were computed for
each individual subject for the most significant voxel in the cor-
tex after motor imagery cue onset (Subjects 5 and 8 shown in

Figure 9. The remaining eight subjects are shown in Figures 10
and 11). Subjects showed significant HG activity in narrow bands
that were centered between 70 and 90 Hz. In addition, most sub-
jects showed a decrease in beta band activity that preceded power
increases in the HG band, at the sites of HG activity. Because this
result is commonly noted during motor imagery tasks and repli-
cates a well-characterized phenomenon (Darvas et al., 2010) it is
likely an additional indicator that the recorded HG activity is of
genuine cortical origin. Group averages of this beta band decrease
are shown as cortical representations in Figure 12.

SPATIAL CORRELATION BETWEEN fMRI BOLD RESPONSE AND EEG HG
ACTIVITY
The task-related fMRI BOLD changes are also shown in Figure 6
along with the EEG source changes in HG bands on an inflated cor-
tical surface for the imagination of movement of the left and right
hands for subjects 5 and 8 (data for the remaining eight subjects
are shown in Figures 7 and 8). Individual fMRI results showed
BOLD signal increases both in the sensorimotor areas as well as
additional BOLD signal increases in the surrounding cortical areas
that are varied across subjects. Averages of the fMRI activity dur-
ing the motor imagery of the left and right hand of all ten subjects
are shown in Figure 13. Individual fMRI activity spatially co-
localizes with the EEG locations of significant power increases
in the HG band in most subjects, albeit due to the sometimes
more widespread fMRI activity. We find our measure of proximity
ranging from 3 to 32 mm (mean 14 mm, 8 mm SD) across all sub-
jects and conditions (except for subject 10, left imagery, where no
match exists). p-values range from p < 0.001 to p < 0.84, but we
find across seven subjects at least one condition with p < 0.05 and
among those two with both conditions at p < 0.05. Distances and
p values are listed in Table 2. In most cases there is a correlation
between small proximity measures and significance, but in cases
where there are many fMRI clusters spread out across the cortex,
the specificity of the solution remains still small.

DISCUSSION
In this study, we aimed to recover motor-imagery-related EEG
changes in the HG band and examine its spatial overlap with
evoked hemodynamic responses. To study this, we collected EEG
and fMRI BOLD data of subjects performing a left and right hand
motor imagery task in separate sessions. We compared spatial
maps of fMRI BOLD signal changes to HG spectral power changes
in the measured EEG potential during the motor imagery task.
Both modalities were carefully co-registered to allow for direct
comparison. Our results show that HG activity during motor
imagery can be recovered with EEG using an individual sub-
ject’s anatomical head model and inverse modeling methods. This
high frequency spectral power change has been shown to correlate
directly with firing rate (Manning et al., 2009; Miller et al., 2009;
Whittingstall and Logothetis, 2009) and has been demonstrated to
reflect broad spectral changes across all frequencies (Miller et al.,
2007, 2009). Furthermore, cortical increases in HG band activ-
ity recorded with EEG co-localized with an increase of the fMRI
BOLD signal.

Taken together, these results suggest that EEG can accurately
resolve spatially specific estimates of local cortical high frequency
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FIGURE 2 | EMG HG magnitude of the left hand during left hand motor imagery EEG recording sessions (n = 10). EMG activity was averaged over all
trials that were not contaminated by artifacts. Units of the EMG are in V.
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FIGURE 3 | EMG HG magnitude of the right hand during right hand motor imagery EEG recording sessions (n = 10). EMG activity was averaged
between all trials that were not contaminated by artifacts. Units of the EMG are in V.
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FIGURE 4 | EOG HG magnitude during left hand EEG motor imagery recording sessions (n = 10). EOG activity was averaged over all trials that were not
contaminated by artifacts. Units of the EOG are in V.
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FIGURE 5 | EOG HG magnitude during right hand EEG motor imagery recording sessions (n = 10). EOG activity was averaged over all trials that were not
contaminated by artifacts. Units of the EMG are in V.
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FIGURE 6 | EEG and fMRI BOLD activity mapped to realistic cortical

headmodels of subjects 5 and 8. The cortical surfaces have been smoothed
for better visibility. Blue indicates significant fMRI BOLD activity at
Z -score > 2.3. Red indicates significant EEG HG activity at Z > 7, the black

contour line shows HG at p < = 0.1, the green contour line shows HG at
p < = 0.05, and yellow colored areas show overlap between fMRI and EEG.
(A) Cortical activity during left hand motor imagery. (B) Cortical activity during
right hand motor imagery.

signals, potentially opening an avenue for characterizing HG
signals from diverse sets of neurologically impaired populations,
including various neurodegenerative disorders. Research shows
that event-related oscillations in alpha, beta, gamma, delta and
theta frequency bands are highly modified in pathological brains,
especially in patients with cognitive impairment (Başar et al.,
2012; Basar-Eroglu et al., 2012; Ozerdem et al., 2012; Yener and
Bajar, 2012; Yener and Basar, 2012; Vecchio et al., 2013). Non-
invasive EEG signals in these subject populations are currently
only detected up to the beta frequency range, oscillations that
are focally non-specific and likely represent an amalgamated sig-
nature of numerous anatomical substrates. There is growing
evidence supporting the idea that disorders such as Alzheimer’s
disease target specific and functionally connected neuronal net-
works (Reid and Evans, 2013). Thus, the non-invasive resolution
of HG signals, which are believed to represent the activation
of focal neural populations, may provide insights into spe-
cific neurophysiology mechanisms underlying neurodegenerative
disorders such as Parkinson’s and Alzheimer’s. These gamma
modulations could prove to be a useful electrophysiological
biomarker to examine the pathophysiology of such neurological
diseases.

EEG HG AND fMRI CO-LOCALIZATION WITHIN THE MOTOR NETWORK
Group averaged beta decreases across the motor system dur-
ing EEG recordings and increases of the fMRI BOLD signal
show spatial co-localization, but individual HG results co-localize

best to individual fMRI results and do not produce a coherent
grand-average map. This is consistent with ECoG studies that show
HG is better than beta frequencies in terms of localization on an
individual basis (Hermes et al., 2012). In addition to motor cor-
tex, EEG HG and fMRI activity were found in other cortical areas,
which did not overlap when subjected to averaging to common
brainspace (MNI152). This is different from our earlier work on
HG activity during overt movement (Darvas et al., 2010), where a
generic model was used to map HG activity, but more importantly
active movement was used and the EEG signal was segmented
based on actual EMG onset. This can be expected to produce a
stronger and temporally better aligned HG response than motor
imagery, where the only indication of onset of activity is given by
the cue.

Since fMRI measures blood oxygenation as a proxy for neuronal
activity and the EEG signal is a direct measure of the activity
of large groups of coherently active neurons, co-localization of
the two modalities is not strictly necessary. Additionally, different
layers of neurons in the generation of the two signals are involved
(Nunez and Silberstein, 2000), which can overlap in activation for
a given task, but do not have to.

The scattered nature of the EEG localization, but also of
the fMRI activity in our results could be attributable to dif-
ferences in a subject’s imagery strategy. Additionally, any EEG
inverse mapping method is prone to localization errors, e.g., the
LCMV beamformer that we used, can introduce spurious spatial
localizations, even from single “true” sources, where the time
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FIGURE 7 | EEG and fMRI BOLD activity mapped to realistic cortical headmodels of 7 of the remaining subjects during left hand motor imagery.
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FIGURE 8 | EEG and fMRI BOLD activity mapped to realistic cortical headmodels of the eight remaining subjects during right hand motor imagery.

Frontiers in Human Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 817 | 12

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Smith et al. High gamma during motor imagery

FIGURE 9 | Z -score time-frequency maps for subjects 5 and 8 for the cortical regions indicated on the cortical surface displayed in the upper left

corner. The maps show that subjects have significant HG increases post-cue in a narrow band. (A) Time-frequency maps during left hand motor imagery.
(B) Time-frequency maps during right hand motor imagery.

series of the reconstructed sources matches the original source,
thus leading to a robust result with our trial-to-trial stability
test.

HG EEG ACTIVITY RELATED TO MOTOR IMAGERY
Frontal eye fields (FEFs) in the prefrontal cortex are thought to
play a key role in the planning and execution of saccadic eye
movements, as well as visual selective attention (Russo and Bruce,
1994; Bullier, 2001). MEG studies have indicated that early HG
activity over the right FEF is present during saccade preparation.
During saccade execution, HG activity is observed in the sup-
plementary eye fields (SEFs), then subsequently progresses to the
visual cortex and FEF bilaterally (Hinkley et al., 2011). In addition
to FEF, it has been suggested that transient increases in scalp EEG
gamma band power (above 30 Hz) in the parietal–occipital cor-
tex can be linked to task-related saccadic eye movements (Reva
and Aftanas, 2004; Trujillo et al., 2005; Yuval-Greenberg et al.,
2008). Yuval-Greenberg et al. (2008) showed data that indicates the
broadband (30–90 Hz) and transient (between 200 and 300 ms)
gamma activity recorded with EEG in the parietal–occipital cor-
tex mirrors eye movements following the display of a new image
and that this gamma signal may be the consequence of associated

ocular muscle artifacts engendered from miniature saccades. Inva-
sive studies showed that saccadic ocular muscle activity might
generate gamma-range artifacts in ECoG data that is confined
to the medial temporal pole and is likely due to its immediate
vicinity to the lateral rectus eye muscle (Jerbi et al., 2009). The
results from the present study do not show significant increases
in HG activity during the cued baseline period, indicating that
the HG activity we see after cued motor imagery onset is related
to motor imagery and not activity induced during miniature
saccades.

HG EEG AS A CONTROL SIGNAL FOR BRAIN-COMPUTER INTERFACE
In the sensorimotor areas of the cortex, motor imagery has been
found to be associated with increases in the HG band, as well as
decreases in the beta and mu bands. Because these cortical rhythms
can be intentionally modulated by motor imagery, they have been
used in non-invasive (i.e., mu and beta; Pfurtscheller et al., 2003;
Pfurtscheller and Neuper, 2006) and invasive (HG, mu and beta)
BCI studies as a control signal (Leuthardt et al., 2006). In addition
to control signals, motor imagery-based BCIs have recently shown
great potential for restoring lost function and inducing activity-
dependent brain plasticity in patients suffering from paralysis due
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FIGURE 10 | Z -score time-frequency maps during left hand motor imagery of the eight remaining subjects for the cortical regions indicated on the

cortical surface displayed in the upper left corner. The maps show that subjects have significant HG increases post-cue in a narrow band.
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FIGURE 11 | Z -score time-frequency maps during right hand motor imagery of the eight remaining subjects for the cortical regions indicated on the

cortical surface displayed in the upper left corner. The maps show that subjects have significant HG increases post-cue in a narrow band.
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to stroke (Bai et al., 2008; Buch et al., 2008; Bundy et al., 2012).
However, current non-invasive motor imagery-based BCI research
has been based on the low spatial resolution offered by EEG/MEG
electrodes and spatially broad mu and beta rhythms, resulting

Table 1 | Peak HG frequencies between cue onset and 1 s post-cue

onset during left hand (LH) and right hand (RH) motor imagery EEG

sessions.

Subject Handedness Age Gender Imagined Hand Frequency (Hz)

1 R 29 M LH 84

RH 87

2 R 26 F LH 79

RH 84

3 R 26 F LH 85

RH 81

4 R 30 M LH 78

RH 78

5 R 25 F LH 87

RH 90

6 L 20 F LH 82

RH 82

7 R 30 F LH 85

RH 88

8 R 20 M LH 84

RH 88

9 R 22 M LH 96

RH 89

10 R 21 F LH 89

RH 94

Table 2 | Results of the proximity analysis for all 10 subjects and

left/right imagery.

Subject Proximity –

left [mm]

p-value left Proximity –

right [mm]

p-value – right

1 18 0.00 12 0.44

2 27 0.70 15 0.00

3 23 0.58 7 0.19

4 5 0.04 4 0.10

5 3 0.01 12 0.00

6 6 0.04 6 0.00

7 25 0.06 6 0.00

8 15 0.06 19 0.03

9 14 0.33 11 0.66

10 NA NA 32 0.84

Proximity is the average minimal distance between fMRI clusters and EEG
clusters. The p-value is an indication of the specificity of the particular match,
computed from a permutation of the proximity measure, where the fMRI clusters
are spatially resampled.

FIGURE 12 | Z -score group average maps of beta band activity

(15–35 Hz) of all subjects (n = 10). Activity was mapped in Montreal
Neurological Institute (MNI) space. (A) Averaged beta activity during left
hand motor imagery. (B) Averaged beta activity during right hand motor
imagery. The threshold for the group average was set at Z = 0.72,
corresponding to 2.3 in a normal distribution or a 99% confidence level.

FIGURE 13 | Z -score group average fMRI BOLD maps of all subjects

(n = 10). fMRI BOLD activity was averaged from all subjects in standard
MNI space. (A) Averaged fMRI BOLD activity during left hand motor
imagery. (B) Averaged fMRI BOLD activity during right hand motor
imagery. The threshold was determined from a mixed effect model,
correcting for multiple comparisons at the group level, using a Gaussian
weighted cluster correction at p < 0.05.

in unreliable and coarse BCI control with average information
transfer rates in the range 10–20 bits/min for motor-imagery BCIs
(Rao, 2013). The overall efficacy of these systems is limited due
to the time it takes for the low frequency rhythm’s amplitudes
to evolve, which is on the order of several hundred milliseconds
(Pfurtscheller and Lopes da Silva, 1999). Ideally, a smaller response
lag is desired, i.e., 100 ms or less, to ensure a more fluid alter-
native for device control and rehabilitation. The HG rhythms
that we were able to detect in this study, with their increased
spatiotemporal resolution and greater task specificity, have the
potential to enhance the performance of EEG-driven orthotic and
prosthetic devices by allowing the brain to interact with assistive
devices on a more natural timescale. In addition, the demon-
strated ability to detect HG changes offline and non-invasively,
a major strength of using EEG, will enable the development of
paradigms that allow the neurophysiological functions in humans
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to be studied non-invasively on a more global scale compared to
ECoG.
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