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High-dimensional independent component analysis (ICA), compared to low-dimensional
ICA, allows to conduct a detailed parcellation of the resting-state networks. The purpose
of this study was to give further insight into functional connectivity (FC) in Alzheimer’s
disease (AD) using high-dimensional ICA. For this reason, we performed both low- and
high-dimensional ICA analyses of resting-state fMRI data of 20 healthy controls and 21
patients with AD, focusing on the primarily altered default-mode network (DMN) and explor-
ing the sensory-motor network. As expected, results obtained at low dimensionality were
in line with previous literature. Moreover, high-dimensional results allowed us to observe
either the presence of within-network disconnections and FC damage confined to some
of the resting-state subnetworks. Due to the higher sensitivity of the high-dimensional ICA
analysis, our results suggest that high-dimensional decomposition in subnetworks is very
promising to better localize FC alterations in AD and that FC damage is not confined to
the DMN.

Keywords: group independent component analysis, functional connectivity, resting-state fMRI,Alzheimer’s disease,
default-mode network, sensory-motor network

INTRODUCTION
Independent component analysis (ICA) is a powerful data-driven
method used for functional connectivity (FC) analysis of the
resting-state fMRI (rfMRI) data. It decomposes rfMRI data into
distinct networks, the resting-state networks (RSNs), correlated in
their spontaneous fluctuations but also maximally independent in
the spatial domain (Beckmann et al., 2005).

Current research in rfMRI is increasingly adopting group-level
high-dimensional ICA to obtain more detailed and informa-
tive network analyses with respect to the more common low-
dimensional approach (Kiviniemi et al., 2009; Abou-Elseoud et al.,
2010; Abou Elseoud et al., 2011; Smith et al., 2011, 2013; Tian
et al., 2013). In fact, the splitting of the RSNs, obtained from the
high-dimensional ICA analysis, could be due to a differential func-
tionality of subnetworks forming the larger ones obtained with the
low-dimensional analysis (Smith et al., 2009; Abou-Elseoud et al.,
2010). In applications to pathological conditions, this differen-
tial functionality of subnetworks could be related to the specific
set of subjects (Abou-Elseoud et al., 2010; Damoiseaux et al.,
2012) and driven by the pathology itself, allowing a more disease-
specific FC analysis. Abou-Elseoud et al. (2010) showed that ICA
analysis results are affected by model order selection and demon-
strated by patients with seasonal affective disorder (Abou Elseoud
et al., 2011) that the between-group differences measured with
ICA increase with model order (reaching a maximum of around
70 components on data acquired with a standard EPI sequence),

thus suggesting multi-level ICA exploration of RSNs FC to opti-
mize sensitivity to brain disorders. Furthermore, the analysis of
the temporal information obtained from rfMRI data (i.e., from
the analysis of the time series associated with each component)
with low- and high-dimensional ICA allows the study of brain
function from a complementary perspective to the information
provided by the spatial map analysis. This was also confirmed by
Tian et al. (2013) in a recent study conducted on healthy subjects
investigating the spatial and temporal features of rfMRI related
to behavior, wherein they highlighted the benefit of the temporal
analysis of the RSNs.

In this work, we applied these innovative rfMRI analyses to
Alzheimer’s disease (AD), the most common cause of demen-
tia in the elderly (Berr et al., 2005). In fact, the decreased FC of
the default-mode network (DMN), quantified on rfMRI data, is
becoming a possible new biomarker for this pathology (Greicius
et al., 2004; Gili et al., 2011; Li and Wahlund, 2011). Therefore,
early detection and a detailed characterization of this alteration
are crucial. Moreover, recent rfMRI studies also investigated the
effects of AD in other RSNs (Brier et al., 2012; Li et al., 2012; He
et al., 2013) in order to investigate possible additional FC changes
beyond the DMN and memory function, but the impact of the
pathology on these networks is still unclear.

This study was led by the hypothesis that, in the first stages of
AD, functional alterations arise as within-network FC loss, and, as
the severity of illness increases, these alterations involve the whole
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brain. We used high-dimensional ICA to decompose the RSNs in
subnetworks and to explore the within-network disruption mech-
anisms that affect the mild and moderate stages of AD. We also
compared the results of this approach with the more traditional
low-dimensional ICA one.

We first used an objective and automatic algorithm to asso-
ciate the resting-state subnetworks obtained by means of the
high-dimensional ICA (i.e., 70 components) to the major RSNs
described in literature and obtained with the low-dimensional
ICA (i.e., 25 components). We explored the FC in patients with
AD and healthy controls (HC) within two RSNs, the DMN and
the sensory-motor network (SMN). The first network, which com-
prises the medial prefrontal cortex (mPFC), the posterior cingulate
cortex (PCC), the inferior parietal lobes, and the hippocampus, is
the primarily altered RSN in AD, while the SMN is still poorly
explored in AD studies. The low-dimensional spatial map analysis
was used to verify that the results of our study were in line with
previous literature (Greicius et al., 2004; Zhang et al., 2009; Bin-
newijzend et al., 2012; Hafkemeijer et al., 2012); then, by means of
the temporal (amplitude and network) analysis at low dimension-
ality, and the spatial and temporal analyses at high dimensionality,
we investigated the FC of the selected RSNs and their subnetworks
in more detail.

MATERIAL AND METHODS
SUBJECTS
Forty-one subjects (21 AD and 20 HC) participated in the study.
Patients with AD [mean age 73.62± 5.22; 8 males] were recruited
from the Memory Clinic of I.R.C.C.S. Don Gnocchi Foundation,
with a diagnosis of probable AD dementia, according to the revised
NINCDS-ADRDA criteria (McKhann et al., 2011), in a mild to
moderate stage [Clinical Dementia Rating Scale (CDR)≤ 2]. To
increase the diagnostic accuracy, analyses of hippocampal vol-
umes were also included in the study as an index of downstream
neural injury according to the guidelines for Alzheimer’s demen-
tia (McKhann et al., 2011). Twenty age-matched HC (mean age
71.05± 3.66; 7 males, MMSE≥ 28) had no history of neurological,
cardiovascular, or metabolic disorders and voluntarily participated
in the study. According to the recommendations of the declaration
of Helsinki for investigations on human subjects, both local ethics
committee approval of the Don Gnocchi Foundation and written
informed consent from all subjects or their caregivers to participate
in the study were obtained before study initiation.

Subjects’ demographic details are reported in Table 1.

MRI ACQUISITIONS AND ANALYSES
MRI acquisition protocol
Brain MR images were acquired using a 1.5 T scanner (Siemens
Magnetom Avanto, Erlangen, Germany) with eight-channel head
coil. rfMRI, BOLD EPI images (TR/TE= 2500/30 ms; resolu-
tion= 3.1× 3.1× 2.5 mm; matrix size= 64× 64; number of axial
slices= 39; number of volumes= 160; flip angle= 70°; acquisi-
tion time 6 min and 40 s) were collected at rest. Subjects were
instructed to keep their eyes closed, not to think about anything
in particular, and not to fall asleep. High-resolution T1-weighted
3D images (TR= 1900 ms; TE= 3.37 ms; matrix 192× 256; reso-
lution 1× 1× 1 mm3; 176 axial slices) were also acquired and used

Table 1 | Demographical and anatomical information of the sample.

HC AD Group

comparison

(p-value)

N 20 21

Age (years, mean±SD) 71.05±3.66 73.62±5.22 0.08

Gender (F:M) 13:7 13:8 0.21

MMSE score (mean±SD) 29.55±0.69 21.62±2.71 <0.01*

Right hippocampal volume

(mm3, mean±SD)

3746.7±586.3 2837.9±537.1 <0.05*

Left hippocampal volume

(mm3, mean±SD)

3594.4±510.8 2678±566.3 <0.05*

Motion during fMRI

acquisitiona

0.07±0.04 0.09±0.06 0.27

HC, healthy controls; AD, Alzheimer’s disease; SD, standard deviation; MMSE,

mini mental state evaluation.

The group comparison was calculated with two-sample independent t-test or

Fisher’s exact test, as appropriate.

*Significant (p < 0.05) compared to HC and AD group.
aMean relative displacement in mm as calculated during the pre-processing with

MELODIC FSL tool.

as anatomical references for fMRI analysis and for hippocampal
volume calculation with FSL-FIRST tool (Patenaude et al., 2011).

rfMRI data analysis
Pre-processing of rfMRI data was carried out using FSL (Smith
et al., 2004; Jenkinson et al., 2012). Standard pre-processing steps
involved: motion correction, non-brain tissues removal, spatial
smoothing with a 5 mm full width at half maximum Gaussian
kernel, and high-pass temporal filtering with a cutoff frequency
of 0.01 Hz. Subsequently, single-subject spatial ICA with auto-
matic dimensionality estimation was performed using MELODIC
(Beckmann and Smith, 2004) and FMRIB’s ICA-based Xnoiseifier
(FIX, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX) (Salimi-Khorshidi
et al., 2014) was used to regress the full space of motion artifacts
and noise components out of the data (Griffanti et al., 2014). The
training set for FIX was obtained using a separate group of HC
(N = 42; age 35.7± 22.3 years; M/F= 19/23). However, due to the
modest number of subjects, we were also able to manually check
that FIX successfully identified the artifactual components on data
of patients with AD.

After the pre-processing,each single-subject 4D dataset was first
aligned to the subject’s high-resolution T1-weighted image using
linear registration (FLIRT – Jenkinson and Smith, 2001; Jenkinson
et al., 2002) enhanced with brain-boundary registration (BBR –
Greve and Fischl, 2009), then registered to MNI152 standard
space using non-linear registration (FNIRT), and subsequently
resampled to 2× 2× 2 mm3 resolution.

The rfMRI data were then temporally concatenated across sub-
jects and group-ICA was performed using MELODIC. For the
low-dimensional ICA, we chose a model order of 25 ICs, in line
with previous studies and guidelines (Filippini et al., 2009; Smith
et al., 2009; Abou-Elseoud et al., 2010; Damoiseaux et al., 2012;
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Zamboni et al., 2013). For the high-dimensional ICA, we chose
a dimensionality of 70 ICs, as suggested in Abou-Elseoud et al.
(2010) and Abou Elseoud et al. (2011) and judged to be compat-
ible with the temporal degrees of freedom of the data (after the
cleaning procedure). Subject-specific time series and spatial maps
from the low-dimensional and high-dimensional group ICs were
obtained with the dual-regression approach (Filippini et al., 2009).

The low-dimensional group ICs were manually classified as
RSNs or artifacts based on previous knowledge of the RSN pat-
terns described in literature (Beckmann et al., 2005; De Luca
et al., 2006; Rytty et al., 2013). The high-dimensional compo-
nents were then classified taking the low-dimensional RSNs as
reference templates, and using a spatio-temporal labeling crite-
rion: the high-dimensional component i was labeled as part of
the low-dimensional component j with which it had the high-
est spatial overlap (calculated with Dice coefficient, DCij) and
the highest temporal correlation (TCij, calculated with Pearson’s
correlation among single-subject time series and averaged across
subjects). A component was classified as residual noise if all DCij

or TCij were below a threshold empirically determined during
the algorithm development by evaluating different values against
manual classification (namely 0.1 for DCij and 0.4 for TCij) on
three different datasets, included the one used in this study, or
classified as unknown if the spatial and temporal matching results
disagreed. Both the residual noise and the unknown components
were ignored in subsequent analyses.

Subsequent analyses were focused on the two RSNs of interest:
the DMN and the SMN. We performed spatial maps and temporal
(amplitude and network) analyses on these ICs of interest, both at
low and high dimensionality. Regarding the time series analysis at
high dimensionality, we will use the terms “within-network” and
“between-network,” respectively, referring to comparisons made
between subareas belonging to the same RSN or different RSNs.

The spatial maps derived for each subject from the second stage
of dual regression were compared between the two groups through
voxel-wise statistics using a non-parametric permutation test. A
cluster-based thresholding was used, corrected for multiple com-
parisons by using the null distribution of the max cluster size
(Hayasaka and Nichols, 2003).

From the subject-specific time series, obtained as output of the
first stage of dual regression, we calculated the amplitude of the
selected RSNs as the standard deviation of the time series. Network
analysis was also performed by estimating full correlation values
(then converted into z-values) between all pairs of time series of
the selected components. Significant differences in amplitude and
correlations between HC and patients with AD were then assessed
with two-sample t -test and corrected for multiple comparisons
using FSLNets (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets).

RESULTS
DEMOGRAPHICAL AND ANATOMICAL CHARACTERISTICS OF THE
PARTICIPANTS
HC subjects and patients with AD were comparable for age and
gender; a significant difference was found for MMSE score, accord-
ingly with the adopted inclusion criteria (Table 1). The significant
difference in hippocampal volumes confirmed the gray matter
volume alteration typical of AD.

LOW- AND HIGH-DIMENSIONAL ICA RESULTS
rfMRI components identification
Out of the 25 components detected by low-dimensional ICA, we
identified 10 RSNs and focused our analysis on the posterior por-
tion of the DMN, which included the PCC, the inferior parietal
lobule and part of the frontal lobe (from now on, we will refer
to this component as the PCC component), the anterior part of
the DMN, mainly the mPFC, and the SMN (Figure 1A). The
high-dimensional components belonging to the selected RSNs,
according to the spatio-temporal labelling criterion, are shown in
Figure 1B): the PCC was identified in two components (PCC1,
PCC2), the mPFC in three components (mPFC1, mPFC2, and
mPFC3), and five components (SMN1, SMN2, SMN3, SMN4 and
SMN5) were recognized as belonging to the SMN.

Time series amplitude
As reported in Table 2, at low dimensionality, we observed that
patients with AD showed significantly decreased amplitude values
in the three selected components. The same analysis performed at
high dimensionality revealed significant decreased amplitude in
patients with AD in one of the two PCC subnetworks (PCC1) and
in one component within the mPFC (the ventral mPFC, mPFC2).
Results survived correction for multiple comparisons across com-
ponents at low dimensionality and across subcomponents within
each RSN at high dimensionality.

Network analysis
At low dimensionality, only the between-network connectivity
PCC–mPFC was significantly different between the two groups
(mean z-scoreHC= 5.65± 3.13, mean z-scoreAD= 3.46± 2.91,
pcorr= 0.03).

Figure 2 summarizes high-dimensional results. FC is, respec-
tively, expressed as the mean z-score across HC (Figure 2A) and
patients with AD (Figure 2B). The within-network FC is arrayed
in blocks along the diagonal and the between-network FC appears
outside the blocks. Figure 2C, showing the differences of cor-
relation values, highlights a generally reduced within-network
connectivity and isolated loss of between-network connectivity in
AD compared to HC (the warm hues indicate loss of FC in AD).
Statistical results of FC decrease in AD (p < 0.05, FWE-corrected
for multiple comparisons) are reported in Figure 2D.

With regard to the DMN, the within-network connectivity was
not different in the PCC component, while FC alteration in AD
was detected among one of the three connections in the mPFC net-
work,namely those involving the ventral mPFC (mPFC1–mPFC2),
in which we previously observed the amplitude decrease.

The same analysis in the SMN resulted in decreased within-
network connectivity among all the subnetworks belonging to
the SMN, and one altered between-networks connection between
SMN and DMN (PCC1–SMN3).

Spatial maps analysis
At low dimensionality, significantly reduced FC was found in
patients with AD only in the PCC component, mainly localized in
the PCC, the precuneus, and the left superior and inferior parietal
lobule (Figure 3A). Significantly lower connectivity in patients
with AD was also observed in three high-dimensional compo-
nents (PCC1, mPFC2, SMN2). In the PCC subnetwork (PCC1),
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FIGURE 1 | Resting-state networks and corresponding subnetworks, revealed by low-dimensional group-ICA (A) and high-dimensional ICA (B).
Images are shown in radiological orientation. DMN, default-mode network; SMN, sensory-motor network; PCC, posterior cingulate cortex; mPFC, medial
prefrontal cortex.

Table 2 |Time series amplitudes.

D = 25 D = 70

Component HC AD p-value Component HC AD p-value

PCC 1.71±0.33 1.36±0.44 0.007a PCC1 1.66±0.29 1.36±0.35 0.005a

PCC2 1.46±0.33 1.21±0.39 0.03

mPFC 1.51±0.38 1.18±0.38 0.009a mPFC1 1.14±0.22 1.03±0.22 n.s.

mPFC2 1.24±0.2 1.04±0.24 0.007a

mPFC3 1.22±0.27 1.17±0.22 n.s.

SMN 1.72±0.59 1.33±0.39 0.016a SMN1 1.51±0.43 1.36±0.34 n.s.

SMN2 1.47±0.33 1.22±0.25 0.009

SMN3 1.5±0.3 1.39±0.23 n.s.

SMN4 1.46±0.42 1.27±0.25 n.s.

SMN5 1.35±0.35 1.21±0.33 n.s.

Comparison between the two groups at low and high dimensionality (two-sample t-test).
aGroup differences surviving after correction for multiple comparisons across components (low dimensionality) and subcomponents (high dimensionality) within each

RSN.

the decreased FC was localized in the PCC and the precuneus;
the alteration in the mPFC (mPFC2) involved the ventral mPFC,
while a decreased FC in the SMN was localized in the precentral
gyrus (Figure 3B). Results were significant at p < 0.05, fully cluster
corrected for multiple comparisons after initial cluster-forming
thresholding corresponding to puncorr < 0.05. Only the result at
low dimensionality survived a further correction across multiple
components.

DISCUSSION
In this work, we applied low-dimensional and high-dimensional
group-ICA on rfMRI data of a group of elderly HC and patients
with AD in the mild to moderate stage of the disease. The aim
of the study was to investigate the effect of the dimensionality of
group-ICA decomposition in the detection of FC damage in AD

using spatial and temporal (amplitude and network) analyses. The
use of an objective and quantitative labeling criterion allowed us to
automatically identify the subnetworks of interest and to perform
a high-dimensional analysis that was a complementary approach
to the low-dimensional one.

We focused the analyses on the DMN (divided in its posterior
and anterior portions), as the most damaged by AD (Greicius et al.,
2004; Zhang et al., 2009; Gili et al., 2011; Binnewijzend et al., 2012)
and on the SMN, for which the role of the pathology is still unclear
and under debate (Brier et al., 2012; Damoiseaux et al., 2012).

With regard to the posterior part of the DMN (the PCC),
through the low- and high-dimensional spatial map analyses, we
verified the loss of activation in the PCC, typical of patients with
AD, and extensively supported by literature (Greicius et al., 2004;
Zhang et al., 2009; Gili et al., 2011; Binnewijzend et al., 2012).
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FIGURE 2 | Subnetwork correlation matrices for (A) healthy controls (HC)
and (B) patients with Alzheimer’s disease (AD). Intra-network correlations
appear on diagonal blocks; inter-network correlations appear in off diagonal
blocks. (C) and (D), respectively, show the HC–AD difference matrix and the
significant differences in amplitude and correlations between HC and patients

with AD, corrected for multiple comparisons. Colored boxes denote network
membership: Gray – PCC; red – mPFC; yellow – SMN. The color bar indicates
the range of correlation values (blue: z -score= –1; red: z -score=7). The color
bar in (D) indicates statistically significant p-values in grayscale, while
p-values≥0.05 are black colored.

However, thanks to the high-dimensional ICA analysis, we were
able to better localize these alterations within the PCC subregions.
Moreover, we found a significant decrease in the time series ampli-
tude of both the low- and high-dimensional PCC components of
patients with AD, probably because the two PCC subcomponents
are equally (and fully) altered in patients with AD with respect
to the HC. Interestingly, the reduced amplitude in both the sub-
networks does not necessarily imply a FC loss. In fact, the two
parts of the posterior DMN, although split into two subnetworks,
are anatomically close and can share part of the signal source
(i.e., their time series can be highly temporally correlated, as high-
lighted by their high z-value in Figures 2A,B). Hence,our results of
the within-network FC at high dimensionality could be explained
through a residual short-range FC between the two subnetworks
of the posterior DMN in these stages of AD.

With regard to the anterior part of the DMN (the mPFC), no
differences in the spatial maps between HC and AD were found at
low dimensionality, whereas the same analysis at a higher dimen-
sionality drew attention to a reduced FC in the ventral mPFC
subnetwork in AD. This is an interesting result in the light of the
time series analysis, which showed decreased amplitude in AD
already at low dimensionality. Moreover, the high-dimensional

ICA made a significant contribution toward exploring the within-
network FC and underlining that the damage could not involve
the whole network in the mild to moderate stages of AD, but only
the connections between the ventral mPFC component and one
of the other two mPFC subnetworks. The alteration in mPFC in
AD, described in the advanced stage of AD (Greicius et al., 2004;
Zhang et al., 2009, 2010; Gili et al., 2011; Brier et al., 2012; Damoi-
seaux et al., 2012), has already been correlated to the progression
of the structural changes of this pathology (Minoshima et al.,
1997; Buckner et al., 2005). We also hypothesize that the initial
stages of the disease are affected from mPFC alteration, even if
the deficit is not severe enough to be detectable by means of the
low-dimensional analysis of spatial maps (Abou Elseoud et al.,
2011).

With regard to the SMN, it confirmed to be less altered in
patients with AD with respect to the DMN, as evidenced by the
high-dimensional ICA analysis of the spatial maps, that showed a
decreased FC in only one of the five subnetworks, and from the
amplitude analysis, where alterations were observable in the low
dimensionality. Interestingly, half of the within-network correla-
tions were significantly lower in patients with AD. We, therefore,
hypothesize that the connectivity damage in AD could not be
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FIGURE 3 | Between-group differences in resting-state network (RSN)
spatial maps. Group-level ICA spatial maps of the RSNs (red–yellow) at low
(A) and high (B) dimensionality are overlaid with clusters showing
significantly lower (blue) functional connectivity in patients with Alzheimer’s
disease (AD) relative to healthy controls (HC). Images are shown in
radiological orientation. PCC, posterior cingulate cortex; PCC1, subnetwork
1 of the PCC; mPFC2, subnetwork 2 of the medial prefrontal cortex; SMN2,

subnetwork 2 of the sensory-motor network.

confined to the DMN, but could extend to other areas as the
sensory-motor regions [in line with recent findings by Damoi-
seaux et al. (2012), for patients with AD in a moderate to severe
stage], manifesting, in the initial stage of the disease, as a loss of
within-network connectivity. This hypothesis is in line with those
studies, which demonstrated that motor deficits appear since the
disease onset (Scarmeas et al., 2004) and that early motor deficits
are associated with a worse disease progression (Scarmeas et al.,
2005).

A wider analysis using different ICA dimensionalities would
also be useful to define the most suitable model order for the detec-
tion of AD alterations. As already pointed out by Abou Elseoud
et al. (2011), the higher model order provides higher sensitivity,
but also increases the risk of false positives and advanced statis-
tical methods applied at the level of RSNs would be beneficial in
order to correct for type I errors. In this context, high-dimensional

ICA could be used as a post hoc analysis for those networks
that show a significant difference between groups at conventional
low-dimensional ICA.

Certainly, future studies including subjects in the prodromal
stage of AD (mild cognitive impairment) and moderate to severe
patients with AD, or longitudinal studies on patients with AD
would better clarify whether the changes we observed with the
temporal analyses in mild to moderate AD were early signs that
anticipate future changes in the spatial maps.

In conclusion, the results herein support the hypothesis that
high-dimensional ICA, supported by a component classification
based on low-dimensional ICA, can be applied in rfMRI to gain
additional knowledge regarding brain FC in applications to AD. A
detailed parcellation of the brain and the analysis of the tempo-
ral information (e.g., amplitude and network) could give further
insight into the detection of FC alterations in pathological con-
ditions and their monitoring at different stages. These promising,
albeit preliminary, results obtained in describing the functional
disconnections due to this neurodegenerative disease support
future developments in this direction.
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