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In the present study we asked whether it is possible to decode personality traits from
resting state EEG data. EEG was recorded from a large sample of subjects (n = 289) who
had answered questionnaires measuring personality trait scores of the five dimensions as
well as the 10 subordinate aspects of the Big Five. Machine learning algorithms were used
to build a classifier to predict each personality trait from power spectra of the resting state
EEG data.The results indicate that the five dimensions as well as their subordinate aspects
could not be predicted from the resting state EEG data. Finally, to demonstrate that this
result is not due to systematic algorithmic or implementation mistakes the same methods
were used to successfully classify whether the subject had eyes open or closed. These
results indicate that the extraction of personality traits from the power spectra of resting
state EEG is extremely noisy, if possible at all.
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INTRODUCTION
Personality can be defined as a relatively stable pattern on thinking,
feeling, and acting. These patterns can be explained by the idea of
personality traits – underlying mechanisms that cause variation
in observable personality characteristics (Deary, 2009). According
to a dominant five factor model (FFM), observable personality is
mostly determined by five major traits – Neuroticism, Extraver-
sion, Openness, Agreeableness, and Conscientiousness (McCrae
and John, 1992; McCrae and Costa, 2008). Their relatively high
cultural universality, temporal stability, and heritability suggest
that the Big Five traits may represent some sufficiently stable
parameters of fairly specific brain networks (Corr, 2004; DeYoung
and Gray, 2009; Kennis et al., 2012).

If traits indeed reflect individual differences in tonic brain func-
tion, then measures of baseline brain activity may provide a direct
way for personality assessment. A relatively cost-effective way for
quantifying the biological origins of traits could thus be developed
by finding reliable correlates of trait levels from the resting state
EEG signal. However, existing attempts to do this have generally
yielded mixed results. For instance, an early hypothesis relating
Extraversion to baseline brain arousal turned out to be a gross over-
simplification (Stelmack, 1990). Another influential idea linking
anterior asymmetry in EEG alpha (8–12 Hz) band power to indi-
vidual differences in approach and avoidance systems of the brain
(Davidson, 2001; Coan and Allen, 2002), has similarly not been
confirmed using meta-analytic methods (Wacker et al., 2010).

On the other hand, new findings keep suggesting novel can-
didate parameters of resting state EEG as potential correlates of
certain personality traits. For instance, mid-frontal theta power
has been found to co-vary with Extraversion (Knyazev, 2009;

Wacker et al., 2010). Meanwhile, the extent of negative relation-
ships between power in lower (delta and theta) and higher (alpha
and beta) frequency bands (i.e., cross-frequency anti-coupling)
seems also to index approach-avoidance related individual dif-
ferences (Schutter and Knyazev, 2012). Then again, this hopeful
state of affairs might simply reflect the fact that the proposed
correlates are still novel and negative findings remain to be
published.

Most of the existing research on resting state EEG correlates of
personality traits has been conducted in a hypothesis-driven way,
concentrating usually on a single parameter at a time. An alter-
native approach would be to use data-driven techniques to first
of all assess the extent to which resting state EEG signal contains
information on personality and then search for relevant correlates
in a more comprehensive and systematic manner. The main aim
of the present study is to test such an approach. To that end we
used classifiers, mathematical models that map input data to a set
of classes or labels, to predict personality traits from resting state
EEG signals. The classifiers were first trained using a set of data
with known classes and then their performance was evaluated on
data not used for the training phase.

A secondary aim of the present study is to investigate which level
of personality trait description is best suited for relating to resting
state EEG. In an influential paper, DeYoung et al. (2007) identified
two lower-order aspects for each of the Big Five traits. Subsequent
research has demonstrated that this level of trait descriptions may
have more homogenous brain origins (e.g., DeYoung, 2013). We
therefore test if the information contained within resting state EEG
is more reliably related to the 10 aspects compared to the five traits
of the Big Five.
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RESULTS
We analyzed a large dataset collected from 289 participants.
This dataset consisted of eyes open and eyes closed resting
state EEG recordings (32 active electrodes) together with Big
Five personality scores assessed using a validated self-report
questionnaire.

In the first part of the analysis, we trained statistical classi-
fiers to map the features of the resting state EEG to personality
scores of individual subjects. In particular, we used the power
spectra of the EEG signals as the basis for the features or explana-
tory variables. The predicted variable consisted of the binarization
(using a median split) of the score for each personality trait
(see Materials and Methods, Personality measures). Given the
exploratory nature of the analysis we scanned different combina-
tions of classifier parameters and features from the EEG power
spectra to find the configuration that best classified each per-
sonality trait. To avoid cherry-picking or over-fitting the results
we always assessed the selected classifiers on a separate subset of
subjects.

Thus, we used a nested cross-validation approach, which has
inner and outer loops of cross validation. Inner 10-fold cross-
validation loop is used to choose the hyper-parameters of the
classifier (including different data pre-processing options, dimen-
sionality reduction, and the choice between linear and non-linear
support-vector-machine (SVM) classifier, see Materials and Meth-
ods). The classifier that performed the best (by minimizing
misclassification rate) for each personality trait is used for the
outer loop to estimate the misclassification rate of the selected
classifier. So, the best hyper-parameters are chosen 10 times and
the final misclassification rates represent the averages over these
10 partitions (see Materials and Methods, Classification of the
Personality Traits).

The results for the binary classification of the test subjects are
shown on Figure 1. Although the best classification rates observed
for Extraversion and Openness initially reached significance, they
did not remain significant after Bonferroni or after false dis-
covery rate correction (binomial test, corrected p > 0.05). This
indicates that none of the personality traits were correctly classi-
fied from any of the explored combinations of resting state EEG
features.

Although the binarization of the personality scores is concep-
tually simple, robust, and easy to interpret, it also leads to a loss
of information that might hamper the predictive power of the
classifiers. Thus, we next tried to predict the personality score of
each trait as a continuous variable. For this case, instead of SVM
classifiers, we used LASSO and elastic nets models of regressions.
These models of regression include a penalty term that reduces
the number of explanatory variables used while minimizing the
error of the regression. Given the large number of features con-
sidered in our analysis, using sparse regression models allows us
to control for over-fitting errors, as sparse models often tend
to generalize better for novel data. Following the same nested
cross-validation approach as in the binary classifier pipeline, the
results showed that none of the mean squared errors was signif-
icantly better (all p > 0.4) than the null model hypothesis that
the best prediction is the mean of the personality scores. This
result indicates that essentially no additional information could

FIGURE 1 | Misclassification rates of Big Five personality traits. The
personality scores have been binarized with a median-split. None of the
misclassification rates of five personality traits is statistically significant
after Bonferroni or false discovery rate correction at 0.05.

be predicted from the EEG power spectrum features by using this
approach.

Arguably, some of variance in raw personality trait scores is
induced by age and gender differences between participants that
may have little to do with underlying personality differences. We
therefore tested if removing such variance would improve the
information yield of resting state EEG. All trait scores were nor-
malized in relation to age- and gender-specific means and standard
deviations (see Methods, Personality Measures). The repetition
of the binary classification analysis with these normalized scores
still provided misclassification errors that were not statistically
significant (all p > 0.1).

Given the possibly enhanced homogeneity of the brain origins
of lower-level aspects of personality traits, we next attempted to
predict the scores for the 10 lower-order aspects of the Big Five.
We again used the binary classifier with the similar pipeline as for
the five superordinate traits. The results are shown in Figure 2.
As can be seen from Figure 2, one aspect, Openness, is statistically
significant at the uncorrected level. However, after Bonferroni or
after false discovery rate correction none of the p values remain
significant. Therefore, we could not classify the lower-order aspects
of Big Five personality traits from the power spectra of resting
state EEG.

To test the general validity of our analysis pipeline, we applied
it to a situation where clear classifiable information was present in
the dataset. To that end we tried to classify whether the eyes of the
subject were open or closed.

The subjects were assigned into two classes: for half of the
subjects eyes open data were used and for another half eyes
closed data were used. Using the same pipeline with nested
cross-validation of 324 models (half of original size because only
one type of data is available this time) on 289 subjects, the
achieved classification rate of the classifier was 85.8% (misclas-
sification rate of 14.2%, p � 0.001). This result indicates that
when a clear pattern of information was present in the data,
our algorithm was able to extract it and perform almost opti-
mally. This result strongly indicates that the failure to predict
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FIGURE 2 | Misclassification rates of lower-order aspects of Big Five

personality traits. The aspect scores have been binarized with a
median-split. Although the p-value of the misclassification rate for
Openness is below 0.05, it does not remain significant after Bonferroni or
false discovery rate correction.

personality traits from spectral components of resting state EEG
is probably not due to systematic algorithmic or implementation
mistakes.

DISCUSSION
In the present study we asked whether it is possible to predict the
Big Five personality traits from resting state EEG data. Previous
studies investigating the neurobiological correlates of personality
have focused on single parameters such as the power of specific
frequency components. Here we approached the research question
from the data-driven perspective, using machine learning to assess
how much information about personality traits is contained in
the spectral dynamics of the resting state EEG. In particular, we
analyzed the data from a wide power spectrum and all the 32
electrodes. We used nested cross-validation on 289 subjects to
estimate the accuracy of the classifiers.

Our results indicated that it is not possible to predict the Big Five
personality traits from the power spectra of resting state EEG data.
We furthermore showed that our classifiers are also not successful
in predicting the 10 lower-order aspects of Big Five. Although
for trait Extraversion and for trait as well as aspect Openness the
uncorrected p-value of classification accuracy was lower than 0.05,
these results did not survive a correction for multiple comparisons.
We confirmed that predictions could not be enhanced by analyzing
personality traits as continuous variables or removing age and
gender-related variability. Furthermore, for a previous version of
this manuscript we analyzed the data with different preprocessing
parameters, but nevertheless observed the same pattern of negative
results.

In general, although our sample size is large in the con-
text of EEG measures, machine learning techniques are typically
applied to larger data sets. In addition, any machine learning
approach might suffer from several trade-offs and arbitrariness at
each of its different stages (data preprocessing, feature extraction,
feature selection, model selection, model training, validation).

Nevertheless, the pipeline devised for the current study was able to
discover meaningful signals in the available amount of data. More
specifically, using the same methods, we were able to differentiate
eyes open recordings from eyes closed ones with a misclassifica-
tion rate of 14%. This finding strongly suggests that the inability
to classify the personality traits was not caused by our analysis
pipeline.

Given the comprehensive statistical approach used in this study,
the results, despite being negative, have implications for personal-
ity neuroscience. On the one hand, the limitations of the recording,
and analysis techniques used here can be informative. Our study
relied on the power spectrum of each channel as the basis for
selecting features or explanatory variables that may predict per-
sonality traits. Spectral rather than temporal characteristics of
resting state EEG were explored as all points in time are statistically
equivalent in this type of signal (as opposed to evoked or induced
potentials). Nevertheless, it is possible that features not captured
by power such as oscillatory phase or temporal correlations in
channel or source space might add some extra information. For
instance, some studies have found relationships between trait
measures such as Neuroticism and negative correlations between
amplitudes of higher (alpha/beta) and lower (theta/delta) fre-
quencies (Schutter and Knyazev, 2012). Note however that in
many of these studies, power levels in certain frequencies are
also related to the cross-frequency coupling indices as well as
to the relevant trait measures (e.g., Knyazev et al., 2003). It thus
remains to be seen if different feature extraction strategies would
increase the success of classifying personality scores from resting
state EEG.

Another technical explanation for the current findings might be
the limited nature of EEG as a measure of brain processes. EEG is
sensitive to only a subset of electrical events in the brain, probably
reflecting the synchronized local field potentials of suitably aligned
cortical pyramidal neurons (Lopes da Silva, 2013). There is some
evidence suggesting that the trait-relevant differences may instead
be found on the level of brain structure (e.g., DeYoung et al., 2010)
or activation in subcortical areas that are unlikely to contribute
directly to scalp EEG (e.g., Cunningham et al., 2010).

These methodological considerations notwithstanding, the
present findings may also have conceptual implications. Individual
differences in brain processes can either be stable dispositions evi-
dent in majority of situations (i.e., situation-independent traits)
or characteristic responses to specific stimuli (situation-dependent
traits; Mischel and Shoda, 1998; Fleeson and Noftle, 2009; Stemm-
ler and Wacker, 2010). Given the lack of stimulation, the resting
state measurement is optimized for discovering the former rather
than the latter type of traits. In this framework, the failure to
relate resting state EEG to Big Five personality traits documented
here suggests that the brain substrate of personality might involve
situation-dependent responsiveness rather than differences in
baseline activity.

A relevant example can be found from the literature relat-
ing anterior EEG asymmetry to personality. Although many
researchers implicitly assume the resting condition to be optimal
for quantifying trait asymmetry, there is evidence that trait-related
changes in asymmetries are best captured in response to some rele-
vant stimulation (Coan et al., 2006). Furthermore, the correlations
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between traits and resting asymmetry that do emerge may also be
driven by the situational features of the resting measurement occa-
sion. For instance, anterior asymmetry responses distinguished
male participants based on their trait Defensiveness only at the
presence of an attractive female experimenter (e.g., Kline et al.,
2002). Given that we analyzed data from different studies collected
by different experimenters, such situational factors should have
fairly randomly distributed effects within the present data. This
reduces the risk of situation-mediated EEG-personality covari-
ance being registered as evidence for correlations on the trait
level.

In summary, regarding the discovery of neural bases of person-
ality traits, the present null-finding may constitute a false negative
in the sense that technical limitations of EEG recording and/or the
employed analysis techniques precluded us from detecting true
trait differences in brain activity. In addition, even while the size of
the current sample (289 participants) is similar to some normative
datasets, we cannot exclude the possibility that more data would
have provided significant results. On the other hand however, the
results might imply that the brain substrate of personality may
exist on the level of characteristic responsiveness rather than base-
line activity, in line with several findings in modern personality
neuroscience (Stemmler and Wacker, 2010).

MATERIALS AND METHODS
SAMPLE AND PROCEDURE
The sample consists of 289 participants of 12 different cogni-
tive EEG experiments conducted at the University of Tartu (102
males; age range 18–42, M = 22.0, σ = 3.6). All participants were
volunteers recruited among university students and the general
population. All measurements were approved by the Ethics Review
Board of Tartu University. Only subjects who completed a person-
ality questionnaire and had at least 50% of the originally recorded
EEG data retained after artifact rejection were included in the
sample.

The resting state EEG data analyzed here were collected prior to
all other experimental tasks. Two different measurement protocols
were used. In five experiments the resting state signal was recorded
in two contiguous sections – one with eyes open and the other
with eyes closed. Each section lasted either for 1 min (in one
experiment with 75 participants) or 2 min (in four experiments
with 85 participants). In the remaining seven experiments (129
participants) three separate 1 min measurements with eyes open
and eyes closed were interleaved resulting in 3 min in total for both
the eyes open and eyes closed conditions.

The measurements took place in a dimly lit and quiet room.
Participants sat in a comfortable office chair 1 or 1.15 m away
from a computer screen. They were instructed to relax and avoid
excessive body and eye movements. During the eyes open condi-
tion they were also required to fixate on a black cross in the middle
of a gray screen. After instructions, participants remained alone in
the room during the actual recording.

EEG RECORDING AND PREPROCESSING
A BioSemi ActiveTwo (BioSemi, Amsterdam, Netherlands) active
electrode system was used to record signals from 32 scalp loca-
tions, two reference electrodes placed on earlobes and four ocular

electrodes (above and below the left eye and near the outer canthi
of both eyes). The data were recorded with 0.16–100 Hz band-pass
filter and 1024 or 512 Hz sampling rate.

Offline pre-processing was implemented in Matlab (Math-
Works, USA) and EEGLAB (Delorme and Makeig, 2004) software.
The data were re-referenced to digitally linked earlobes and
resampled to 512 Hz as necessary. Eye-movement artifacts were
corrected using independent component analysis (ICA). Infomax
ICA algorithm was trained for each subject on a separate copy
of data that was first high-pass filtered (half-amplitude cut-off at
1 Hz) and then cleaned of large artifacts by screening 1 s epochs
for excessive muscular noise (EEGLAB rejspec 15–30 Hz; ±45 dB).
If more than 2% of epochs were marked for rejection based on
a single channel, the channel was removed before rejecting the
remaining epochs with artifacts. Independent components cap-
turing eye-blinks as well as vertical and horizontal eye-movements
were visually identified and removed before reconstructing the
whole duration of unfiltered and unsegmented data (Debener
et al., 2010). The ICA-pruned continuous data were cut into 2 s
epochs and the mean voltage of each epoch was removed as a
baseline. All segments where voltage fluctuations from the mean
exceeded 100 μV in either direction were marked as artifacts.
If this criterion was violated in only a single channel for more
than 2% or the trials, this channel was removed before removing
the remaining segments with artifacts. All rejected channels were
spherically interpolated for ease of subsequent analyses (EEGLAB
eeg_interp).

The power spectral density values were computed using the
Fourier transform with Hamming tapered 2 s windows. Within
all consecutively recorded stretches of data at least 3 s in dura-
tion, 50% overlapping windowing was used. The power estimates
between 1 and 95 Hz were added and divided by the number of
windows separately within eyes closed and eyes open condition.

PERSONALITY MEASURES
Prior to visiting the lab, participants filled in a personality ques-
tionnaire in a dedicated online environment (kaemus.psych.ut.ee).
All 289 participants completed the EE.PIP-NEO inventory which
uses 240 items to assess the five dimensions (see Figure 3) as well
as 30 facets of the five factor model (FFM; Mõttus et al., 2006).

Scores for the 10 lower-order aspects of the Big Five were com-
puted as averages of the relevant facet scores of the FFM (Judge
et al., 2013):

• Volatility = N2, N5
• Withdrawal = N1, N3, N4, N6
• Enthusiasm = E1, E2, E5, E6
• Assertiveness = E3, E4, E5
• Intellect = O5
• Openness = O1, O2, O3, O4, O6
• Compassion = A1, A3, A6
• Politeness = A2, A4, A5
• Industriousness = C1, C4, C5
• Orderliness = C2, C3, C6

Median split was performed on each personality trait, resulting
in two equal size classes“high”and“low”score for each personality
trait.
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FIGURE 3 | Histograms of all five personality dimension scores. Note that the distributions are rather normal and personality scores are normalized by
subtracting the mean and dividing by the SD.

CLASSIFICATION OF THE PERSONALITY TRAITS
We used a nested cross-validation approach. For predicting an
out of sample subject we used 10-fold cross-validation. In order
to choose the best hyper-parameters we used again 10-fold cross-
validation for 90% of the data. After finding the best combination
of hyper-parameters we re-trained it on the same 90% of the
data. Each of the five personality traits was treated separately.
Matlab code for the nested cross-validation can be found from
GitHub repository: https://github.com/kristjankorjus/Predicting
PersonalityFromEEG

Nested cross-validation
In order to find the best hyper-parameters 10-fold cross-validation
was used on the 90% of the data inside of cross-validation. The
full list of hyper-parameters is specified here:

• different data types: using power spectra of eyes open data
or eyes closed data (two options)

• pooling of electrodes: using all electrodes separately or tak-
ing regions of interests [left frontal (F3, F7, AF3, Fp1); right
frontal (F4, F8, AF4, Fp2); mid-frontal (Fz, Cz, FC1, FC2);
left central (FC5, CP5, T7, P7, C3); right central (FC6,
CP6, T8, P8, C4); mid-parietal (Pz, CP1, CP2, P3, P4); and
occipital (PO3, PO4, O1, Oz, O2)] (two options)

• pooling of frequencies: using all frequencies, using cus-
tomized pooling for frequencies (taking information from
spectrum averaged over all subjects and channels such that
from 1 to 25 Hz bands of 0.5 Hz were used; from 25.5 to
35 Hz bands of 1 Hz; from 35.5 to 95 Hz bands of 10 Hz
were used) or using 10 bands based on the literature (1, 1.5
to 4, 4.5 to 8, 8.5 to 12, 12.5 to 20, 20.5 to 30, 30.5 to 40, 40.5
to 50, 50.5 to 69.5, 70 to 95, all values in Hz; three options)

• normalization of the data: using the data without normal-
ization, normalizing each row (each subject) by taking the

z-score (subtracting the mean, dividing by standard devi-
ation) or normalizing each column (each feature; three
options)

• for reduction of dimensionality of the data, principal
component analysis was used with different amount of total
variance explained by principal components: 90% or 70% of
variance explained. Or no principal component analysis was
used at all (three options)

• value of the box constraint C for the soft margin of SVM:
0.01 or 100 (two options)

• type of kernel for SVM: no kernel (linear SVM) or a radial
basis function (RBF) kernel (non-linear SVM) were used. In
addition, the sigma parameter controlling the width of the
RBF was selected among two possible values using random-
ized data as explained in the next paragraph (three options in
total).

To find a suitable sigma parameter of RBF for our dataset we
estimated how the over-fitting error for a known case depended
on this parameter. In particular, we first randomized the classes
of the dataset, and let the classifier train and predict the full data.
For small values of the sigma, the classification error will tend to
0 indicating over-fitting – every neighborhood around a sample
is classified with the label of the contained sample, and therefore
lacking of any generalization power. As the sigma increased, the
error rate started to increase. Sigma was fixed when the error rate
reached 0.1 or 0.3 as these were optimistic prior beliefs about the
final classification error.

In total, these 648 combinations of classifier hyper-parameters
were explored for each personality trait. For the whole cross-
validation phase, partitioning of data was fixed to make different
hyper-parameters more comparable. The smallest misclassifi-
cation error for each personality trait determined the set of
hyper-parameters, which were used in testing.
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Cross-validation
In order to estimate the misclassification error rate, each per-
sonality trait of 289 subjects was predicted with the best hyper-
parameters found and model trained in the nested cross-validation
phase.

Statistical significance was estimated using binomial test with
the null hypothesis that two categories are equally likely to occur.

ANALYZING CONTINUOUS DATA
Continuous scores were first normalized (mean was subtracted
and divided by standard deviation). Instead of a SVM classifier,
LASSO and elastic net regressions were used (Matlab function
lasso). All hyper-parameters which were not related to the specifics
of SVM classifiers, were scanned from the same range as described
in the Cross-Validation section above. In addition, the alpha
parameter was scanned with three options: 1, 0.5, and 0.01.
Parameter alpha = 1 represents LASSO regression, alpha close
to 0 approaches ridge regression, and the 0.5 represents elastic net
optimization. For the regularization parameter, we used the rec-
ommended lambda such that MSE is within one standard error
of the minimum (see Lambda1SE in the lasso documentation in
MATLAB).

In the continuous case, the null hypothesis was that the best
prediction for each personality trait, which minimizes the mean
squared error, is the mean of the personality score. Statistical sig-
nificance analysis was performed using a permutation test: scores
were sampled with replacements from the score distribution.

TESTING THE INFLUENCE OF AGE AND GENDER RELATED VARIABILITY
To test possible age and gender related systematic personality vari-
ability, all trait scores were normalized in relation to age- and

gender-specific means and SD
(

Snorm = Sraw−μreference
σreference

· 10 + 50
)

.

The reference data were obtained from a normative sample of the
EE.PIP-NEO (n = 1564; 889 males; age range 16–86; M = 15.8,
σ = 12.1). Based on the age and gender of the participant, one of 20
reference groups were selected (9 age brackets between 15 and 59
with 5 year steps and one bracket for 60 and above). For 53 partic-
ipants of the present sample for whom age data were unavailable,
the sample mean age was used for reference group identification.
Again, median split, and original pipeline described above was
used.

ASSESSMENT OF 10 LOWER-ORDER ASPECTS
Instead of five personality traits, each trait has a natural subdivi-
sion into two:

• neuroticism: volatility and withdrawal
• extroversion: assertiveness and enthusiasm
• openness to experience: intellect and openness
• agreeableness: compassion and politeness
• conscientiousness: industriousness and orderliness

All of the 10 sub-traits were classified using the original above-
described pipeline.

CLASSIFICATION OF EYES CLOSED VS EYES OPENED DATA
To test the validity of the whole pipeline, classification was per-
formed in a situation with clear pattern of information present.

In particular, the data were divided into two sets such that half of
the subjects had eyes open data and another half had eyes closed,
in total two classes. Notice that no subject appears in two classes.
Thus we still have 289 subjects and two classes but for each subject
the data is taken from either eyes open or eyes closed condition.
Again, original pipeline was used.
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