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The objective of this study is to characterize complexity of lower-extremity muscle

coactivation and coordination during gait in children with cerebral palsy (CP), children with

typical development (TD) and healthy adults, by applying recently developed multivariate

multi-scale entropy (MMSE) analysis to surface electromyographic (EMG) signals. Eleven

CP children (CP group), eight TD children and seven healthy adults (considered as an

entire control group) were asked to walk while surface EMG signals were collected from

five thigh muscles and three lower leg muscles on each leg (16 EMG channels in total).

The 16-channel surface EMG data, recorded during a series of consecutive gait cycles,

were simultaneously processed by multivariate empirical mode decomposition (MEMD),

to generate fully aligned data scales for subsequent MMSE analysis. In order to conduct

extensive examination of muscle coactivation complexity using the MEMD-enhanced

MMSE, 14 data analysis schemes were designed by varying partial muscle combinations

and time durations of data segments. Both TD children and healthy adults showed

almost consistent MMSE curves over multiple scales for all the 14 schemes, without

any significant difference (p > 0.09). However, distinct diversity in MMSE curve was

observed in the CP group when compared with the control group. There appears to

be diverse neuropathological processes in CP that may affect dynamical complexity of

muscle coactivation and coordination during gait. The abnormal complexity patterns

emerging in the CP group can be attributed to different factors such as motor control

impairments, loss of muscle couplings, and spasticity or paralysis in individual muscles.

This study expands our knowledge of neuropathology of CP from a novel point of view

of muscle co-activation complexity, which might be useful to derive a quantitative index

for assessing muscle activation characteristics as well as motor function in CP.
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Introduction

Cerebral palsy (CP) is a permanent disorder of movement
and postural control that are non-progressive disturbances
in the developing fetal or infant brain leading to primary
and secondary lesions of the sensory, neuromuscular and
musculoskeletal functions (Vaz et al., 2006; Rosenbaum et al.,
2007; Franki et al., 2014). Clinical manifestations of these
impairments are spasticity, dystonia, muscle contractures, bony
deformities, incoordination, loss of selective motor control
and weakness (Crenna, 1998; Gormley, 2001). However, the
collective of these motor functional deficits cannot be effectively
remedied by current medical treatment. Continuous exploration
of their motor control mechanism alterations and development
of clinical interventions to improve motor functions are always
of great demand. In this regard, developing improved assessment
strategies for quantifying abnormal manifestations as well as
evaluating the effects of clinical intervention is the prerequisite
(Lauer et al., 2007; Li et al., 2013).

There have been a great many methods aimed at evaluating

motor function in children with CP as well as assessing
the outcome of a clinical intervention. Among them, several

classification scales are routinely used in clinic to measure

motor function and functional impairment (Daltroy et al., 1998;
Palisano et al., 2006). The use of these scales, however, is

dependent on the skilled but subjective judgment of a clinician.
Recent efforts have been made toward objective and quantitative

examination of motor abnormalities and gait pathology in
particular. For instance, a normalcy index (NI) has been put

forward to distinguish differences in gait between subjects from
the kinematic point of view (Romei et al., 2004). The gait

deviation index (GDI), which has been described by recent

studies (Schwartz and Rozumalski, 2008; Massaad et al., 2014),
is a multivariate readily calculated method to quantify the
pathological gait as a result of CP. Edinburgh visual gait
score (EVGS) was presented by Read et al. (2003) as a three-
dimensional gait analysis method based on computer vision; and
its effectiveness and reliability in clinical diagnosis of abnormal
gait were evaluated by Viehweger et al. (2010). Although these
approaches and indices relying on kinematic data are able to
provide a way to quantify motor deficits following neurological
injuries, they are not directed toward characterizing the changes
in muscle activation patterns. Alternatively, muscle biopsies,
motor evoked potentials and intramuscular electromyographic
(EMG) examinations can provide information about the muscle
activation characteristics (Dietz et al., 1986; Rose et al., 1994).
Their invasive feature, however, prevents the applications of these
techniques especially on pediatric population.

Surface EMG is a non-invasive approach which measures
muscle activity and thus can be used to evaluate the effect of
rehabilitative treatment on muscle function (Drost et al., 2006).
Previous studies reported routine use of surface EMG for clinical
assessment and evaluation of motor impairment in CP (Gage,
1993; DeLuca et al., 1997). In most cases, the analysis of surface
EMG data for motor function assessment has been done with
relatively simple but useful parameters from the signal, such as
signal amplitude, and variant in muscle onset and offset timing

(Burridge et al., 2001; Tedroff et al., 2008; Frigo andCrenna, 2009;
Bojanic et al., 2011). Recent studies have shown the potential
of using multi-scale representations of surface EMG [derived
from the wavelet analysis (Zhao et al., 2006; Istenic et al., 2010)
or empirical mode decomposition (EMD) (Huang et al., 1998,
2003; Zhang et al., 2013)] other than single-scale parameters
in the time or frequency domain, for better characterization
of muscle activation patterns in both able-bodied adults and
patients with neurological diseases. Specifically, Lauer et al.
(2005, 2007) demonstrated the feasibility of applying continuous
wavelet transform (CWT) techniques to surface EMG data for
gait analysis and motor assessment in children with CP.

Recent advances in sensing technology allow for simultaneous
recording of multiple surface EMG channels from a group
of muscles (Drost et al., 2006). The usefulness of surface
EMG recordings from multiple muscles has been demonstrated
by various applications regarding muscle activity pattern
identification during functional movements and gait in particular
(Frigo and Crenna, 2009; Li et al., 2014). The limitation
of these studies, however, has been that different EMG
channels are individually processed in isolation, while the
couplings across multiple muscles cannot be emphasized.
On the contrary, simultaneously processing multiple EMG
channels offers an opportunity to extract additional information
regarding co-activation of multiple muscles. The capability
of examining co-activation and coordination of muscles
during a clinically relevant task could be potentially of great
value.

Given the above, this study presents a novel application of
the recently developed multivariate multi-scale entropy (MMSE)
analysis on surface EMG signals to quantify muscle dysfunction
in children with CP during gait, in terms of dynamical complexity
of muscle co-activation. The applied MMSE technique is able
to incorporate the multi-scale entropy (MSE) analysis within a
multivariate data-adaptive framework (Ahmed et al., 2012). The
MSE measures the basic dynamical complexity of a system over
different time scales, which can be done by applying standard
(single-scale and univariate) sample entropy (SampEn) analysis
to intrinsic multiple data scales generated from input data by
the EMD, a data-driven method (Hu and Liang, 2012). Recent
multivariate extensions of both EMD and SampEn, namely
multivariate EMD (MEMD) (Rehman and Mandic, 2010) and
multivariate SampEn (MSampEn) (Ahmed and Mandic, 2011,
2012), have shown advanced performance in analysis of multi-
channel physiological data, as compared with their standard
univariate versions (Rehman et al., 2010; Ahmed et al., 2011;
Mandic, 2011; Hu and Liang, 2012; Morabito et al., 2012). Taking
both advantages, the technique used in this study, termed as
MEMD-enhanced MMSE method by its proposer (Ahmed et al.,
2012), operates in a fully multivariate manner, as it directly
calculates MSampEn estimates for fully aligned scales generated
by MEMD from multivariate input data. This technique applied
to surface EMGdata frommultiplemuscles ensures simultaneous
analysis of their dynamical complexity, which offers analysis
of muscle co-activation and coordination in a meaningful way.
Therefore, the findings of the study can expand our knowledge
of neuropathology of CP from a novel point of view of muscle
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co-activation complexity, which might serve as a potentially
useful technique for assessment of motor function in CP.

Materials and Methods

MMSE Analysis Method
EMD and MEMD
The EMD algorithm is a kind of fully data-driven and self-
adaptive time-frequency domain analysis process which models
the raw signal as a linear combination of a series of intrinsic
oscillatory modes and a residual signal (Huang et al., 1998). The
EMD decomposition of a time series x (t)Tt= 1 can be described as
follow (Huang et al., 1998, 2003):

x (t) =
∑N

i
ci (t) + r (t) (1)

where ci (t)
T
t=1 represents the i-th intrinsic mode function (IMF),

and r (t)Tt=1 is the residual usually regarded to be the (N + 1)-th
IMF. Consequently, the EMDmethod can be concisely described
as follow:

x (t) =

N+ 1
∑

i

ci (t) (2)

These resultant IMFs are defined to present inherent oscillatory
modes. However, when separately applied to multi-channel data,
the standard EMD is likely to introduce mode-misalignment
problem (Rehman and Mandic, 2010). In order to alleviate
this problem, MEMD has been proposed recently to extend
application of the standard EMD to multivariate data (Rehman
and Mandic, 2010). With the benefit from the mode alignment
property, the MEMD has been demonstrated to be suitable in
analysis of non-stationary multivariate physiological time series
(Rehman et al., 2010; Hu and Liang, 2012; Zhang et al., 2013).

The critical difference between MEMD and EMD is how
to estimate the local mean. In EMD, local mean is an average
of the upper and lower envelopes which can be obtained by
interpolating the local maxima and the local minima of the signal.
However, the parallel local maxima and local minima cannot
be defined directly in the multivariate signal. Thus, in MEMD,
multiple n-dimensional envelops are generated by taking signal
projections along different directions in an (n-1)-dimensional
space; then the local mean is obtained by calculating the average
of these envelopes. Considering that {v (t)}Tt= 1 denotes n-variable
time series, and xθk is a set of vectors (indexed by k) along the
directions represented by angles θk = {θk1 , θ

k
2 , . . ., θ

k
n−1} on an

(n-1)-dimensional space, theMEMD algorithm is summarized as
follows (Rehman and Mandic, 2010; Mandic, 2011):

(1) Choose an appropriate point set based on Hammersley
sequence for sampling on an (n-1)-dimensional space;

(2) Compute a multidimensional projection pθk (t)}
T
t= 1 of the

multivariate input data {v (t)}Tt= 1 along a direction vector

xθk , for all k, thus giving pθk (t)}
K
k= 1 as the set of projections;

(3) Locate the time points t
θk
i corresponding to the maxima of

the set of projected signals pθk (t)}
K
k=1;

(4) Interpolate (t
θk
i , v(t

θk
i )), for each k, to get multivariate

envelope curves eθk (t)
K
k= 1;

(5) For all K direction vectors, compute the mean m(t) of the
envelope curves as follow:

m (t) =
1

K

∑K

k=1
eθk (t); (3)

(6) Iterate on the detail d (t) = v (t)−m(t) until it becomes an
IMF. Then the above procedure is applied to v (t)−d(t).

The stoppage criterion for multivariate IMFs is similar to that
for the univariate IMFs presented in Huang et al. (1998).
Considering that extrema cannot be properly defined for
multivariate signals, the constraints for the number of extrema
and zero crossings are not imposed (Rehman and Mandic, 2010).
By projection, MEMD directly processes multivariate signals to
produce the scale-aligned IMFs. The MEMD source code is
publicly available from the webpage of it proposer (Rehman and
Mandic, 2010)1.

SampEn and MSampEn
Entropy is an effective tool to measure the complexity and
randomness of a dynamic system (Richman andMoorman, 2000;
Costa et al., 2002, 2005). Among various entropy measures,
sample entropy (SampEn) introduced by Richman andMoorman
(2000) is an effective and robust one for the short and noisy
time series. The SampEn, always used as a basic, single-scale and
univariate entropy measure, has achieved successful applications
in analysis of various physiological signals, such as diagnosis of
cardiovascular diseases (Costa et al., 2002) and EMG activity
detection (Zhang and Zhou, 2012).

In order to enable complexity analysis of multi-channel
data, Ahmed and Mandic (2011) introduced MSampEn which
takes into account both within- and cross-channel dependencies.
For an n-variate time series {xk,i}

N
i= 1, k= 1, 2,. . ., n, the

calculation of MSampEn starts from the multivariate embedded
reconstruction which is based on the composite delay vector:

Xm ( i)= [ x 1, i, x 1, i+τ1 , . . . ,x1,i+(m1−1)τ1 , x2, i
x2, i+τ2 , . . . , x2, i+( m2−1)τ2 , . . . ,x n, i,

x n, i+τ n , . . . , x n, i+( m n−1)τ n ],
(4)

whereM = [m1,m2, . . .,mn] ∈ Rn is the embedding vector, τ =

[τ1, τ2, . . ., τn] represents the time lag vector, the composite delay
vector Xm (i) ∈ Rm (where m = m1+m2+. . .+mn). Therefore,
the MSampEn is calculated through the following procedures
(Ahmed and Mandic, 2011, 2012):

(1) Construct (N−δ) composite delay vectors Xm (i) ∈ Rm,
where i= 1, 2, . . . , (N−δ) and δ = max {M}×max {τ}.

(2) The maximum norm between any two
composite delay vectors Xm (i) and Xm

(

j
)

is
defined as the distance: d

[

Xm (i) ,Xm

(

j
)]

=

maxl=1,...,m{|x
(

i+ l− 1
)

−x( j+ l− 1)|};

1Rehman, N., and Mandic, D. P. (2010). (Online). Available online at: http://www.

commsp.ee.ic.ac.uk/~mandic/research/emd.htm
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(3) For a given Xm (i) and a threshold r, count the number Pi
of any pair of vectors that satisfies d[Xm (i) ,Xm

(

j
)

] ≤ r,
i 6= j, then calculate the frequency of occurrence Bmi (r) =

Pi/(N−δ − 1), and define the average over all possible i ∈

[1, N−δ]:

Bm (r) =
1

N− δ

∑N−δ

i= 1
Bmi (r). (5)

(4) Extend the dimensionality of multivariate delay vectors in
Equation (4) from m to (m+1), then repeat the upper
steps, and obtain the average Bm+1 (r) over all possible i ∈
[

1, n× (N−δ)
]

.

Finally, for a tolerance level r, the MSampEn is calculated as:

MSampEn (M, τ, r,N) = − ln(
Bm+ 1 (r)

Bm (r)
). (6)

The MSampEn offers a quantitative approach for
simultaneously analyzing the complexity of multi-channel
data obtained from one physical process, which has been
illustrated for chaotic physical phenomenon and physiological
data (Ahmed and Mandic, 2011, 2012; Ahmed et al., 2011). The
source code of MSampEn is also available from the webpage of
its proposer (Ahmed and Mandic, 2012)2.

MEMD-enhanced MMSE
With MEMD acting as a multi-scale analysis tool to decompose
input multivariate data into scale-aligned IMFs, the MMSE can
be straightforwardly performed by applying MSampEn on those
fully aligned scales (IMFs). Although the separate IMFs can
directly represent multiple data scales, the “scales” for MMSE
analyses in this study were defined to be cumulative IMFs: cn =
∑N

i= n ci, where n ∈ [1,N] denotes the cumulative IMF index
(or scale factor), and ci denotes the i-th IMF of the multivariate
data (Ahmed et al., 2012). Therefore, the MMSE analyses can
be achieved by calculating and plotting the MSampEn measure
given in (6), for each scale n, in a fine-to-coarse manner (Hu
and Liang, 2012), which indicates that the multiple scales are
produced in a way of consecutively removing the high-frequency
(low-order) IMFs from the original input multivariate data
(Ahmed et al., 2012).

Subjects
Eleven children with CP (9 males, 2 females, age: 5.4 ± 2.2
years, mean ± standard deviation), eight children with typical
development (TD) (3 males, 5 females, age: 6.6 ± 2.0 years)
and seven healthy young adults (7 males, age: 24.7 ± 0.9 years)
participated in the study. All 11 CP children were recruited from
outpatient clinic of the neurological rehabilitation for children in
the First Affiliated Hospital of Anhui Medical University (Hefei,
Anhui Province, China), with approval from the association of
ethics of the hospital. Inclusion criteria for children with CP
participating in the study include: (1) age between 2.5 and 12
years old; (2) clinical diagnosis of CP; (3) ability to communicate

2Ahmed, M. U., and Mandic, D. P. (2012). (Online). Available online at:

http://www.commsp.ee.ic.ac.uk/∼mandic/research/Complexity_Stuff.htm

with others; (4) experience of lower limb motor deficits that
led to abnormal gait; (5) ability to walk independently or with
assistance; (6) no history of other diseases that also lead to motor
deficits; (7) no history of any kind of surgical therapies. The
written consent was obtained from guardians of all CP children
prior to the data collection experiments. Gross motor function
classification system (GMFCS) (Palisano et al., 2006) was used
by a physical therapist to assess motor function for each CP
child. Demographic and clinical measures for the CP children
are detailed in Table 1. All the 11 CP children were considered
to form a CP group. In addition, 15 subjects, including eight
age-matched TD children (also termed TD group) and seven
healthy young adults (also termed AD group), were recruited
through University of Science and Technology of China (Hefei,
Anhui Province, China). The study was approved by the ethics
committee of the university as well. All TD children were
recruited from faculty families who understood and supported
our study, while all AD subjects were graduate volunteers in
the university. Both the TD and AD subjects were considered
to form a healthy control group for examining abnormality in
the CP group. All subjects in the control group had not suffered
from any known neurological or orthopedic deficiencies. All TD
children’s legal guardians and AD subjects gave their informed
consent before the experiment. The detailed information about
the control group is listed in Table 2.

TABLE 1 | Clinical characteristics of subjects with CP, where F, female; M,

male.

Subject Gender Age (years) GMFCS Diagnosis

CP1 M 5.4 II Spastic, diplegia

CP2 M 4.3 III Spastic, diplegia

CP3 F 4.0 III Spastic, diplegia

CP4 M 2.5 I Spastic, right hemiplegia

CP5 M 7.0 I Spastic, diplegia

CP6 M 8.6 II Spastic, diplegia

CP7 F 9.8 I Spastic, diplegia

CP8 M 4.8 II Right hemiplegia

CP9 M 3.5 II Right hemiplegia

CP10 M 5.5 II Right hemiplegia

CP11 M 3.8 I Right hemiplegia

TABLE 2 | Basic information of the control group, where F, female; M,

male.

Subject Gender Age (years) Subject Gender Age (years)

TD1 F 7.6 AD1 M 23.2

TD2 F 9.2 AD2 M 25.7

TD3 M 9.5 AD3 M 25.4

TD4 M 6.0 AD4 M 24.8

TD5 M 6.0 AD5 M 24.3

TD6 F 5.2 AD6 M 24.2

TD7 F 4.5 AD7 M 25.5

TD8 F 4.5
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Experimental Protocol
Figure 1 shows placement of both surface EMG sensors and
accelerometers used in this study. The surface EMG data were
recorded bilaterally on the following muscles: (1) five thigh
muscles including vastus lateralis (VL), rectus femoris (RF),
semitendinosus (SE), biceps femoris (BF) and tensor fasciae latae
(TF), and (2) three lower leg muscles including tibialis anterior
(TA), soleus (SO) and lateral gastrocnemius (LG). These muscles
were selected due to their relevance to gait. An individual surface
EMG sensor was built with a pair of parallel bar-shape Ag-AgCl
electrodes in a formation of 10mm length, 1mm width for each
bar, and 10mm spacing between bars to allow a bipolar channel
of EMG recording, as shown in Figure 2. Each surface EMG
sensor was placed in the middle of the targeted muscle belly, in a
direction that ensured electrode bar perpendicular to the muscle
fibers. After the skin surface was cleaned with a soft alcoholic
pad, the EMG sensors were secured in place using both tape and
stretchable wraps by an experienced experimenter. Besides, two
tri-axis accelerometers were also bilaterally placed over the upper
tibia below the knee (see Figure 1). For each accelerometer, only
the axis along gravity was used to assist the determination of gait
cycles.

For each trial of the experiment, the subjects were asked to
walk at a self-selected speed across a straight 25-foot walkway.
Two or three trials were necessary for each subject to ensure
the recording of sufficient data. For some CP children who were
not able to walk independently, their guardians were allowed
to assist them in walking. By considering the safety of other
CP children and TD children, they were followed by their
guardians or experimenters. Sufficient rest was allowed between
two consecutive trials for all subjects to avoid both muscular and
mental fatigue, especially for the children with CP.

FIGURE 1 | The placement of 16 surface EMG sensors and two

accelerometers over lower-extremity.

A home-made portable multi-channel data recording system
(Figure 2A) was used to synchronously record surface EMG and
acceleration (ACC) signals from two legs of subjects during gait.
The sampling rate for each surface EMG channel was 1 kHz, while
the acceleration signal was digitalized at 100Hz. All data were
recorded and stored to a laptop computer via USB for further
analysis using a customized program in Matlab (ver. 2012, The
Mathworks Inc., Natick MA, USA).

Data Analysis
Data Preprocessing and Segmentation
Both surface EMG and ACC signals recorded from lower-
extremity were supposed to show cyclic patterns during gait.
Figure 3 exhibits examples of raw data recorded from three
subjects approximately during one gait cycle. It should be
acknowledged that surface EMG signals recorded during walking
showed clear cyclic pattern for most control subjects and a few
CP children. However, for the majority of CP children, such
cyclic pattern was not obvious due to their motor impairments
and abnormal muscle activations, which caused difficulty in
determining gait cycles for EMG signals. Therefore, the ACC
signal along gravity was employed as additional reference,
because the occurrence of each ACC peak indicates the moment
that heel (or foot for some CP children) of the corresponding
leg strikes the ground. Visual inspection was conducted on data
across all trials to determine individual gait cycles (heel strike
to heel strike) for all subjects. Furthermore, taking advantage
of physiological characteristics during walking that both legs
alternately make individual steps (two steps make up each gait
cycle), each gait cycle can be roughly divided into a stance
phase and a swing phase, given detected ACC peaks along the
timeline from both legs. A stance phase of one leg occurs from
an ipsilateral ACC peak to the next contralateral ACC peak,
followed by a swing phase of the same leg corresponding to
the remaining period of the same gait cycle. We also manually
discarded any gait cycle contaminated by external interference
like motion artifacts. For each subject, a series of gait cycles
were determined, and corresponding EMG data segments were
selected and concatenated along the timeline to form a 16-
channel EMG data block.

MEMD Analysis
The data blocks from all subjects were further concatenated as
a 16-channel EMG dataset. This dataset and six channels of
Gaussian white noise with the same length as the EMG dataset
were reshaped into a 22-dimensional dataset which is suitable
for MEMD analysis. Combining additional white noises with the
original dataset is a technique to overcome the mode-mixing
problem in MEMD analysis (Wu and Huang, 2009; Rehman and
Mandic, 2010). A single MEMD operation was performed on
the composite dataset, ensuring aligned scales across: gait cycles,
channels/muscles; and different subjects.

In this study, MEMD analysis for the current 22-channel
dataset (16 surface EMG channels combined with six white
noise channels) produced 18 scale-aligned IMFs for each
channel/muscle (see Figure 4). It was found that the first
seven IMFs carried the majority of signal energy, whereas
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FIGURE 2 | A home-made portable multi-channel data recording system (A) and an individual surface EMG sensor (B).

FIGURE 3 | Examples of representative surface EMG and

acceleration signals approximately during one gait cycle from

three subjects. (A) CP1, (B) CP4, and (C) AD3. For each subject,

the time duration between two vertical solid lines indicates one gait

cycle, which is divided roughly into two gait phases by a vertical

dashed line.

those with higher orders were considerably weaker. This
was the case throughout the entire dataset. For this cause,
the IMFs with order higher than six were summed up to
represent a new single seventh order “IMF”. Note that the
new seventh order IMF did not represent a proper IMF
(according to its definition). The summation of all weaker
IMFs at originally higher orders helped to simply data analysis

at higher scales. Such summation process was equivalent to
stopping the sifting process of MEMD implementation after
first six iterations, while the resulting “residual” was regarded
to be the seventh order “IMF.” This helped to save much
computational power and did not change the scale alignment
across channels. The resultant multivariate IMFs in a scale-
aligned manner across multiple EMG channels facilitated the
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FIGURE 4 | Examples of raw surface EMG signal segments recorded from three muscles of the subject CP1 (also shown in Figure 3A). (A) left SO, (B)

right SO, and (C) right BF, and their corresponding IMFs after the MEMD.

following examination of muscle co-activation complexity over
multiple scales.

MEMD-enhanced MMSE Analysis of Muscle

Coactivation
Given the multiple scales adaptively generated by MEMD from
the multivariate EMG data, MMSE analyses were subsequently
performed by applying MSampEn to scale-aligned IMFs from a
set of channels/muscles to reveal their coactivation complexity
across multiple scales. Since the original EMG data were

selected in a form of consecutive gait cycles, the MMSE
analysis was performed on the data segment within each
individual gait cycle to evaluate dynamic complexity of muscle
coactivation during gait. Specifically, such evaluation approach
was extensively conducted by varying partial muscle/channel
combination and the time duration (an entire gait cycle
or a gait phase). In this study, 14 data analysis schemes
in total, derived from four data organization strategies, as
shown in Figure 5, were proposed and briefly explained as
follows:
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(1) The first strategy was used to group the EMG data from a
single leg over an entire gait cycle, thus producing two data
analysis schemes for both the left and right legs, as shown in
Figures 5B1,B2, respectively.

(2) The second strategy further considered the EMG data from
a single leg over a certain gait phase other than an entire
cycle. Therefore, four data analysis schemes were used when
the EMG data from eight muscles of the left/right leg over a
stance/swing phase were specifically selected for the MMSE
analysis, as shown in Figures 5C1–C4, respectively.

(3) In the third strategy, the EMG data from three lower
leg muscles of one leg over a certain gait phase were
selected, thus producing four data analysis schemes for
the left/right leg and the stance/swing phase, as shown in
Figures 5D1–D4, respectively.

(4) In the fourth strategy, the couplings among five thigh
muscles of one leg were further examined over a certain gait
phase, thus similarly producing four data analysis schemes,
as shown in Figures 5E1–E4.

Following each analysis scheme, a resultant MMSE curve
(MSampEn estimates across different scales) was derived from
the data within each gait cycle. Then, the average of these
MMSE curves was calculated over all selected gait cycles as
a representative MMSE curve for each subject. Consequently,
the mean and SD of the MMSE curves, averaged over
all subjects in a subject group, were computed as well to
examine the difference of MMSE patterns between subject
groups.

The parameters used for MSampEn calculation were set as
mk = 2, τk = 1 and r = 0.2 × SD, where SD represents
the sum of standard deviations of the raw surface EMG time
series all involved in the MSampEn calculation. The choice
of these parameters followed recommendations from previous
studies (Ahmed and Mandic, 2012; Ahmed et al., 2012) for good
statistical reproducibility.

Statistical Analysis
In order to identify changes in muscle coactivation complexity
among subject groups and to examine the effect of scales, a series
of separate Two-Way repeated-measure ANOVAs were applied
on the MSampEn values for each of 14 data analysis schemes
respectively, with the scale (7 levels) considered as the within-
subjects factor and the subject group (3 levels) considered as
the between-subjects factor. When necessary, post-hoc pairwise
multiple comparisons with Bonferroni correction were used. The
level of statistical significance was set to p < 0.05 for all analyses.
All statistical analyses were carried out using SPSS software
(version 16.0, SPSS Inc. Chicago, IL USA).

Results

The MMSE results for data from eight muscles of one leg
during the entire gait cycle were shown in Figure 6. Figures 6A,C
exhibit the MMSE results for three subject groups (AD, TD, and
CP) using the data analysis schemes shown in Figures 5B1,B2,
respectively. It can be observed that for both legs the MMSE

FIGURE 5 | Illustration of all 14 data analysis schemes used for

MMSE analyses in this study. (A) is a schematic diagram representing a

basic data segment of surface EMG recordings from 16 muscles

(represented by 16 parallel solid lines) over one gait cycle consisting of both

labeled swing and stance phases. The 14 data analysis schemes can be

categorized into four data organization strategies corresponding to (B–E),

respectively, where the dashed lines indicate the selected muscles and time

segment for MMSE analyses.
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FIGURE 6 | The MMSE results for three subject groups (AD, TD, and

CP) using the data analysis schemes shown in (A) Figure 5B1 and (C)

Figure 5B2, respectively. Each curve represents an average of MMSE

curves over all subjects in the corresponding group, and error bars represent

the SDs. When the TD and AD groups are combined to be one control group,

the results were reproduced in (B,D), respectively, where the gray area

indicates the variation of MMSE results for the control subjects, with upper and

lower boundaries equivalent to ± 1 SD deviation from the mean curve. In (B),

the MMSE curve of CP8 was specifically plotted due to its distinct deviation

from those of other subjects (both control and other CP subjects).

curves from three subject groups simultaneously kept the same
decreasing trend when the scale factor increased. For each of the
left and the right leg shown in Figures 6A,C respectively, the
ANOVA reported a significant effect of scale factor (F = 139.402,
p < 0.001 for the left leg, and F = 84.486, p < 0.001 for the right
leg) on MSampEn values. However, neither significant effect of
the subject group (F = 0.720, p = 0.498 for the left leg, and
F = 1.860, p = 0.178 for the right leg) nor interaction between
two factors (F = 0.509, p = 0.906 for the left leg, and F = 1.616,
p = 0.094 for the right leg) was observed for any of two legs.

Specifically, no significant difference between the TD and AD
groups (p > 0.09) was always the case for the following analyses.
For this cause, the TD and AD groups were combined as an
integrated control group in order to simplify following analyses.
We also reproduced theMMSE results by (1) using a gray shading
area to indicate the MMSE variation (± 1 SD) for the control
group, and (2) individually plotting the MMSE curves of specific
CP children which distinctly deviated from the mean curves of
both control and CP groups, if applicable. This facilitated our
examination of possible differences in MMSE results between
CP and control groups and abnormalities of individual CP
children. TheMMSE results shown in Figures 6A,C, for example,
were reproduced in Figures 6B,D. Following the same way of
exhibiting MMSE results, the results derived from the other three
data organization strategies (the second, third and fourth) are
shown in Figures 7–9, respectively. All these experimental results
can be summarized as follows:

(1) For all analyses, the mean MMSE curves for both control
and CP groups showed the same decreasing trend, almost

FIGURE 7 | MMSE results for both the control and CP subject groups

using the data analysis schemes shown in (A) Figure 5C1, (B)

Figure 5C2, (C) Figure 5C3, and (D) Figure 5C4, respectively.

FIGURE 8 | MMSE results for both the control and CP subject groups

using the data analysis schemes shown in (A) Figure 5D1, (B)

Figure 5D2, (C) Figure 5D3, and (D) Figure 5D4, respectively.

approaching to zero at the scale factor 7. The ANOVA
revealed a significant effect of the scale factor on the MMSE
results (p < 0.001). More specifically, the MSampEn values
decreased rapidly at the scale factors from 3 to 5, for most
MMSE curves.

(2) The MMSE results derived from some data analysis schemes
displayed different mean curves for the control and CP
groups, as shown in Figures 7C, 8D, 9C, with statistical
significance at scale factors lower than 5 (p < 0.039).
More specifically, it can be found that the CP group had
significantly higher MSampEn values over the first four
scales in the Figure 7C (p = 0.003) and Figure 9C (p <

0.001), and significantly lowerMSampEn values over the first
four scales in the Figure 8D (p = 0.039), than the control
group.
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FIGURE 9 | MMSE results for both the control and CP subject groups

using the data analysis schemes shown in (A) Figure 5E1, (B)

Figure 5E2, (C) Figure 5E3, and (D) Figure 5E4, respectively.

(3) From MMSE results derived from some other data analysis
schemes, the CP group exhibited obviously larger variation
(SD) in MMSE results than the control group, although no
significant difference can be found between mean MMSE
curves of both groups, as shown in Figures 6D, 7A,D,
8A,C, 9A.

(4) Relatively abnormal patterns of MMSE curve, which
deviated from mean curves of both control and CP groups,
appeared in individual CP subjects (i.e., CP1-3 and CP8),
when some specific data analysis schemes were applied. All
these curves were specifically shown in Figures 6–9.

Discussion

Applying an entropy measure to multiple scales derived from
input data by the coarse-grained approach (Costa et al., 2002,
2005; Ahmed and Mandic, 2011, 2012; Morabito et al., 2012),
wavelet analysis (Rosso et al., 2001; Zhao et al., 2006; Istenic
et al., 2010) or EMD method (Hu and Liang, 2012; Zhang
et al., 2013), is the key feature of the multi-scale entropy
analysis, which has been successfully applied to identification
of different real-world biomedical time series in terms of their
dynamical complexity (Costa et al., 2002, 2005; Zhang et al.,
2013). The EMD is a recently developed method that is able
to generate multiple data scales (namely IMFs), to be used for
the subsequent MSE analysis (also termed EMD-based MSE,
or IMEn) with improved performance owing to fully data-
driven nature of the EMD (Hu and Liang, 2012; Zhang et al.,
2013). As its generalized multivariate extension, MEMD directly
operates on multivariate signals to produce the same number
of mode-aligned scales (i.e., multivariate IMFs) across multiple
data channels, thus facilitating the analysis of their properties at
the same scale. With the advanced MEMD, however, the MSE
methods given in Hu and Liang (2012) and Zhang et al. (2013)
still employed univariate SampEn to process individual channels.

By contrast, MSampEn was a recently introduced multivariate
extension of SampEn, which enables complexity estimates for
multi-channel data by additionally taking into account couplings
across multiple channels (Ahmed et al., 2011; Ahmed and
Mandic, 2011, 2012;Morabito et al., 2012;Wei et al., 2012). Given
both MEMD and MSampEn, a fully multivariate framework
for assessing dynamical complexity of multi-channel data over
different scales, termed MEMD-enhanced MMSE analysis, was
consequently proposed by Ahmed et al. (2012). Taking advantage
of its fully multivariate property, a novel application of the
MEMD-enhanced MMSE method to multivariate surface EMG
recordings from multiple muscles allows meaningful analysis
of muscle co-activation and coordination in term of non-linear
dynamic complexity. This study presents such application for
multiple lower-limb muscles during gait, with the purpose of
providing new insight into the mechanism of motor control
system during walking as well as characterizing abnormal gait in
children with CP.

The decreasing trend of MMSE results found for any subject
group and any applied data analysis scheme indicated that the
muscle co-activation complexity decreased when successively
removing the low-order IMFs (high-frequency components)
from the original surface EMG input. At the scale factors higher
than 5, the MSampEn value was likely to fall down to a low level
approximating to zero, demonstrating that the primary signal
components were distributed over first five IMFs after theMEMD
decomposition. This finding also confirmed necessity of only
obtaining the first six IMFs (scales) via MEMD implementation.

Many previous studies employed muscle synergy analysis
(Artoni et al., 2013; Li et al., 2013) and postural control analysis
(Mercer and Sahrmann, 1999; Sundermier et al., 2001), reporting
differences in gait pattern between typically developed children
and healthy adults. Such differences were probably attributed to
the development of gait maturity, that is, the gait patterns for
healthy adults are considered as being mature, whereas immature
gait patterns exist in children with typical development. In this
study, however, both TD and AD groups yielded consistent
MMSE curves across all designed data analysis schemes without
significant difference at any scale. Our finding truly accords with
the general understanding of “normal” gait in healthy controls
regardless of age. This may be explained by the reason that the
MEMD-enhanced MMSE method, at least the applied MMSE
approach including all 14 data analysis schemes, is very likely to
be insensitive to the development of gait maturity. On this basis,
it is straightforward to use the MMSE results derived from the
integrated control group as normal reference that helps to assess
abnormality in CP.

Following the data analysis schemes in Figures 5C3,E3, the
MMSE results in Figures 7C, 9C revealed that the CP group
had increased MSampEn at the first four scales with statistical
significance (p < 0.003), as compared with the control group.
Besides, it can also be found that Figures 7A, 9A, corresponding
to data analysis schemes in Figures 5C1,E1, exhibited relatively
higher MSampEn values at the first four scales for the CP group
than the control group, despite of no statistical significance (p =

0.320 in Figure 7A and p = 0.209 in Figure 9A). In these
cases, especially thigh muscles of both legs were involved to
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examine their activity over the time of stance phase of a gait cycle.
The increased complexity of these muscles reflects abnormally
high correlation among them, which can be attributed into
motor control impairments in the CP group. This might also
be a direct reflection of substantial over-activation, abnormal
synchronization and spasticity in the examined combination
of muscles, as a result of brain injury following CP. It has
been reported from the literature (Crenna, 1998; Lauer et al.,
2007; Bar-On et al., 2014) that increased recruitment of active
motor units and sustained motor unit firing exist in over-
activation of spastic muscles. In this regard, the MMSE results
reported in Figures 7C, 9C revealed that the prevalence of
thigh muscle spasticity in the CP children dominantly affected
their gait patterns during the stance phase of the ipsilateral
leg, and that such impairment was much severer on the right
side than the left side by comparing results in Figure 7C with
Figure 7A and Figure 9C with Figure 9A. This was agreed
with the clinical diagnoses of right hemiparesis for almost
half of the CP group, while others were children with spastic
diplegia.

By contrast, the MMSE results in Figure 8D reported that
the CP group had significantly lower MSampEn values at
the first four scales than the control group (p = 0.039).
Its corresponding data analysis scheme shown in Figure 5D4

examined the activities of three lower leg muscles of the right leg
during the swing phase of the ipsilateral leg, which was assumed
to contribute to posture stabilization and regulation other
than direct gait formation. The reduced muscle coactivation
complexity in CP children can be explained by two possible
reasons. One is function deficits in individual muscles as a result
of muscle paralysis with insufficient motor output (Gormley,
2001). The other is loss of muscle couplings. Specifically, this
finding shows a loss of dynamical neuromuscular responsiveness
to the external and environmental conditions (e.g., interference
to posture balance), which supports the more general concept of
multi-scale complexity loss with disease (Costa et al., 2002, 2005).

Under some data analysis schemes, although no significant
difference was found when comparing the mean MMSE curves
from both the control and CP groups, much larger variation
emerged in the complexity measures over the first four scales
for the CP group than the control group (see Figures 6D, 7A,D,
8A,C, 9A). Due to the factors discussed above, both increased
and decreased complexity might be found among individual
CP children, which led to large variation of their resultant
MMSE curves. This finding also demonstrates diversity of motor
impairments following CP (Rosenbaum et al., 2007).

Besides the pooled data analysis of gait abnormality in CP
population, the possibility of assessing the gait pattern based on
MMSE results for individual CP subjects can be demonstrated as
well. The factors that resulted in abnormal MMSE patterns in the
CP population can also be used to explain the MMSE results for
specific subject with CP. For example, three CP children, CP1–
CP3, had extraordinarily increased complexity in Figures 7A,C,
9A,C. This can be explained by over-activation of the leg muscles
induced by the gait, as a result of prevalence of muscle spasticity.
The MMSE results for these three subjects were consistent with
their clinical diagnosis of spastic diplegia with relatively high

levels of GMFCS (level III for the CP2 and CP3, level II for
the CP1), demonstrating the severest motor impairments among
all of the tested CP children. Another example is associated
with the CP8, who presented a representatively low and flat
MMSE curve over all scales in Figures 6B, 7A, indicating
reduced couplings and coordination of the muscles on the
left side, especially during the stance phase. This was agreed
with the clinical observation of leg muscle paralysis for the
subject CP8.

By comparing theMMSE results between 14 used data analysis
schemes, it can be found that more distinct difference between
subject groups was likely to emerge when the analyses were
performed within a specific gait phase (see Figures 7–9) than
the entire gait cycle (see Figure 6). These findings accord with
the biomechanical principle that different muscles periodically
activate during specific phases in a gait cycle to coordinate gait
(Frigo and Crenna, 2009). Therefore, examination of muscle
coactivation according to gait phases is a practical way to discern
specific gait abnormalities. In this regard, further dividing a gait
cycle into four phases, namely stance, heel-off, swing, and heel-
strike (Pappas et al., 2001), would help the quantitative analysis
of gait in CP, which constitutes our future work.

Also, it should be noteworthy that the application of MMSE
method in this study was just a global analysis of a group of
muscles in terms of their co-activation complexity over multiple
scales. We acknowledge that there are an enormous number
of possible combinations of muscles/channels for the MMSE
analyses, where the 14 data analysis schemes were selected for
a preliminary and basic investigation. This remains a limitation
for the current study. Moreover, pooled data analysis of CP
children and healthy control subjects was performed to reveal
the difference in muscle co-activation complexity between the
CP and control groups during walking. The significance at an
individual subject level, however, was not demonstrated. The
possible evolution of the MMSE method used in this study
toward clinical diagnosis or impairment assessment requires a
larger study with many more children with CP to quantitatively
assess differences between individual subjects.

In conclusion, this study presents dynamical complexity
analysis of muscle coactivation during gait by applying
a recently developed MEMD-enhanced MMSE method on
surface EMG signals bilaterally acquired from 16 lower
extremity muscles. The MMSE results were consistent between
TD children and healthy adults in control group. On the
contrary, various patterns of MMSE curve, which were
different from those in the control group, can be observed
in CP group. There appears to be diverse neuropathological
processes in CP that may affect the complexity of muscle
coactivation and coordination during gait. The abnormal
complexity patterns emerging in CP group can be attributed
to different factors such as motor control impairments, loss
of muscle couplings, and spasticity or paralysis in individual
muscles. The methodology presented in this study provides
a supplementary way to quantitatively assess the motor
impairments of CP; and it helps to better understand motor
control mechanism alterations as well as neuropathology of the
disease.
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