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Phonological awareness is essential for reading, and is common to all language systems,
including alphabetic languages and Japanese. This cognitive factor develops during
childhood, and is thought to be associated with shifts in brain activity. However, the
nature of this neurobiological developmental shift is unclear for speakers of Japanese,
which is not an alphabetical language. The present study aimed to reveal a shift
in brain functions for processing phonological information in native-born Japanese
children. We conducted a phonological awareness task and examined hemodynamic
activity in 103 children aged 7–12 years. While younger children made mistakes and
needed more time to sort phonological information in reverse order, older children
completed the task quickly and accurately. Additionally, younger children exhibited
increased activity in the bilateral dorsolateral prefrontal cortex (DLPFC), which may be
evidence of immature phonological processing skills. Older children exhibited dominant
activity in the left compared with the right DLPFC, suggesting that they had already
acquired phonological processing skills. We also found significant effects of age and
lateralized activity on behavioral performance. During earlier stages of development, the
degree of left lateralization appears to have a smaller effect on behavioral performance.
Conversely, in later stages of development, the degree of left lateralization appears to
have a stronger influence on behavioral performance. These initial findings regarding a
neurobiological developmental shift in Japanese speakers suggest that common brain
regions play a critical role in the development of phonological processing skills among
different languages systems, such as Japanese and alphabetical languages.

Keywords: phonological awareness, development, dorsolateral prefrontal cortex, near-infrared spectroscopy,
Japanese language

Introduction

The ability to read is vital to modern life. The action of reading words requires several
abilities, including phonological awareness, vocabulary, naming speed, and visual perception (e.g.,
Cunningham et al., 1990; Carver, 1992). Of these, phonological awareness is an important predictor
of reading performance in the late stage of child development (Liberman et al., 1974). Phonological
awareness refers to the ability to detect phonological structures in spoken or mentally recalled
sounds and to discriminate between these and/or minimal units of the phoneme (Yopp, 1992;
Torgesen et al., 1997). This awareness normally arises in the early stage of child development
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and continues to improve gradually during childhood. Deficits
in phonological awareness are often seen in children with
developmental dyslexia who have severe difficulties reading and
writing (Liberman, 1973; Chiappe et al., 2001; Ramus, 2001).
Atypical brain functions are thought to underlie such deficits in
this population (Paulesu et al., 2001; Temple et al., 2001; Shaywitz
et al., 2002).

Several brain regions are thought to play a role in the
processing of phonological information, which are revealed
by recent neurophysiological studies using functional magnetic
resonance imaging (fMRI) and electroencephalogram (EEG),
(e.g., Bitan et al., 2007; Khateb et al., 2007; Kovelman et al.,
2012). These include the left inferior frontal gyrus, superior
temporal gyrus, left temporoparietal lobe, and fusiform gyrus
(Temple et al., 2001; Shaywitz et al., 2002; Hoeft et al., 2006).
While previous studies have reported on the involvement of
these regions, the specific nature of this activity appears to
be dependent on the component of the phonological process.
For example, the left angular gyrus performs grapheme-
to-phoneme transformations (Bitan et al., 2007), while the
left superior temporal gyrus is implicated in constructing
phonological representations from serial auditory information
(Buchsbaum et al., 2001). The left dorsolateral prefrontal cortex
(DLPFC), including the inferior frontal gyrus, stores articulatory
representations (Zatorre et al., 1992, 1996) and is thought to
play a critical role in the development of phonological awareness
(Booth et al., 2004). The left DLPFC shows hyperactivity during
phonological awareness tasks, even in very young children (e.g.,
∼5 years of age, Kovelman et al., 2012) and the intensity of
left DLPFC activity is related to phonological processing skills
during childhood (Turkeltaub et al., 2003). The above findings
are mostly taken from studies of alphabetic languages. Thus, it
is not clear whether the same brain functions are involved in the
development of phonological awareness in the Japanese linguistic
system, which is markedly different from that of alphabetical
languages. Of these regions, the left DLPFC needs first to be
considered in Japanese children because this region is responsible
for development of phonological awareness (Turkeltaub et al.,
2003; Booth et al., 2004; Kovelman et al., 2012). However, DLPFC
also contributes to several cognitive functions such as working
memory, set-shifting, and inhibition (Barbey et al., 2013; Forbes
et al., 2014) so that we have to rule out other cognitive functions
except for phonological awareness when we measure activity of
DLPFC. Here, we introduce experimental design of cognitive
subtraction. For one instance, we subtract brain activity on tasks
for phonological storing (i.e., baseline task) from the activity
on other tasks for phonological storing and manipulations (i.e.,
experimental task), which enables us to extract the activity for
phonological manipulation and to minimize the effect of other
cognitive functions. Although this design has several limitations
such as ignorance of interaction effects (e.g., Friston et al.,
1996) and we should interpret results carefully, we can minimize
number of experimental conditions and evaluate brain activity
in young children without excessive mental and/or cognitive
stresses.

The Japanese language has a unique linguistic system with
two kinds of characters, kana and kanji. While kanji (i.e.,

Chinese characters) are ideograms, kana are phonograms which
serve as a base for fundamental characters in Japanese. The
phonological units represented by kana are moras, which usually
consist of a single vowel with/without a single consonant (V
or CV). Kana has an extremely straightforward correspondence
between graphemes and phonological units, such that a
single kana character denotes a single syllable (i.e., mora,
Wydell and Butterworth, 1999). In native Japanese speakers,
phonological awareness develops in early childhood and becomes
refined during middle childhood (Hara, 2001). A neuroimaging
study of Japanese adults revealed that brain activation during
phonological processing is dependent on the stimulus modality,
for example, the bilateral superior temporal sulci activate in
response to auditory stimuli and the bilateral temporoparietal
lobes activate in response to visual stimuli (Seki et al., 2004).
However, few studies have focused on the development of neural
mechanisms underlying phonological awareness in Japanese
children. Thus, it is unclear whether processing of phonological
information in Japanese activates the same brain regions as for
alphabetic languages during childhood.

The present study aimed to reveal developmental changes
in the neural activity underlying phonological processing
in Japanese children. Previous studies have used several
phonological processing tasks such as rhyming, phoneme
identification, segmentation, blending, and manipulation (Yopp,
1992, 1995; Stahl and Murray, 1994). We adopted the mora
reversal task (Seki et al., 2008), which takes the specific
characteristics of the Japanese language into account. The task
requires participants to listen to one word and then to say
the morae of the word in reverse order, meaning that the
task requires a high level of phonological processing skill. We
expected that the demanding nature of the task would be ideal
for revealing developmental changes in ability and corresponding
neural changes. We used near-infrared spectroscopy (NIRS) to
measure brain activity in Japanese children during the task, as this
technique is suitable for both young participants (Kita et al., 2011;
Wigal et al., 2012; Kikuchi et al., 2013) and auditory experiments
because of minimal noise (unlike other techniques such as fMRI).
NIRS is also less affected by movement artifact (Kita et al.,
2011) and useful for measuring brain activity during the tasks
in which the subjects are required to respond orally because
young children tend to move when they speak. Additionally,
we can place NIRS probes on children’s heads so easily and
quickly that we can sample large number of children and reveal
developmental shifts based on the reliable sample size. Given
our task and measuring system, we hypothesized that the left
DLPFC would play an important role in phonological processing
in Japanese children, similar to that seen for alphabetic languages.

Materials and Methods

Participants
A total of 103 right-handed native Japanese children (age
range = 7.0–12.8 years, 52 females and 51 males) from a local
public school were paid for their participation. We placed them
into three age groups (Low, 7–8 years: Middle, 9–10 years: High,

Frontiers in Human Neuroscience | www.frontiersin.org 2 July 2015 | Volume 9 | Article 417

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Goto et al. Frontal lateralization for phonological processing

11–12 years). We assessed verbal and non-verbal intellectual
abilities using the number recall test (Kaufman Assessment
Battery for Children, Matsubara et al., 1993) and Raven’s Colored
Progressive Matrices Test (Raven, 1976). The scores produced by
the children in the three groups were within the normal range and
consistent within the groups (Table 1). All participants were free
from neurological and psychiatric disorders, according to reports
from their parents. Written informed consent was obtained from
all participants and their parents prior to the experiments. The
research protocol was approved by the ethics committee at the
National Center of Neurology and Psychiatry (approval number
20-8-JI10).

Stimuli and Tasks
For auditory word stimuli we used 20 concrete nouns with a
length of three morae (about 1 s). The nouns had degrees of
imaginability greater than 5.8 out of 7.0 (Tokyo Metropolitan
Institute of Gerontology and NTT Communication Science
Laboratories, 2005), indicating that Japanese children could easily
understand all of the words. We digitally recorded the stimuli,
which were spoken by a female native Japanese speaker. The peak
of the sound intensity was equalized across stimuli using Sound
It! Basic for Windows (Internet Co. Ltd. Osaka, Japan; total root
mean squares ranged between -10.82 and −15.52 dB).

We conducted a mora reversal task (see, Figure 1A)
using C++ Builder XE2 (Embarcadero Technologies Inc. San
Francisco, CA, USA). In the task, each participant was asked to
respond aloud to a stimulus in either a “Repeat” or “Reverse”
condition. In the “Repeat” condition, the participant was required
to simply repeat the stimulus (e.g., ta-i-ko to ta-i-ko), and in the
“Reverse” condition, the participant was instructed to repeat the
series of morae corresponding to the stimulus in reverse order
(e.g., ta-i-ko to ko-i-ta). As noted in “Introduction” Section, we
used cognitive subtraction with these two conditions and this
experimental contrasts in these two conditions enabled us to
assess brain activity associated with phonological manipulation.
Additionally, we were able to remove irrelevant factors, such
as oral responses or simple auditory perception, by setting the
“Repeat” condition as the baseline.

TABLE 1 | Participant characteristics.

Group Low Middle High P-value

N 42 35 26

(Male : Female) (19:23) (20:15) (13:13) 0.20

Age (month) 95.0 ± 7.0 117.4 ± 6.6 141.4 ± 7.1

(84–106) (108–129) (132–153)

RCPM 30.7 ± 2.5 30.5 ± 3.5 31.6 ± 2.0 0.29

(26–35) (21–35) (26–36)

K-ABC

Number recall (SS) 11.3 ± 2.6 11.8 ± 2.0 12.3 ± 2.8 0.31

(7–19) (7–16) (7–19)

Participant characteristics with means ± SD (range). These variables were
compared among the three groups using a chi-square test for the sex ratio, and
one-way analyses of variance (ANOVA) for Raven’s Coloured Progressive Matrices
(RCPM) and for Kaufman Assessment Battery for Children (K-ABC) number recall
Scaled scores (SS).

FIGURE 1 | (A) An example of the behavioral task. Children were required to
simply repeat the stimulus in the “Repeat” condition, and to repeat a series of
morae corresponding to the stimulus in the “Reverse” condition. (B) Time
course of the task and near-infrared spectroscopy (NIRS) measurements. The
task was divided into three sections: Repeat section (0–40 s: four trials),
Reverse section (40–100 s: six trials), and Repeat section (100–160 s). NIRS
measurements were performed throughout the three sections, and these data
were analyzed with baseline corrections from two baseline data periods to
extract hemodynamic activity for phonological processing.

The stimuli were presented via the speaker of a laptop
computer at about 60 db with a stimulus onset asynchrony (SOA)
of 10 s. There were 18 trials in total, and the first four and the
last eight trials were performed under the “Repeat” condition
(“Repeat” section) while the remaining trials were performed
under the “Reverse” condition (“Reverse” section, Figure 1B).
Before the task, the participants completed practice trials for the
“Repeat” and “Reverse” conditions using two of the stimuli. The
other 18 stimuli were presented in random order during the
task. Participants were informed of whether a given trial was a
“Repeat” or “Reverse” trial by a visual word cue presented on the
screen for 2 s before the first trial in each section.

Measurements of Behavioral Data
Behavioral data were recorded using an IC recorder (HM-200,
Sanyo Inc., Osaka, Japan). Response times (RTs) were defined
as the duration between the stimuli onset and the end of the
response. The offsets of the responses were identified using Sound
It! Basic 6.0 for Windows (Internet Co. Ltd. Osaka, Japan).
We performed a univariate analysis of variance (ANOVA) with
Sheffer’s multiple-comparison for groups (Low, Middle, High)
and conditions (Repeat, Reverse) in the mean correct RT. The
ANOVA was conducted on the number of correct responses for
groups.

Measurements with Near-Infrared
Spectroscopy (NIRS)
Recordings
We recorded changes in the concentration of oxygenated
hemoglobin (oxy-Hb) at 16 locations on the forehead with
a temporal resolution of 650 ms (OEG-16 Spectratech Inc.,
Yokohama, Japan). In our system, near-infrared laser diodes
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(emitter probes) emitted two wavelengths (∼770 and 840 nm)
and the reemitted lights were detected on avalanche photodiodes
(detector probes) located 3.0 cm apart from each emitter probe
(Kita et al., 2011; Tsujimoto et al., 2013). Six emitter and detector
probes were arranged in a 6 × 2 matrix. The center point of the
bottom of the matrix was placed at Fpz, and the left and right
corners of the bottom were located approximately at F7 and F8,
respectively, in accordance with the international 10–10 system
(Figure 2). Hence, we were able to obtain data from 16 locations
between the emitter and detector probes.

Filtering
The NIRS data were low pass filtered offline at 0.05 Hz using a
fast Fourier transform (FFT) to remove artifacts caused by minor
movements of the participant (Kita et al., 2011; Makizako et al.,
2013) because the NIRS data in the present setting was almost
sustained across a block (i.e., 60 s) and was not synchronized
to each stimulus (Supplementary Figure S1). We then carried
out independent component analysis (ICA) for additional artifact
rejection.

Independent component analysis has been reported to be
helpful in removing artifacts from physiological data [e.g.,
electroencephalography (EEG), Delorme et al., 2007]. Using
ICA, data can be decomposed into statistically independent
components that are linearly related to the original data, and
after analysis and removal of the artifacts, the original data
can be linearly restored from the components. If all artificial
components are excluded, the restored data become artifact-free.
Recently, ICA has been applied to NIRS data (Kohno et al., 2007;
Medvedev et al., 2008).

The changes in oxy-Hb measured by NIRS can be
contaminated by the skin blood flow (Takahashi et al., 2011). Skin
blood flow is easily affected by activity in the automatic nervous

FIGURE 2 | Location of emitter (gray) and detector (black) probes and
channels. Channel 9 was placed on Fpz (midpoint between Fp1 and Fp2),
the probe at the bottom left corner was placed around F7, and the probe at
the bottom right corner was placed around F8, in accordance with the
international 10–10 system (for more information see Kita et al., 2011;
Tsujimoto et al., 2013). We analyzed the averaged oxy-Hb signals from the
channels at the left and right frontal areas (R-ROI: 1, 2, 3, 4 ch, blue rhombus,
L-ROI: 13, 14, 15, 16 ch, red rhombus).

system, in which spatial distribution is not localized because of
zone of autonomic innervation (Kohno et al., 2007). Conversely,
we considered activity in the frontal area to be localized during
phonological manipulation (Kovelman et al., 2012). Hence, we
were able to discriminate between the components associated
with skin blood flow and cortical activation based on the spatial
distribution. In this study, NIRS data were decomposed to
16 components using the FastICA R package (Marchini et al.,
2007), and components associated with skin blood flow, i.e.,
characterized by an overall increase across all channels (Kohno
et al., 2007), were excluded by visual inspection. The number of
excluded components was 1–3 component(s) in each participant.
We used the restored data for further analysis.

Analysis
We used linear fitting to make baseline corrections based on
two baseline intervals: the mean across the 10-s-period before
the “Reverse” section, and the mean across the final 10-s-
period of the second “Repeat” section (Figure 1B). To assess the
laterality of activity during the “Reverse” section, we selected the
averaged values in the channels corresponding to the right- and
left- DLPFC as the regions of interest [right region of interest
(R-ROI): 1-, 2-, 3-, and 4-ch; left region of interest (L-ROI):
13-, 14-, 15-, and 16-ch, Figure 2]. Moreover, we defined the L–R
index as the averaged value of L-ROI minus that of R-ROI to
simply assess the degree to laterality. For the averaged ROI values,
we conducted a two-way mixed factorial ANOVA with Sheffer’s
multiple-comparison including groups (Low, Middle, High) and
locations (R-ROI, L-ROI).

We assumed that developmental trajectory of left-
lateralization is different among individuals, and the
individual difference influenced the maturation of phonological
manipulation. Hence, the hierarchical regression analysis (Cohen
et al., 2003) was conducted on mean correct RT including
age, L–R index, and an interaction between these variable as
predictors. All independent variables were centered on their
means. In the first step, age (month) and the L–R index were
entered in the model. In the second step, the interaction
between age and the L–R index was added. When the interaction
was significant, we investigated further using simple slope
analyses: slopes for the regression analyses were computed
at 1 SD above and below the mean (Aiken and West, 1991).
Data processing and statistical analyses were performed with
R software (R Development Core Team, 2005) and SPSS 19.0
(SPSS. Japan Inc., Tokyo, Japan).

Results

Behavioral Results
The mean correct RTs and the number of correct responses
in each age group are illustrated in Table 2. Regarding
to mean correct RTs, we found significant main effect
of groups and conditions, F(2,100) = 7.65, p < 0.001;
F(1,100) = 107.34, p < 0.01 and a significant interaction between
these variables, F(2,100) = 9.15, p < 0.001. A simple effect
analysis revealed that a main effect of groups was found in
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TABLE 2 | Behavioral performance.

Group Comparison among groups

Low Middle High Post hoc

Response time (ms) Repeat 1817 ± 204 1926 ± 255 1860 ± 245 Low = Middle = High

Reverse 3810 ± 1437 3203 ± 1066 2529 ± 1118 Low > Middle > High

Correct response (number) Repeat 12 12 12 Low = Middle = High

Reverse 4.97 ± 1.38 5.63 ± 0.77 5.80 ± 0.49 Low < Middle = High

Behavioral performance with mean scores ± SD. These variables were compared using a one-way analysis of variance (ANOVA) with Bonferroni’s multiple-comparisons.

FIGURE 3 | Grand averaged waveforms of all channels for the three groups, generated using a 70 s period starting 10 s before the “Reverse” section.

Reverse section, where the mean correct RT was longer in
the Low compared with the Middle group and we found the
shortest RT in the High group (p < 0.05). On the other
hand, there was no significant effect of group in Repeat
section.

In terms of the number of correct response all participants
correctly respond for each stimulus in Repeat section (n = 12,
i.e., accuracy = 100%). In the Reverse section, ANOVA showed
a significant main effect of groups, F(2,100) = 6.51, p = 0.002.
Post hoc tests revealed that the number of correct responses was
larger in the High and Middle groups than in the Low group
(p < 0.05).

NIRS Results
Figure 3 represents oxy-Hb waveforms of all channels for the
70 s period starting 10 s before the “Reverse” section. Figure 4
shows the oxy-Hbmaps and the oxy-HB waveforms at L-ROI and
R-ROI. We observed left lateralized activation in the Middle and
High groups but not in the Low group. In terms of the waveforms
of the ROIs, we found that the increase in oxy-Hb signals was
larger at the L-ROI than the R-ROI in the Middle and High
groups.

The two-way ANOVA revealed a significant interaction
between group and location, F(2,100) = 5.26, p = 0.01. We
did not find a difference between the oxy-Hb signals in the
L-ROI and R-ROI in the Low group, F(1,41) = 2.54, p = 0.12,
whereas the signals were significantly larger at the L-ROI than the
R-ROI in the Middle and High groups, F(1,34) = 5.88, p = 0.02,
F(1,25)= 4.36, p= 0.04 (Figure 5). We found no significant main
effects.

To examine the possibility that the error-related activity
contaminated previous results, we excluded 18 participants (Low:
n = 11, Middle: n = 4, High: n = 3) and performed statistical
analysis. Consistent with the previous analysis, the two-way
ANOVA revealed a significant interaction between group and
location [F(2,82) = 4.28, p < 0.05]. We also revealed the
significant differences between L-ROI and R-ROI in Middle and
High groups (p < 0.05) and no significant difference in Low
groups (p = 0.26). In addition, we further performed a two-way
mixed factorial ANOVA including accuracy (participants with all
corrects, ones with some errors) and locations (R-ROI, L-ROI)
in Low groups. There was no significant main effect of accuracy
[F(1,40) = 0.02, p = 0.90]. These results indicated that number of
error trials did not affect the NIRS results.
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FIGURE 4 | NIRS data from the three groups. (A) Topographies of
hemodynamic activity constructed using averaged data for the three groups.
(B) Grand averaged waveforms for the three groups at each ROI, generated
using a 70 s period starting 10 s before the “Reverse” section.

FIGURE 5 | Means and SE of oxy-Hb signals during last 10 s of the
‘Reverse’ section at each ROI. The R-ROI and L-ROI were set to
correspond to the right DLPFC and left DLPFC, respectively. ∗p < 0.05.

Hierarchical Multiple Regression Analysis
The results of the hierarchical multiple regression analyses are
shown in Table 3. The model was significant in the first step,
F(2,100) = 11.08, p < 0.001. In the second step, the addition
of the interaction between the L–R index and age improved

predictive power, F(3,99) = 10.19, p < 0.001. Interestingly, we
found a significant interaction between age and the L–R index in
the second step (β = −0.24, p = 0.009). Simple slopes analyses
revealed that age significantly predicted the mean correct RT at
1 SD above the mean of the L–R index (β=−0.74, p < 0.001)
and age did not significantly predict the mean correct RT at 1
SD below the mean of the L–R index (β=−0.18, p = 0.179).
These results indicate that children with left-lateralized brain
activity tend to show improvements in behavioral performance
as they age, while this improvement is less likely in children with
non-lateralized activity.

Discussion

In the present study, we conducted the mora reversal
task with native-born Japanese children aged 7–12. We
examined developmental shifts in brain activity associated
with phonological processing using the NIRS system. This
system is well suited for neuroimaging with an auditory-vocal
experimental paradigm and a large sample population of
children. While younger children made more mistakes and
needed more time to sort phonological information in reverse
order, older children completed the task quickly and accurately.
Neuroimaging data revealed the children in the Middle and
High groups to have increased brain activity in the left compared
with the right DLPFC during the task, although this was not
observed in the children in the Low group. Additionally, we
found significant effects of age and lateralized activity on
behavioral performance. During the early stage of development,
the degree of left lateralization had a smaller effect on behavioral
performance. However, the degree of left lateralization had a
stronger influence on behavioral performance in the late stage
of development. Our findings suggest that a common brain
region plays a critical role in the development of phonological
processing among different languages systems, including
Japanese and alphabetic languages.

We found that behavioral performance on the mora reversal
task gradually improved with age, as indicated by decreasing RTs
and rising accuracy. This indicates that phonological awareness
continues to grow until at least age 12 in Japanese speakers. The
phonological awareness task is thought to be hierarchical, in that

TABLE 3 | Hierarchical multiple regression analysis predicting behavioral
performance.

Step

1 2

Independent variables β β

Age (months) −0.44∗∗ −0.46∗∗

L–R index −0.10n s −0.15n s

Age × L–R index −0.24∗∗

R2 −0.18∗∗ −0.24∗∗

�R2 −0.18∗∗ −0.06∗∗

Adj R2 −0.17∗∗ −0.21∗∗

ns, not significant; ∗∗p < 0.01.
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it can measure behavior on multiple levels, from easy to difficult
(Treiman and Zukowski, 1991; Yopp and Yopp, 2000). Children
in early childhood may only be able to engage in rhyming or
identification tasks (the lower tier of the hierarchy), but they
gradually grow and acquire skills until they can complete more
difficult tasks, such as blending, deletion, and manipulating.
The reversal task in the present study is located high in the
hierarchy of difficulty because it requires the child to segment
phonological information from an auditory stimulus, manipulate
the information by reversing the order, and finally blend the
information together. Using this higher-level task, we were able to
clarify the maturational development of phonological awareness
in Japanese children, and use the behavioral evidence to examine
developmental shifts in brain activity underlying phonological
processing.

We found that developmental changes in brain activity, as
indicated by activation during the mora reversal task, became
more left-lateralized as the development of phonological
awareness increased. Previous studies have reported
developmental shifts in brain activity for cognitive tasks
like verbal fluency, specifically, the distributions range from
diffuse to focal as children mature (Gaillard et al., 2000; Durston
et al., 2006). The maturation of cognitive ability appears to
be characterized by a diminishing of irrelevant brain activity
while relevant activity remains. The left DLPFC, the focal
region identified in the present study, plays a pivotal role in
phonological awareness from the early stages of the development
(Kovelman et al., 2012) and the degree of activity in the left
DLPFC has been correlated with phonological processing skills
during childhood (Turkeltaub et al., 2003). As these associations
are evident only on the left side, we consider left-lateralized
brain activity in the present task to reflect a maturational pattern
of brain activity underlying the development of phonological
awareness in Japanese speakers.

It appears that left-lateralization of brain activity affects
behavioral performance differently depending on a child’s
age. Specifically, the influence of left-lateralization is blurred
in younger children, while it is clearly apparent in older
children. This developmental shift of the influence of left-
lateralization is thought to be closely linked to the linguistic
characteristics of the Japanese language. In Japanese kana, there
is a direct correspondence between phonology and orthography,
which means that one character strictly corresponds to one
syllable (Wydell and Butterworth, 1999; Seki et al., 2004). This
correspondence enables easy back-and-forth transformations
between phonemes and graphemes. Thus, it is possible that
Japanese speakers can easily access both auditory and visual
information even if phonological tasks are conducted with
only auditory stimuli. Additionally, some children may have
used a mental representation of a kana location table while
completing the present task. A kana location table is used for
language learning, and consists of kana characters placed in a
grid with 5 (vowels) by 10 (consonants). It is easy to locate
the kana characters on the table, and auditory information can
be transformed into visual information rapidly and accurately.
Young Japanese children are especially familiar with the kana
location table because it is often used for acquisition of kana in

early elementary grades. Seki et al. (2004) reported that some
Japanese participants used the table during a phonological task.
It is possible that with the advantages of direct correspondence
and the location table, some participants may have been able to
perform the present task using both auditory (i.e., phoneme) and
visuospatial information (i.e., grapheme) despite being unable to
complete the task with only phonological information.

Previous neuroimaging studies have revealed that the right
DLPFC, including the inferior frontal cortex, is involved in
visuospatial processing (McCarthy et al., 1996; Owen et al., 1998;
Smith and Jonides, 1999). Hoshi et al. (2000) also reported
that right DLPFC are active when the normal participants
transformed auditory information into visuospatial information
in the backward digit span task, which is similar to the
present task. In the present study, the younger participants
may have used visuospatial in addition to phonological
information, and thus exhibited activation in the bilateral
DLPFC. In contrast, older participants may have relied only
on phonological information to accomplish the task, and
thus did activate the right DLPFC only to a lesser extent than left
DLPFC. This lateralization appears to reflect a neurobiological
change underlying the development of phonological processing
skills specific to the Japanese language.

In the present study, we used the NIRS system to examine
neurobiological characteristics in a population of young children
who generally are not comfortable in restrictive environments
such as a MRI scanner. Despite this advantage, the NIRS system
has some technical limitations. We encountered difficulty when
attempting to measure brain activity in deep areas involved in
phonological function, such as the basal ganglia (Kita et al.,
2013) because the system employs near infrared lights, and is
thus suitable for measuring activity in cortex only. In addition,
activity at ROIs is not only associated with activity of DLPFC
and the inferior frontal cortex. In one study with adults, activities
of these regions were evaluated independently (Tupak et al.,
2012), whereas we could not discriminate these regions because
of head size of children. Since left DLPFC has a pivotal role
of the phonological manipulation (Kovelman et al., 2012), we
considered that our NIRS results were mainly associated with left
DLPFC rather than left IFG. We also focused only on the frontal
area, as it is a critical brain region for phonological processing,
and did not discuss connectivity between the DLPFC and other
areas. These technical limitations could be addressed in future
research using NIRS systems with more channels than the one
used in our study (e.g., Pu et al., 2013). Another limitation is
experimental design. While we introduced cognitive subtraction
design for extracting brain activity for phonological manipulation
in young children, we cannot entirely exclude the effects of other
cognitive functions. The present NIRS data, which were acquired
by subtracting the activities on “Repeat” condition from those
on “Reverse” condition, might include interaction effects of both
conditions (e.g., Friston et al., 1996) and we should interpret
the present results carefully. Future research could employ
fMRI with careful experimental design such as factorial design,
considering both participant age (i.e., young children), and task
characteristics (i.e., auditory stimuli and oral response). This
may reveal more detail regarding the neurobiological changes
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underlying phonological processing in Japanese speakers. We
could not conclude the relationship between left-lateralized
brain activity and the maturation of phonological manipulation
because of cross-sectional data. Especially, the present study has
difficulty to specify a direction of causal relationships between
behavioral performance and lateralized brain activity varied with
age. Further study is expected with longitudinal data of Japanese
population to confirm the present results. We should also, using
sophisticated experimental settings, examine whether or not the
children show different brain activity when they do not have any
differences of behavioral performance, which helps us specify the
direction of the causal relationships.

Conclusion

We measured hemodynamic activity in a population of Japanese
children, and observed a neurobiological change during the
course of development. Younger children had increased activity
in the bilateral DLPFC, which may reflect immature phonological
processing skills. Conversely, older children showed dominant
activity in the left DLPFC compared with the right DLPFC,
which suggests that they had already acquired phonological
processing skills. Thus, it appears that brain activity in the
frontal area is lateralized during the development of phonological
processing in Japanese speakers. These initial findings are
useful for discussions of the neurobiological characteristics
of children with developmental dyslexia, who are too young
to undergo fMRI studies. We anticipate that our results

will lead to a better understanding of dyslexia in Japanese
speakers.
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FIGURE 1 | NIRS waveforms of different filter setting (representative data).
Red line shows waveforms low-pass filtered at 0.5 Hz and black line shows
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