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Working memory (WM) is a key executive function for operating aircraft, especially when

pilots have to recall series of air traffic control instructions. There is a need to implement

tools to monitor WM as its limitation may jeopardize flight safety. An innovative way to

address this issue is to adopt a Neuroergonomics approach that merges knowledge and

methods from Human Factors, System Engineering, and Neuroscience. A challenge of

great importance for Neuroergonomics is to implement efficient brain imaging techniques

to measure the brain at work and to design Brain Computer Interfaces (BCI). We used

functional near infrared spectroscopy as it has been already successfully tested to

measure WM capacity in complex environment with air traffic controllers (ATC), pilots,

or unmanned vehicle operators. However, the extraction of relevant features from the

raw signal in ecological environment is still a critical issue due to the complexity of

implementing real-time signal processing techniques without a priori knowledge. We

proposed to implement the Kalman filtering approach, a signal processing technique that

is efficient when the dynamics of the signal can be modeled. We based our approach

on the Boynton model of hemodynamic response. We conducted a first experiment with

nine participants involving a basic WM task to estimate the noise covariances of the

Kalman filter. We then conducted a more ecological experiment in our flight simulator

with 18 pilots who interacted with ATC instructions (two levels of difficulty). The data

was processed with the same Kalman filter settings implemented in the first experiment.

This filter was benchmarked with a classical pass-band IIR filter and a Moving Average

Convergence Divergence (MACD) filter. Statistical analysis revealed that the Kalman filter

was the most efficient to separate the two levels of load, by increasing the observed

effect size in prefrontal areas involved in WM. In addition, the use of a Kalman filter

increased the performance of the classification of WM levels based on brain signal. The

results suggest that Kalman filter is a suitable approach for real-time improvement of near

infrared spectroscopy signal in ecological situations and the development of BCI.
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1. INTRODUCTION

The development of passive Brain Computer Interfaces (BCI) is
a key topic of research in Neuroergonomics. In contrast with
active ones, Passive BCI (Cutrell and Tan, 2008) allows the
use of unintentionally produced brain activity to derive various
cognitive states (Blankertz et al., 2010) such as excessive mental
workload. Such states inference provides an interesting insight
as they aim at dynamically adapting the nature of the human-
system interactions to overcome cognitive limitations (Zander
and Kothe, 2011; Brouwer et al., 2013). In the field of BCI
design to enhance user performance, there is a growing interest
for functional near infrared spectroscopy (fNIRS) based BCI
(Coyle et al., 2004; Derosière et al., 2014; Strait et al., 2014).
This brain imaging device uses near infrared light absorption
properties to estimate local variations of cortical hemodynamics.
It uses a modified Beer-Lambert law to link light transmittance
through brain tissues to variations in local concentrations in
oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin
(HHb) (Villringer and Obrig, 2002). fNIRS has a good spatial
resolution (around 1 cm2) and interesting signal-to-noise ratio.
Moreover, this technique has the advantage to be easy and
fast to set over the participant’s head with a short calibration
process (Naseer and Hong, 2015). However, the processing of
fNIRS signal faces a lack of methodological consensus and thus
still represents a great challenge (Bashashati et al., 2007). The
extraction of the relevant activity from brain signals requires
complex techniques (van Erp et al., 2012), and most efficient ones
often rely on long calibration times [e.g., in subspace artifact
removal techniques (von Bünau et al., 2009), adaptive filtering
(Zheng et al., 2002)]. The complexity of these methods limits
their applicability for Neuroergonomics purpose, as the signal has
to be useable in real-time.

Most BCI designs rely on classical linear bandpass filtering
techniques such as Infinite Impulse Response (IIR) (Naseer
and Hong, 2015), although current research focuses on the
investigation of alternative signal processing techniques, such
as the Moving Average Convergence Divergence (MACD) filter
(Durantin et al., 2014b; Gateau et al., 2015). On this basis,
the improvement of signal quality in real-world conditions as
suggested in the Neuroergonomics approach, makes Kalman
filtering an ideal candidate. This signal processing and estimation
technique relies both on the measurements performed on a
system and on a modeling of its dynamics to improve signal
quality (Kalman, 1960). The use of a Kalman filter including
a physiological model of brain function to improve signal
usability has been previously applied to EEG (Georgiadis et al.,
2005; Callan et al., 2015) or fMRI (Diamond et al., 2005).
However, concerning fNIRS, this technique has been limited to
the estimation of model parameters (Abdelnour and Huppert,
2009) or the correction of motion artifacts (Izzetoglu et al.,
2010), therefore not requiring the use of a physiological model
of hemodynamic response to stimulation.

One of the greatest challenges regarding Kalman filter design
is the tuning of its parameters, i.e., to evaluate the level of
measurement noise (R) affecting the signal and the state noise
(Q) in the model (Diamond et al., 2005). The value of the ratio

Q/R greatly influences the behavior of the Kalman filter. Indeed,
a Kalman filter with a low value of Q/R will put confidence in
the dynamical model, whereas a Kalman filter with a high value
of Q/R will put confidence in the measurements. In practice, the
value of this ratio often has to be chosen empirically (Abdelnour
and Huppert, 2009; Callan et al., 2015), as there exists no efficient
way to evaluate it. Consequently, the dynamics of the Kalman
filter may not be adapted to the data needed to be improved.
The challenge of this study was to design a Kalman filter suitable
for fNIRS that includes a physiological model of hemodynamic
response (Boynton et al., 1996). By applying this filter to fNIRS
data collected during both controlled and ecological experiments,
we also aimed at testing the improvements such a filter could
bring to fNIRS signal toward the implementation of a passive
BCI. To that end, we first designed a Kalman filter relying on a
model of the hemodynamic response (Boynton et al., 1996) to
improve signal quality. We then conducted a first experiment
with a prefrontal fNIRS, involving a digit sequence memorization
task used to measure Working Memory (WM) storage and
update capacity. Provided that the development of a signal
improvement technique usable in realistic operational settings
was the objective of this study, this basic task was chosen as
WM is a key executive function to operate complex systems
(Causse et al., 2011). Data collected during the first experiment
were used to select the value of the filter parameter Q/R using
an optimization procedure. Finally, the improvement of the
signal by the optimal Kalman filter was evaluated with formal
classification during an ecological experiment which involved
pilots performing a realistic WM task (i.e., recalling air traffic
instructions) in a flight simulator.

2. KALMAN FILTER DESIGN

The functional model used to design the Kalman filter for fNIRS
signal was inspired by the Hemodynamic Response Function
(HRF) proposed by Boynton et al. (1996). This function is simple
enough to be represented by a low order state-space model. This
model assumes a third order impulsional response to stimulation,
and has the following transfer function :

HRF(p) =
τ 3e−δp

(p+ τ )3
(1)

As shown in Equation (1), the response shape depends on two
parameters : δ represents the pure delay between stimulation
and the start of HbO2 increase ; τ influences the time-
to-peak delay. Typical values that were chosen here were
extracted from Boynton et al. (1996), and are δ = 2 s and
τ = 1.5 s. This choice leads to a time-to-peak delay from
pulse stimulation of around 5 s (Handwerker et al., 2004).
Then, the Kalman filter principle requires the addition to the
model of a state noise w (defined as the amount of noise
affecting the model, i.e., the amount of errors in it) and of a
measurement noise v (defined as the amount of noise affecting
the measures). As shown on Figure 1, we chose to represent
the state noise as a perturbation affecting the stimulus (i.e., the
input of the model). This choice led us to consider that
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state noise represents a stimulus perception (or
internalization) bias.

The perception bias perturbing the stimulus is noted b. In
the nominal model, Kalman filter assumptions impose that
b = w, where w is the state noise following a gaussian centered
distribution. This model, in addition to the choice of a Q/R value
(whereQ is the variance of the state noise, and R is the variance of
the measurement noise), allowed us to design a Kalman filter for
fNIRS signal improvement. The inputs of the Kalman filter were
the stimuli onsets and the fNIRS raw signal.

One of the main limitations of this approach is the fact that
the stimulus perception bias has to be centered (i.e., b = 0 on
average), which can be erroneous when the subject sustainably
disengages from the task and doesn’t pay attention to the stimuli.
To take this element into account, we built a secondmodel, which
is an augmentation of the nominal model, and in which ḃ = w.
Thus, as the first derivative of b follows the gaussian centered
distribution, it is still possible to design a Kalman filter, without
assuming that b is null on average. This augmented model, along
with the value ofQ/R, allowed the computation of the augmented
Kalman filter for fNIRS signal processing. For both filters, the
value of the ratio Q/R was fixed according to an optimization
process (see next section).

3. FIRST STEP : SETTING THE FILTER
PARAMETERS

3.1. Material and Methods
Nine healthy participants from the Institut Superieur de
l’Aeronautique et de l’Espace (ISAE ; Mean age= 21.6; SD = 1.5;

FIGURE 1 | Proposed approach for Kalman filtering of fNIRS. The state

noise is considered as a perturbation of the input of the system.

eight males, eight right handed) participated in the experiment.
The volunteers performed a computer-based digit sequence
memorization task, while fNIRS measurements of the prefrontal
cortex were recorded. Data were recorded using a Biopac R©

fNIR100 device, composed of 16 optodes placed on the forehead
(see Figure 2). Each optode of the device records hemodynamics
at a frequency of 2 Hz in term of oxygenated hemoglobin
(HbO2) and deoxygenated hemoglobin (HHb) level variations in
comparison to a baseline.

Each trial of the experiment consisted in the memorization
of a sequence of 5, 7, or 9 randomly chosen digits. The size of
the sequence defined a level of difficulty. Figure 3 summarizes
the time sequence of a trial. During each trial, the subjects were
asked to look at a fixation cross at the center of the screen.
The digit sequence was presented through the loudspeakers of
the computer using prerecorded audio tracks, at a rate of one
digit per second. After the presentation of the last digit, the
fixation cross was replaced by three crosses, indicating that the
subjects had 8 s to type the memorized sequence on the keyboard.
Between two consecutive trials, the subjects looked passively at
the fixation cross at the center of the screen for 6 to 9 s (the inter-
trial interval was chosen randomly to avoid task periodicity). The
experiment consisted of 27 trials (nine trials for each of the three
levels of difficulty), presented in a randomized order.

3.2. Data Processing
Data were processed using Matlab R©. Two different types of
Kalman filters were applied to the data, the nominal Kalman
filter (in which we assumed that the stimulus perception bias is
null on average) and the augmented Kalman filter (without this
assumption). The inputs for both filters were the stimuli onsets
and the raw fNIRS data. For each filter, the value of the Q/R
ratio chosen for the Kalman filter tuning ranged from 10−5 to
105, in order to look for the optimal results. Simultaneously, we
also applied the MACD filter (Durantin et al., 2014b) to raw data
in order to compare Kalman results with classical filtering.

For each trial, we computed the HbO2 peak response (noted
1HbO2), i.e., the difference between themaximum value ofHbO2

in the 30 s following the trial onset and the value ofHbO2 at onset
time. We similarly computed the HHb peak response (noted
1HHb).

FIGURE 2 | fNIRS device optodes location. The device is composed of four light sources and 10 light detectors. The association of one light source and one light

detector composes the optodes. The disposition of the sources and detectors leads to 16 optodes over the prefrontal cortex.
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FIGURE 3 | Time course of one trial of the experiment. The experiment

consisted of a total of 27 trials (three for each level of difficulty), presented in a

random order. N = digit sequence size (5, 7, or 9).

Preliminary, the potential good values for Q/R (i.e., those
leading to improvement in the signal) were isolated by computing
an Effect Size Index (ESI, illustrated on Figure 4. For each
filter (MACD, nominal Kalman or augmented Kalman with
a given Q/R value) and each digit sequence size N, we
computed the mean (µN) and standard deviation (σN) of the
level of 1HbO2 or 1HHb measured at each optode. We used
these values to compute a confidence interval corresponding
to one standard deviation as [µN − σN;µN + σN]. The
ESI was defined as the gap between the confidence intervals
of each condition (negative if the confidence intervals are
overlapping), i.e.,

ESI = ((µ7 − σ7)− (µ5 + σ5))+ ((µ9 − σ9)− (µ7 + σ7))

We then proceeded to visual inspection to find the best values for
Q/R ratio, by finding the parameters leading to higher ESI values.
Each set of data was finally tested using a Two-way analysis
of variance ANOVA, with two factors (16 optodes, three levels
of difficulty), performed using STATISTICA R© software. The
strength of the statistical effect of the difficulty level, evaluated
using the partial η2, was used to compare the results of the
different filters.

3.3. Results
As shown on Figure 5, the optimal results were obtained
for HbO2 at optode 2 recording mainly from the left
inferior frontal gyrus, when using the nominal Kalman filter
with Q/R = 3.98 or the augmented Kalman filter with
Q/R = 0.50. Table 1 summarizes the effect sizes obtained for
each of the signal processing techniques tested (those effects
showed an increase in the level of 1HbO2 with growing
sequence sizes).

The frequency and phase responses (Bode diagram) of the
nominal Kalman filter (Q/R = 3.98) and of the augmented
Kalman filter (Q/R = 0.50) are given on Figure 6. As the
two filters exhibit similar Bode diagrams (and therefore similar
filtering properties), we retained only the augmented Kalman
filter for testing on new data.

FIGURE 4 | Illustration of the computation of the Effect Size Index (ESI)

for HbO2. We computed the mean (µ) and standard deviation (σ ) of the level

of HbO2 across subjects for each difficulty. For a difficulty N, a confidence

interval corresponding to one standard deviation was computed as

[µN − σN;µN + σN ]. The corresponding ESI was computed as the sum of the

gaps between the confidence intervals (negative if the confidence intervals are

overlapping).

TABLE 1 | Effect sizes obtained for the effect of difficulty over all the

subjects for the level of 1HbO2 measured at optode 2, depending on the

type of filter used for signal processing.

Filter type Q/R ratio partial η2

MACD 0.21

Nominal Kalman 3.98 0.32

Augmented Kalman 0.50 0.34

4. SECOND STEP : TESTING THE
APPLICABILITY OF THE FILTER IN
ECOLOGICAL CONDITIONS

4.1. Material and Methods
Data used for testing the Kalman filter were extracted from a
second experiment involving a digit sequence memorization in
a realistic flight simulator (see Figure 7 for an illustration of
the setup). The experiment was similar to Gateau et al. (2015),
and included 18 healthy subjects (Mean age = 27.1; SD = 6.4;
six women). Pilots heard prerecorded Air Traffic Controller
(ATC) messages and were asked to dial the corresponding flight
parameters in the Flight Control Unit (FCU) using the four
knobs ( i.e., speed, heading, altitude, and vertical speed knobs)
of the FCU. The ATC messages were delivered at 78 dB SPL
trough a Sennheiser R© headset. We defined two levels of difficulty
depending on the complexity of the message:
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FIGURE 5 | Estimated Effect Size Index (ESI) for the augmented Kalman filter (for HHb –in green– and HbO2 –in dark blue–) in function of the value of

Q/R, compared to the ESI of the MACD filter (in red for HbO2, in light blue for HHb). The index is estimated using the data from optode 2.

FIGURE 6 | Bode diagrams (frequency response, phase response) of the MACD filter, the nominal, and augmented Kalman filters.

• Low Load trial difficulty: only one major value per trial was
used to set each flight parameter (e.g., 15 for “speed 150,
heading 150, altitude 1500, vertical speed+1500”).

• High Load trial difficulty: each flight parameter value was
different from the previous one and composed of different
digits to maximize the complexity (e.g., “speed 164, heading
235, altitude 8700, vertical speed−1600”).

The task consisted in 20 repetitions of each difficulty for a total
of 40 trials. Each ATC message started with the airplane call sign
(i.e., “Supaero 32”), followed by the sequence of flight parameters.
It ended with the message “over.” The subjects were instructed
to set the parameters strictly only after they heard the “over”
message. A practice session was conducted for each subject before
the actual experiments to allow them to become familiar with the

experiment and the interface. After each message, the pilots had
18 seconds to enter the flight parameters. Trials were separated
by 11 to 13 s of rest. During the experiment, hemodynamics of
the prefrontal cortex were recorded using the same device than
in the first experiment.

4.2. Data Processing and Classification
The raw HbO2 data measured at each optode were filtered using
three types of filter. First, we used the MACD filter and the
augmented Kalman filter retained from the optimization phase
(Q/R = 0.50). We also used a classical IIR Butterworth bandpass
filter (0.02 Hz < f < 0.1 Hz), in order to compare the results
to classical filtering. The statistical effect sizes of the level of
1HbO2 (computed in the same way than in the first experiment)
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FIGURE 7 | Pilot’s interaction with the auto flight system. The participants controlled the aircraft simulator of ISAE from the left seat. The red rectangle

corresponds to the FCU (Flight Control Unit) dedicated to set the autopilot using the four control knobs, accordingly to ATC (Air Traffic Control) clearances (speed,

heading, altitude, and vertical speed selection). Adapted from Gateau et al. (2015).

FIGURE 8 | Comparison of the t-maps for the contrast High load - Low load on the level of HbO2 over the prefrontal cortex obtained in function of the

type of filter used for signal processing (classical IIR, MACD, or Kalman). The topographical view was extracted from fNIRSoft® and the threshold was fixed at

the statistical significance level with α = 0.01, to account for multiple comparisons.

were evaluated using repeatedmeasures ANOVA performed with
STATISTICA R©. The performance of the different filters were
compared in terms of partial η2. In addition, we computed the
statistical t-maps representing the differences in the contrasts
between high and low load conditions in terms of level of
HbO2 for each type of filters. This computation was done
using Matlab and plotted using the topograph tool from
fNIRSoft R©.

The improvement of the signal depending on the type of filter
used for processing was also evaluated by performing formal
classification on the data. This analysis was performed using
the Statistics and Machine Learning toolbox from Matlab. The
1HbO2 values extracted from each optode were used to train
and test a Linear Support Vector Machine (SVM) classifier
through a 10-fold cross validation process : for each subject,
data from all trials were randomly divided in 10. The difficulty
(high or low load) of the trials of each 10% of data was
predicted by a SVM classifier that was previously trained on the

90% remaining data. The predicted labels were then examined
to evaluate the Accuracy (probability of good classification),
Sensitivity (probability of good classification for high load trials),
and Specificity (probability of good classification for low load
trials) of the classifier.

4.3. Results
The partial η2 obtained for each type of filters are given inTable 2
(for each optode and across all the optodes). The results show
that the use of MACD elicits a better statistical effect size than the
classical IIR filter. Similarly, the use of Kalman filter yields better
results than both MACD and IIR filters. This result is true not
only when filtering data from optode 2, but present notably at all
optodes located in the bilateral dorsolateral areas of the prefrontal
cortex (optodes 1, 2, 3, 4 and 13, 14 ,15, 16).

The effect of trial difficulty on the level ofHbO2 measured over
the prefrontal cortex is shown on Figure 8. On this figure, we
observe that both the MACD and Kalman filter over classical IIR
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TABLE 2 | Effect sizes (partial η2) obtained for the effect of difficulty over all the subjects for the level of HbO2 measured for each optodes (plus main

effect size over all optodes), depending on the type of filter used for signal processing.

Optode number 1 2 3 4 5 6 7 8

IIR 0.34 0.36 0.48 0.35 0.15 0.32 0.32 0.00

MACD 0.51 0.44 0.50 0.53 0.24 0.26 0.15 0.01

Augmented Kalman (Q/R = 0.50) 0.64 0.55 0.57 0.55 0.38 0.36 0.39 0.15

Optode number 9 10 11 12 13 14 15 16 All

IIR 0.29 0.26 0.32 0.11 0.41 0.34 0.33 0.30 0.36

MACD 0.15 0.01 0.31 0.12 0.50 0.25 0.39 0.38 0.33

Augmented Kalman (Q/R = 0.50) 0.42 0.35 0.53 0.39 0.55 0.55 0.52 0.49 0.52

The effect sizes corresponding to a significant effect (p < 0.05) after correction for multiple comparisons are reported in bold font.

FIGURE 9 | Accuracy, sensitivity, and specificity obtained from the 10-fold cross-validation procedure for each type of filter. The dashed red line

represents chance level (50%). The error bars represent the standard error of the mean across subjects, and statistical significance after correction for multiple

comparisons is indicated by stars (*p < 0.05 ; **p < 0.01 ; ***p < 0.001).

filter improve the discriminability between the two conditions in
the lateral areas of the prefrontal cortex.

Ultimately, the cross-validation procedure performed on the
data to classify low-load vs. high-load trials are presented in
Figure 9 in terms of accuracy, sensitivity, and specificity. The
classification results were all significantly better than chance,
although Kalman filter led to statistically better results than
IIR and MACD filters. Using Kalman filtering, the classification
accuracy reached 77.8%, with a sensitivity of 79.4% and a
specificity of 76%.

5. DISCUSSION

The objective of the study was to design a Kalman filter to
improve fNIRS signal for Neuroergonomics applications. In
particular, the main challenge concerned the tuning of the
parametersQ and R (Diamond et al., 2005), representing the state
noise andmeasurement noise variances. Based on a simple model

of the hemodynamic response to neuronal stimulation (Boynton
et al., 1996), we designed a Kalman filter model taking into
account both themeasurement noise and the stimulus perception
bias that can occur in periods of disengagement or when the level
of attention varies. During an optimization process, we showed
that it was possible to find values for the parameters which leads
to better statistical results (Q/R = 0.50) with an augmented
model. Interestingly, the relatively low value of the Q/R ratio
in the second model suggests that the Kalman filter put more
confidence in the dynamical model of hemodynamics response
than in fNIRS data. The higher optimal value obtained for this
ratio when using the first choice of model (Q/R = 3.98) suggests
this model was less consistent with the actual hemodynamics
characteristics.

We applied the optimal results found in the first experiment
on new data from an ecological experiment in a flight simulator,
and showed that the optimal Kalman filter tuning could be
applied generically. This filter led to higher effect sizes when
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looking at the effect of task difficulty in both tasks, compared
to classical filters (see Figure 8). It is argued that the use of
a dynamical physiological model by the Kalman filter implies
less variability across trials and subjects, therefore explaining the
greater stability of the results obtained with this filter. These
results suggest that this filter would be suitable to improve
the discriminability between the two conditions toward the
implementation of a BCI to assist the operator, and would
support the use of Kalman filtering to improve fNIRS signal
(Izzetoglu et al., 2010). In particular, the Kalman filter helped us
perform better during the SVM-based classification procedure
between low-load and high-load trials, which confirms its
contribution to the improvement of the signal. In addition, the
experiment also confirmed that the MACD filter brings good
results compared to classical IIR filtering, as it was previously
demonstrated (Durantin et al., 2014b; Gateau et al., 2015).
Although the discriminability obtained with this filter is not as
good as the one obtained with the Kalman filter, it presents
the advantage of not requiring any information on the stimulus
onsets.

Interestingly, the optimal results for the first experiment
were found at optode 2 recording mainly from the left inferior
frontal gyrus. More generally, when applying the optimal Kalman
filter in the second experiment, the WM solicitation elicited
an activation of bilateral areas in the inferior and middle
frontal gyri, part of the dorsolateral prefrontal cortex (see
Figure 8 and Table 2). This result is in agreement with previous
fNIRS studies that have found these regions are sensitive to
WM solicitation (Ayaz et al., 2012; Durantin et al., 2014a).
Therefore, the improvement of the fNIRS signal collected in
this region suggests that this filter could be applied to any
experiment recruiting the same functional areas. In particular,
the optimization process carried in this study would avoid the
need of a calibration phase or of a convergence phase (in
case of adaptive filtering) to improve signal quality. However,
further investigation is still needed to assess whether this
filter could be used with the same model and tuning in
experiments recruiting different brain areas. Similarly, further
investigation is also needed to assess the usability of these filters

in ecological conditions that would differ from a simulated
flight (e.g., with higher levels of light variations or motion
artifacts).

Nevertheless, some modifications of the model could lead
to better usability and performance of the Kalman filter. For
instance, the use of a stimulus onset detection technique such
as the detection technique based on the MACD filter (Durantin
et al., 2014b; Gateau et al., 2015) could replace the stimulus onsets
input of the Kalman filter, therefore reducing the complexity of
the filter. In addition, it would be interesting to compare the
results of the current Kalmanmodel relying on a simplemodeling
of the hemodynamic response to more complex physiological
models (e.g., Buxton et al., 2004). Finally, using an adaptive Q/R
gain or realizing an optimization process for each subject instead
of using a generic filter could also yield better results, although it
would add complexity and a calibration phase to the procedure.

Altogether, the promising results of the study stand in favor of
the use of Kalman filtering as a signal improvement technique
for fNIRS signals with applications in Neuroergonomics. In
particular, the improved signal would be available in real-
time and without a calibration phase, and would allow better
classification of WM levels in ecological settings.
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