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Node definition is a very important issue in human brain network analysis and functional

connectivity studies. Typically, the atlases generated frommeta-analysis, random criteria,

and structural criteria are utilized as nodes in related applications. However, these atlases

are not originally designed for such purposes and may not be suitable. In this study, we

combined normalized cut (Ncut) and a supervoxel method called simple linear iterative

clustering (SLIC) to parcellate whole brain resting-state fMRI data in order to generate

appropriate brain atlases. Specifically, Ncut was employed to extract features from

connectivity matrices, and then SLIC was applied on the extracted features to generate

parcellations. To obtain group level parcellations, two approaches named mean SLIC

and two-level SLIC were proposed. The cluster number varied in a wide range in order

to generate parcellations with multiple granularities. The two SLIC approaches were

compared with three state-of-the-art approaches under different evaluation metrics,

which include spatial contiguity, functional homogeneity, and reproducibility. Both the

group-to-group reproducibility and the group-to-subject reproducibility were evaluated

in our study. The experimental results showed that the proposed approaches obtained

relatively good overall clustering performances in different conditions that included

different weighting functions, different sparsifying schemes, and several confounding

factors. Therefore, the generated atlases are appropriate to be utilized as nodes for

network analysis. The generated atlases and major source codes of this study have been

made publicly available at http://www.nitrc.org/projects/slic/.
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INTRODUCTION

The functional organization of human brain could be characterized by brain networks (Sporns
et al., 2005; Bullmore and Sporns, 2009). It is therefore of great significance to construct functional
connectivity networks at system level for the brain. To fulfill this purpose, nodes should be defined
in prior (Wig et al., 2011). The nodes could be defined at voxel scale or whole brain scale in extreme
conditions. When nodes are defined at voxel scale, the resultant network would be computationally
expensive, vulnerable to noise, and difficult to be interpreted due to the intrinsic property of fMRI
data (Craddock et al., 2012). On the other hand, when nodes are defined at whole brain scale, the
resultant network might be too coarse to reveal some concealed connectome characteristics (de
Reus and Van den Heuvel, 2013; Shen et al., 2013). An intermediate approach, i.e., to parcellate the
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brain into a specific number of regions and treat each of them as a
node, could alleviate the above problems. However, no consensus
has been reached on how the brain should be parcellated.

In existing studies, some typical ways to generate whole
brain atlases are based on meta-analysis, random criteria,
structural criteria, and functional connectivity (Wig et al., 2011;
de Reus and Van den Heuvel, 2013; Fornito et al., 2013;
Sporns, 2013; Stanley et al., 2013). Parcellation by meta-analysis
of peak activations (Dosenbach et al., 2010; Power et al.,
2011) is laborious and inaccurate, and lacks reproducibility
(Craddock et al., 2012). Parcellation based on random criteria
(Hagmann et al., 2008; Zalesky et al., 2010) serves as an
effective tool to study network statistics at different node
scales. Unfortunately, its resultant atlases do not contain any
neurobiological meanings. Hence, their usages are limited.
Parcellation based on structural criteria such as cytoarchitecture
(Zilles and Amunts, 2010), myelin content (Glasser and Van
Essen, 2011), and tractography (Behrens et al., 2003) provides
standardized atlases which have been widely applied in various
studies. Since brain function is closely related with brain structure
(Honey et al., 2009), it is expected that the structurally defined
brain atlas contains functional meanings and could be used to
construct functional connectivity networks. Strictly speaking,
however, structural homogeneity does not necessarily guarantee
functional homogeneity, i.e., some functionally heterogeneous
time courses might be mixed in a single node in a structurally
defined brain atlas, thus greatly affecting network estimation and
some topological attributes of the brain network (Wang et al.,
2009; Smith et al., 2011). The above limitations necessitate the
application of resting-state functional connectivity (RSFC) in
whole brain parcellation.

The basic idea of connectivity-based parcellation is to
aggregate voxels with similar connectivity patterns into clusters.
Previous studies concerning RSFC-based parcellation mainly
focus on subdividing a region of interest (ROI) rather than the
whole brain. Plenty of clustering algorithms have been applied,
including but not limited to, independent components analysis
(ICA; McKeown et al., 1998; Beckmann et al., 2005; Damoiseaux
et al., 2006; De Luca et al., 2006; Smith et al., 2009), hierarchical
clustering (Goutte et al., 1999; Cordes et al., 2002; Stanberry
et al., 2003; Salvador et al., 2005; Mumford et al., 2010; Thirion
et al., 2014), spectral clustering (van den Heuvel et al., 2008;
Shen et al., 2010, 2013; Craddock et al., 2012), K-means (Kim
et al., 2010; Kahnt et al., 2012; Chang et al., 2013), region
growing (Lu et al., 2003; Heller et al., 2006), von Mises-Fisher
distributions (Yeo et al., 2011; Ryali et al., 2013), self-organizing
maps (Peltier et al., 2003), Infomap (Power et al., 2011), and
modularity detection (Chang et al., 2014). Some studies combine
different clustering algorithms together to perform parcellation.
For example, Filzmoser et al. (1999) proposed a hierarchical K-
means approach; Bellec et al. (2006) combined region growing
with hierarchical clustering; and Bellec et al. (2010) combined
region growing, K-means, and hierarchical clustering.

A special case of RSFC-based parcellation is to parcellate
the cortical surface rather than the brain volume (Cohen et al.,
2008; Nelson et al., 2010; Wig et al., 2014; Gordon et al., 2016).
It is a convention in surface-based analysis where the brain

is treated as a 2D sheet rather than a 3D volume. In such
analysis, the abrupt transitions in RSFC patterns are used to
identify putative boundaries between cortical areas, known as
the boundary mapping approach (Cohen et al., 2008). Other
methods such as hierarchical clustering (Blumensath et al., 2013)
and spectral clustering (Parisot et al., 2016) also could be applied
to parcellate the cortical surface.

Moreover, some related studies are applying clustering
algorithms on diffusion MRI data to perform connectivity-based
parcellation (Behrens et al., 2003; Johansen-Berg et al., 2004).
Although diffusion MRI data is quite different from resting-
state fMRI data, the clustering algorithms could be implemented
similarly once connectivity is defined. For example, K-means
(Johansen-Berg et al., 2004; Klein et al., 2007), spectral clustering
(Venkataraman et al., 2009; Fan et al., 2014, 2016; Zhang et al.,
2014), hierarchical clustering (Gorbach et al., 2011; Moreno-
Dominguez et al., 2014), and some other clustering algorithms
(Behrens et al., 2003; Jbabdi et al., 2009) are applied to perform
structural connectivity-based parcellation.

Recently, Glasser et al. (2016) used a semi-automated
approach to parcellate the human cerebral cortex into 180
areas per hemisphere based on multi-modal magnetic resonance
images. Specifically, the parcellation was determined both by
a clustering algorithm and by experienced neuroanatomists; it
utilized information related to four areal properties including
cortical architecture, function, connectivity, and topography. The
study represents a new milestone in the research area of brain
parcellation.

As discussed above, parcellation approaches could be
implemented in different ways, e.g., on diffusion MRI data or
on resting-state fMRI data, on the cortical surface or on the
brain volume, on a ROI or on the whole brain. Among these
studies, only few (Craddock et al., 2012; Blumensath et al., 2013;
Shen et al., 2013; Moreno-Dominguez et al., 2014; Thirion et al.,
2014; Parisot et al., 2016) generate whole brain atlases at multiple
granularities. The potential to extend other clustering methods
to fulfill the purpose might be limited by high computational
complexity due to huge data size and complicate parameters. This
paper focuses on parcellating the whole brain based on RSFC in
order to reveal the functional organization of the human brain.
We combined Ncut and SLIC to address this task.

Ncut (Shi and Malik, 2000) is a graph theoretic approach.
It has many advantages over other clustering algorithms such
as being easy to implement, being robust to outliers, and
achieving good clustering performances (von Luxburg, 2007). It
is theoretically designed to partition a graph into two disjoint
sets. In order to obtain multiple clusters, there are different
methods including bipartitioning the graph recursively (Shi and
Malik, 2000), applying K-means on the eigenvectors of the graph
Laplacian (Ng et al., 2002; von Luxburg, 2007), and the multiclass
spectral clustering (MSC) algorithm (Yu and Shi, 2003). All
of these methods treat the eigenvectors of the graph Laplacian
as features for further clustering. These features contain less
redundancy and are less sensitive to noises than the original data.
From this viewpoint, Ncut could be regarded as a dimensionality
reduction and feature extraction algorithm that serves as a
necessary step prior to clustering. As for applications of Ncut
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in brain parcellation, Fan et al. (2014) and Zhang et al. (2014)
applied K-means on the features extracted by variants of Ncut,
Craddock et al. (2012) applied the MSC algorithm that integrated
Ncut with a clustering algorithm, and Shen et al. (2013) extended
MSC to a formulation known as the multigraph K-way spectral
clustering (MKSC) algorithm which processed multiple subjects
simultaneously. Both MSC and MKSC wrap a feature extraction
step in the clustering algorithm. For clarity, the corresponding
clustering algorithms without the feature extraction step are
referred to as MSC and MKSC in the following paper.

SLIC is an important supervoxel method. The supervoxel
method originates from its 2D counterpart, the superpixel
method (Achanta et al., 2012). The superpixel method has drawn
increasing interest in the field of computer vision in recent
years. Its basic idea is to partition an image into perceptually
meaningful patches, termed superpixels, wherein the pixels
have similar intensity or colors. This method could effectively
extract image structure and capture image redundancy. Hence,
it could be used as an effective segmentation or clustering
algorithm. Among different superpixel methods, SLIC is a
very popular one due to its simplicity, effectiveness, and good
segmentation performances (Achanta et al., 2012). Another
important advantage of SLIC is that it is straightforward to
be extended to a supervoxel generation method (Lucchi et al.,
2012), which makes it suitable to parcellate the brain volume.
Previously, we had presented a study in Wang et al. (2016) by
directly applying the SLIC algorithm on resting-state fMRI time
series to perform whole brain parcellation. Only the individual
subject level parcellation was investigated in that study.

In the current study, we incorporated Ncut and SLIC to
perform whole brain parcellation. To generate group level
parcellations, two approaches, i.e., the mean SLIC and two-level
SLIC approaches, were proposed. To evaluate the performance
of the proposed approaches, we compared them with three state-
of-the-art Ncut-based approaches under different evaluation
metrics. The influences of several confounding factors were
carefully investigated in order to demonstrate the rationality of
the proposed approaches.

MATERIALS AND METHODS

Participants and Imaging Data Acquisition
Forty healthy Chinese college students (19 females and 21 males,
19–27 years old, mean age= 22.8 years, SD= 1.37) were recruited
for the study. All of them had normal or corrected-to-normal
vision and reported no history of psychiatric or neurological
diseases. Two additional participants were recruited but excluded
from analysis due to large head motion (>2mm and 2◦). Written
informed consent was obtained from each participant after
explaining the study purpose and procedure. This study was
approved by the Institutional Review Boards of Beijing Normal
University.

All structural and resting-state functional MRI images
were collected on a 3-Tesla Siemens Trio system. High-
resolution T1-weighted structural images were acquired with
a Magnetization Prepared Rapid Acquisition Gradient-Echo
(MPRAGE) sequence: repetition time (TR)= 2530 ms, echo time

(TE)= 3.39 ms, inversion time (TI)= 1100 ms, flip angle (FA)=
7◦, field of view (FOV)= 256× 256 mm2, slices= 144, thickness
= 1.33mm, voxel size= 1.3× 1.0× 1.3mm3. Resting-state fMRI
images were acquired using a Gradient Echo type Echo Planar
Imaging (GRE-EPI) sequence: TR = 2000ms, TE = 30ms, FA
= 90◦, in-plane resolution = 64 × 64, FOV = 200 × 200mm2,
thickness= 3.5mm, slice gap= 0.7mm, acquisition voxel size=
3.1 × 3.1 × 3.5mm3. Thirty-three slices were used to cover the
whole brain. Two hundred volumes of resting-state fMRI data
were collected for each subject. During the resting-state scanning,
all subjects were instructed to close their eyes and relax.

Preprocessing
The resting-state fMRI data was preprocessed by the Data
Processing Assistant for Resting-State fMRI (DPARSF) (Yan and
Zang, 2010) which was built on Statistical Parametric Mapping
(SPM; Friston et al., 1994). Structural and functional data were
first visually inspected for imaging errors such as signal dropouts
and ghosting. No images were removed. The first 10 volumes
were discarded to allow signal stabilization. Then all functional
time series were processed by slice timing correction and motion
correction. The structural data was coregistered to the mean
functional data so that the mutual information between them
was maximized. The coregistered structural data was segmented
into gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) using the default tissue probability maps in SPM
as priors. The Diffeomorphic Anatomical Registration using
Exponentiated Lie algebra (DARTEL) toolbox (Ashburner, 2007)
was used to compute transformations between individual native
space and Montreal Neurological Institute (MNI) space. Finally,
the slice-time corrected and motion corrected functional data
was processed by the following steps: normalized to the MNI
space at 4 × 4 × 4mm3 resolution by DARTEL; spatially
smoothed by a Gaussian kernel with a full width at half maximum
(FWHM) of 6mm; linear detrended; bandpass filtered with
passband 0.01∼0.08Hz; denoised by regressing out nuisance
covariates including six head motion parameters, autoregressive
models of motion (the Friston 24-parameter model; Friston et al.,
1996; Yan et al., 2013), and the mean time courses of WM signal
and CSF signal.

Parcellation Approaches
The proposed parcellation approaches included two group level
clustering approaches that were achieved by combining Ncut
and SLIC. To apply these approaches, a weight matrix should
be defined in prior. We conducted a normalization step before
defining the weight matrix in order to facilitate subsequent
calculation.

Normalization
After preprocessing the resting-state fMRI data, we focused on
gray matter only, to be consistent with (Craddock et al., 2012).
It is by no means indicating that other brain regions such as
the white matter is less important in fulfilling brain activities
(Gawryluk et al., 2014), and our approaches could certainly
be extended to include those regions. The choice was made
mainly based on the methodological consideration of reducing
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the computation time. For the ith voxel in the gray matter mask,
denote its time course as vi, i = 1, 2, . . . , N. Each time course
within the gray matter was normalized to have zero mean and
unit length (Shen et al., 2010). Specifically, for a raw time course
v in the gray matter, it was normalized to be

v− v

‖v− v‖2
,

where v denotes the mean value of this time course, ‖·‖2 denotes
L2-norm of a vector. After normalization, the Pearson correlation
coefficient between two time courses vi and vj equals their dot
product

corr(vi, vj) = vi · vj.

Assume V is the resting-state fMRI data wherein each row is
a normalized time course. Then the correlation matrix could
be calculated by VVT . This trick helps to reduce computational
time. In addition, it is easy to validate that

corr(vi, vj)= 1−
∥

∥vi − vj
∥

∥

2

2
/2.

This relationship bridges the gap between the Pearson correlation
coefficient and the Euclidean distance, making it reasonable to
use either of them as the similarity measure when constructing
the weight matrix.

Individual Subject Level Weight Matrix
Three typical definitions of the weight matrix are described as
follows. For the ith voxel in the gray matter mask, denote its
coordinate in the MNI space as ui, i = 1, 2, . . ., N. By adopting
the original formulation in (Shi and Malik, 2000), the weight on
the edge connecting voxels i and j could be defined as

wij =







e
−‖vi−vj‖22

σ
2
v

−‖ui−uj‖22
σ
2
u if

∥

∥ui − uj
∥

∥

2
≤ r

0 otherwise

,

where σv, σu and r are three tuning parameters. In (Craddock
et al., 2012), the weight was defined by the Pearson correlation
coefficient with a spatial constraint and a hard threshold

wij =
{

corr(vi, vj) if
∥

∥ui − uj
∥

∥

2
≤

√
3 and corr(vi, vj) = 0.5

0 otherwise
.

The two constraints were applied to make the weight matrix
sparse, and to exclude the negative and weak correlations. A
potential change of the above formula is to replace the correlation
between two fMRI time series with the correlation between their
connectivity profiles (Cohen et al., 2008), but this change would
not improve the parcellation performance according to studies
(Craddock et al., 2012; Blumensath et al., 2013). Hence, it was
not applied. In (Shen et al., 2010, 2013), the weight was defined
by a Gaussian function of the Euclidean distance

wij = e
−‖vi−vj‖22

σ2 ,

where σ was set to be the median of all functional distances. To
make this weight matrix sparse, only a certain number of the
largest values in each row and each column were reserved.

Based on the above definitions, we conclude that there are
three principles that should be followed in defining the weight
matrix. First, the weighting function should be negatively related
to the functional distance and the spatial distance. It is natural
since the weight should reflect the likelihood that two voxels
belong to one cluster (Shi and Malik, 2000), and the likelihood
tends to be negatively related to the two distances. Strictly
speaking, some weighting functions (Shen et al., 2010; Craddock
et al., 2012) do not involve the spatial distance. They are variants
of the weight in Shi and Malik (2000). Second, the weight matrix
should be sparse in order to reduce computational burden.
A full weight matrix is usually unmanageable with limited
computational capacities. Third, the weight matrix should be
symmetrical since parcellation approaches are generally applied
on undirected networks.

It is notable that the definition of the weight matrix could
be decomposed into two steps. The first step is to choose a
weighting function, and the second step is to sparsify the weight
matrix. This procedure is illustrated in Figure 1A wherein a
downsampled fMRI data is used for clarity. In our study, we
chose the Pearson correlation coefficient as the default weighting
function. The Gaussian kernel function and a constant function
were tested for comparison later. For the sparsifying scheme (SS),
three choices were tried. They were, applying a spatial constraint
to the weight matrix, reserving a certain number of the largest
values in each row and each column of the weight matrix, and
setting a threshold to the weight matrix. The three sparsifying
schemes are referred to as SS1, SS2, and SS3 for short in order.
All of the generated weight matrices follow the three principles
in defining the weight matrix.

Tomake the three sparsifying schemes comparable, we tried to
ensure that they had similar sparse rates. In the first sparsifying
scheme, the spatial constraint was chosen to be the 26-connected
neighborhood (Craddock et al., 2012), as shown in Figure 1B.We
calculated a sparse rate based on this scheme and applied it to the
other two schemes. For the second scheme, the largest 17 values
in each row and each column of the weight matrix were reserved,
which would lead to a similar sparse rate. For the third scheme,
the exact threshold was calculated based on the rawweightmatrix
and the sparse rate. To examine a sparsified weight matrix, we
extracted the non-zero elements from it to form a new vector and
calculated the sparse rate after applying different thresholds to
this vector. Figure 1C shows the average sparse rates of the three
sparsifying schemes. The reserved elements were generally larger
than 0.5 and smaller than 1.0. Therefore, these weight matrices
were different from the trivial weight matrix used for random
parcellation in Craddock et al. (2012). The first two sparsifying
schemes were closely related to those in Craddock et al. (2012)
and Shen et al. (2013), respectively. Hence, we expected them to
obtain similar results as in the previous studies.

Among the above definitions of the weight matrix and many
other alternatives (Cheng et al., 2014), which one is the best still
remains to be an open problem. It is often difficult to pick a
suitable weighting function (Shi andMalik, 2000), and there does
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FIGURE 1 | (A) Generating weight matrices by the three sparsifying schemes. It consists of two steps. The first step is to calculate the full weight matrix from the

preprocessed fMRI data by correlating two fMRI time series. The second step is to apply one of the three different sparsifying schemes on the full weight matrix.

(B) The spatial constraint. (C) By pulling together the non-zero elements in each sparsified weight matrix, we could obtain a new vector. Sparsity is defined by the ratio

of zero elements in the vector when different thresholds are set to the vector. The results are averaged across subjects.

not exist a theoretical relationship between the choice of weight
matrix and the clustering result (von Luxburg, 2007). Therefore,
it is suggested that more attention should be placed on designing
a clustering algorithm that could achieve stable performances
with different weights. Ncut has an evident advantage in this
respect according to the studies.

Ncut
After constructing the weight matrix, Ncut was employed to
extract features and reduce data dimensionality. We briefly
review Ncut (Shi and Malik, 2000) as follows. Denote fMRI data
by an undirected weighted complete graph G = (V ,E), wherein
the nodes V correspond to the voxels in fMRI data and an edge
in E is formed with a weight between a pair of voxels. In the
binary case when the graph is intended to be partitioned into two
disjoint clusters A and B, Ncut minimizes the following criterion

Ncut(A,B) =
cut(A,B)

assoc(A,V)
+

cut(A,B)

assoc(B,V)
,

where cut(A,B) is the sum of weights on edges connecting
voxels in A to voxels in B, assoc(A,V) is the sum of weights
on edges connecting voxels in A to all voxels in the graph,
and assoc(B,V) is similarly defined. The criterion minimizes
the between-cluster similarity and maximizes the within-cluster
similarity simultaneously. This optimization problem is NP-hard.
Fortunately, an approximate discrete solution for it is available by

solving a generalized eigenvalue problem. To be specific, letW be
anN×N symmetrical weight matrix withW(i, j) = wij,D be an
N × N diagonal matrix with

D(i, i) =
N

∑

j =1

wij,

and then the generalized eigenvalue problem is given by

(D−W)y =λDy,

where y is the indicator vector to be solved. This problem could
be transformed into a standard eigensystem

D− 1
2 (D−W)D− 1

2 z = λz,

where z = D
1
2 y. D− 1

2 (D−W)D− 1
2 is known as the normalized

graph Laplacian matrix. Since this matrix is theoretically rank
deficient, a small positive regularization term should be added to
it prior to eigendecomposition in practice. Once the eigenvector
z is obtained by eigendecomposition, the indicator vector y could

be calculated by y = D− 1
2 z, and then it is further normalized to

have unit norm. For more details of the Ncut algorithm, please
refer to (Shi and Malik, 2000; von Luxburg, 2007).

Conventionally, the diagonal elements of the weight matrixW
are set to be zeros (Zhang and Horvath, 2005). In practice, we
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followed this convention except for the third sparsifying scheme.
This scheme might generate empty rows and columns in the
weight matrix since a threshold is set globally to the weight
matrix. Then there might be zero elements in the diagonals of D,
and they would cause the division by zero errors when calculating

D− 1
2 . To fix the problem, we set the diagonal elements in the

empty rows and columns to be ones. We had also tried to set
all diagonal elements to be ones and obtained nearly the same
clustering performances. Therefore, the parcellation approaches
are not sensitive to a slight adjustment of the diagonal elements.

To parcellate the brain into K clusters, K indicator vectors
corresponding to the K smallest non-trivial eigenvalues (> 10−4)
were computed. These indicator vectors constitute a feature
matrix X of size N by K wherein each row is a feature
corresponding to a voxel and each column is an indicator vector.
The feature matrix was then input into different clustering
algorithms, i.e., MSC, MKSC, and SLIC, to do clustering. For
MSC and MKSC, we followed the algorithm procedure in Yu
and Shi (2003) and Shen et al. (2013), respectively. For SLIC, the
algorithm procedure will be described in the following section.

SLIC
After extracting features by Ncut, SLIC (Achanta et al., 2012) was
applied on the features to perform clustering. SLIC is actually
an adaptation of K-means. Two important differences between
SLIC and K-means are that SLIC limits the search space to the
neighborhood of a cluster center and creates a unified distance
metric by integrating the spatial distance and the intensity
distance. The algorithm procedure of SLIC is stated as follows. To
parcellate the brain into K clusters, we first initialized K cluster
centers. Let S = 3

√
N/K, for each voxel in the 3S × 3S × 3S

region around a cluster center, a distance between the voxel and
the cluster center was calculated. This distance was assigned to
the voxel as a measure to judge which cluster it should belong
to. If the distance decreased comparing to the result in the
previous iteration, then associated the voxel to the current cluster
center. This procedure was repeated for all cluster centers. Once
completed, the features and coordinates of the voxels within each
new cluster were averaged separately to represent the feature and
coordinate of the new cluster center correspondingly. The above
assignment and update steps were repeated until the change of
the cluster centers was lower than a certain threshold. Table 1
summarizes the algorithm procedure. Note that the search space
was enlarged from the traditional 2S× 2S× 2S region to the 3S×
3S × 3S region in this study because the brain shape is irregular
so that the traditional search region is too small to capture
some border voxels. This enlargement made little changes to the
parcellation results other than capturing the border voxels. Other
shapes of search space were not tried since the cubic search space
was adequate.

Ideas for initialization of SLIC supervoxels could be
borrowed from those of SLIC superpixels. There are two
typical approaches for initialization of the SLIC superpixel
method, i.e., initializing the cluster centers by the centers of
square grids (Achanta et al., 2012) or hexagonal grids (http://
www.peterkovesi.com/matlabfns/index.html#segmentation).
Initialization by the second approach would result in a

TABLE 1 | The algorithm procedure of the SLIC supervoxel algorithm.

Input: the features extracted by Ncut and the initialized cluster number.

Output: the cluster labels.

Initialize the cluster centers.

Initialize label l (i)= −1 for each voxel i.

Initialize distance d (i) = ∞ for each voxel i.

while not converged do

for each cluster center Ck do

for each voxel i in the 3S× 3S× 3S region around Ck do

Compute the unified distance D between Ck and i.

if D < d (i) then

Set l (i)= k.

Set d (i)= D.

end if

end for

end for

Compute new cluster centers.

end while

nominally 6-connected segmentation which is expected
to facilitate subsequent postprocessing, thus being more
preferred. Figures 2A,B show illustrations of the two approaches
where an image is intended to be initialized with 35 cluster
centers. The actual cluster number might be different from
the initialized cluster number. Nevertheless, the difference is
trivial; especially when the initialized cluster number is large
and when the space to be parcellated is irregular as in brain
parcellation.

The first approach is straightforward to be extended to 3D
case (Lucchi et al., 2012). That is, we fill 3D space with cubes
whose side length is S = 3

√
N/K and initialize the cluster centers

by the cube centers. The extension of the second approach is
indirect. Note that the same cluster centers as in Figure 2B

could be obtained by filling 2D space with circles tightly and
initializing the cluster centers by the circle centers, as shown in
Figure 2C. Accordingly, the second approach could be extended
to 3D case by filling 3D space with spheres tightly and initializing
the cluster centers by the sphere centers, as shown in Figure 2D.
We had tried the two approaches and found that their clustering
performances were very similar. In this paper, we chose the
second approach since spheres have higher symmetry than cubes.
Figure 2E shows the searching step of the SLIC approach.

The variants of these initializations might introduce
translations and rotations to the cluster centers, or even different
spatial models rather than cubes and spheres. Additionally,
the initialized clusters are not necessarily to be positioned
periodically in the 3D space. A typical example is to move
the initialized cluster centers to the locally optimal positions
(Achanta et al., 2012; Blumensath et al., 2013). However, in
practice, we found this approach would generate many empty
clusters. Therefore, it was not applied.

The MSC and MKSC approaches also encounter initialization
problems since there is a rotation matrix that should be
initialized before iteration. Nevertheless, it was reported that
these approaches are relatively robust to random initializations
(Yu and Shi, 2003; Shen et al., 2013). Therefore, we initialized the
rotation matrices randomly.
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FIGURE 2 | (A–D) Illustration of the initialization approaches in 2D and 3D spaces. The cluster centers are initialized by the centers of (A) square grids, (B) hexagonal

grids, (C) circles, and (D) spheres, respectively. All of the units are stacked tightly in 2D or 3D space. The approach in (B) is an alternative to that in (A), the approach

in (C) is equivalent to that in (B), and the approach in (D) is obtained by extending the approach in (C) from 2D to 3D space. (E) The searching step of the SLIC

approach in whole brain parcellation. For each cluster, SLIC searches in the 3S× 3S× 3S region around its center to update the labels of all voxels in the search

space. A unified distance is calculated between each voxel and the cluster center to judge whether the voxel should belong to the cluster. The unified distance is

composed of the feature distance and the spatial distance, wherein the feature distance is calculated between the features of two voxels extracted by Ncut. Note that

the supervoxel is displayed as a cube for simplicity, but it is unnecessary to be a cube.

The SLIC approaches operate on a mixed space that is
composed of the feature space and the Euclidean space.
Therefore, we should define a unified distance by integrating
the feature distance and the spatial distance between two voxels.
Different from previous studies where the feature space is
represented by the CIELAB color space (Achanta et al., 2012)
or the image intensity space (Lucchi et al., 2012), the feature
space in our study is composed of features extracted by Ncut. For
the i th voxel in the gray matter mask, denote its corresponding
feature computed by Ncut as xi and denote its coordinate in the
MNI space as ui. Then the unified distance between two voxels is
defined as

dij =

√

∥

∥xi − xj
∥

∥

2

2

m2
+

∥

∥ui − uj
∥

∥

2

2

S2
,

where m and S are two tuning parameters. In this definition, the
feature distance is normalized by m and the spatial distance is
normalized by S. The parameterm is suggested to be fixed rather
than to be dynamically estimated (Achanta et al., 2012). It should
be carefully chosen because it adjusts the relative weights between
the two distances and would lead to different clustering solutions.
In our study, we normalized each feature vector to have zero
mean and unit length before calculating the unified distance, and
then we setm = 1 empirically. The parameter S is determined by
the average cluster size that depends on cluster number but does
not depend on cluster shape. Therefore, we set S = 3

√
N/K as in

Lucchi et al. (2012).

Group Level Clustering
The group level clustering was achieved by adapting the two
approaches in Craddock et al. (2012), yielding two approaches
which were called mean SLIC approach and two-level SLIC
approach. Figure 3 shows the algorithm procedures of the two
approaches.

For the mean SLIC approach, we first generated a group-
averaged weight matrix as in Yeo et al. (2011), Kahnt et al. (2012).
Specifically, the individual weightmatrices were converted into z-
maps by Fisher’s r-to-z transformation to increase the normality
of the distribution of the correlations, then the z-maps were
averaged across subjects, and finally an inverse Fisher’s r-to-z
transformation was applied to the averaged z-map to generate
the group-averaged weight matrix. After obtaining the group-
averaged weight matrix, we applied Ncut on it to extract features
and then applied SLIC on the features to generate a group level
parcellation.

For the two-level SLIC approach, we first applied Ncut and
SLIC on the subject level weight matrix to generate a parcellation
for each subject separately. Then for each parcellation, an
adjacency matrix A was calculated by setting the element aij
to be one if voxels vi and vj belonged to the same cluster and
zero otherwise. The adjacency matrices were averaged across
subjects to generate an averaged adjacency matrix that could
be regarded as the second level weight matrix. Finally, we
applied Ncut and SLIC on the averaged adjacency matrix to
generate a group level parcellation. The idea of parcellating the
brain in this two-level manner had been employed in studies
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FIGURE 3 | The algorithm procedures of the mean SLIC and two-level SLIC approaches. For both approaches, the calculations are operating at the individual

subject level before the averaging step and at the group level after the averaging step. The parcellations are visualized with the BrainNet Viewer (http://www.nitrc.org/

projects/bnv; Xia et al., 2013).

such as van den Heuvel et al. (2008), Ryali et al. (2013, 2015)
previously.

In our experiments, the competing approaches included
the mean approach and the two-level approach in Craddock
et al. (2012), and the MKSC approach in Shen et al. (2013).
The two approaches from Craddock et al. (2012) are termed
the mean MSC approach and the two-level MSC approach
respectively in our study since the MSC algorithm is the veritable
clustering algorithm in their parcellation procedures. The mean
MSC approach was modified by employing the Fisher’s r-to-z
transformation, which slightly improved the reproducibility of
the group parcellations. For the two-level MSC approach and the
two-level SLIC approach, the cluster number at the individual
subject level was set to be the same as at the group level. In the
group level clustering, different sparsifying schemes could also
be applied to the mean and second level weight matrices to make
them sparser (van den Heuvel et al., 2008). Since these weight
matrices were sparse already, for not introducing more tuning
parameters, we did not perform any further processing on them.

The Number of Clusters
The selection of the optimal number of clusters remains to be
an open problem in whole brain parcellation studies (Craddock
et al., 2012; Moreno-Dominguez et al., 2014; Thirion et al.,
2014). In our experiments, we initialized the cluster number by
varying it from 50 to 1000 with a step of 50 in order to make a
direct comparison with previous studies (Craddock et al., 2012;
Blumensath et al., 2013). From the viewpoint of neurobiological
interpretability, it is generally agreed that the two sides of this
range represent two extremes in which cases the cluster number
is either too small or too large, and the appropriate compromise
lies inside this range (Fan et al., 2016; Glasser et al., 2016; Gordon
et al., 2016).

Evaluation Criteria
The purpose of the whole brain parcellation is to generate atlases
for human brain network analysis and RSFC studies. Three major

criteria exist to evaluate the rationality of a brain atlas. That
is, the clusters in a brain atlas should be spatially contiguous,
functionally homogeneous, and reproducible (Craddock et al.,
2012; Shen et al., 2013). Therefore, we evaluated the clustering
performances of the parcellation approaches mainly by the three
criteria.

The first criterion, i.e., spatial contiguity, is a necessary
property of a “hard” parcellation (Smith et al., 2013). A hard
parcellation approach generally requires that the clusters are non-
overlapping, each cluster contains only one spatially contiguous
region, and all voxels in the brain are assigned to their respective
clusters. This paper focuses on hard parcellation approaches.
The proposed SLIC approaches are based on Ncut and SLIC.
The Ncut-based approaches are reported to have good spatial
contiguity in related studies (Craddock et al., 2012; Shen et al.,
2013). Besides that, SLIC stresses great emphasis on spatial
structures by initializing an ideal geometric pattern, integrating
the spatial distance into the unified distance, and searching in a
local space. Therefore, we expect that it also would lead to good
spatial contiguity. Few spatially discrete regions that belong to
the same cluster might still exist in the generated atlases. Here,
two regions are spatially discrete means that we could not find
one voxel from each of them such that the two voxels are in
the 26-connected neighborhoods of each other in 3D space. If
so, we should identify these regions and assign a unique label to
each of them. The increased cluster number is termed the spatial
discontiguity index. A small number close to zero indicates good
spatial contiguity.

For the second criterion, the clusters in a brain atlas are
required to be functionally homogeneous, namely that the voxels
in each cluster should have similar time courses (Zang et al.,
2004). The homogeneity of the brain atlas could be defined by the
average within-cluster similarity. Assume that there are N voxels
being parcellated into K clusters; the voxel number in the k th
cluster Ck is nk, k = 1, 2, . . . ,K; the similarity between voxels
i and j is sij which in our study equals the Pearson correlation
coefficient corr

(

vi, vj
)

, i, j = 1, 2, . . . ,N. The average similarity

Frontiers in Human Neuroscience | www.frontiersin.org 8 December 2016 | Volume 10 | Article 659

http://www.nitrc.org/projects/bnv
http://www.nitrc.org/projects/bnv
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Wang and Wang Supervoxel-Based Whole Brain Parcellation

within the k th cluster is

a(k) =
1

nk(nk−1)

∑

i,j∈Ck, i 6= j
sij.

Then the functional homogeneity of the brain atlas is calculated
by averaging the similarity across clusters

Homogeneity =
1

K

∑K

k= 1
a(k).

Clusters that contain only one voxel are omitted in calculation.
To avoid circular analysis, we trained an atlas and calculated
its homogeneity on two separate groups of data. The higher the
homogeneity results the better.

For the third criterion, the reproducibility of a clustering
algorithm could be evaluated by Dice coefficient (Dice, 1945),
measuring the similarity between two atlases (Blumensath et al.,
2013; Shen et al., 2013) or between two adjacency matrices
derived from the two atlases (Craddock et al., 2012). In
the former scheme, one should iteratively match the regions
between two atlases and then calculate a weighted average Dice
coefficient across all matched pairs. This scheme is prone to
suffer from instabilities since the numbers of regions of two
atlases might be different, region shapes and voxel numbers
of two matching regions might be different, and the matching
order might change. The alternative scheme, that is, measuring
Dice coefficient between two adjacency matrices could escape
from these problems, thus being adopted in this study. For two
adjacency matrices A and B derived from two atlases, the Dice
coefficient is

Dice =
2|A ∩ B|
|A| + |B|

,

where |·| denotes the number of ones in an adjacency matrix,
A ∩ B denotes the union of the two adjacency matrices. To be
specific, define C = A ∩ B, then Cij is set to be one if and only
if Aij and Bij are both ones, and Cij is set to be zero otherwise.
When evaluating reproducibility, the two atlases being compared
should be generated independently in order to avoid bias. This
was achieved by separating the subjects into two sets and training
an atlas on each of them. In our study, both the group-to-group
reproducibility and the group-to-subject reproducibility were
investigated. Since we aim to obtain brain atlases that would be
widely applicable, high reproducibility results aremore preferred.

RESULTS

In the experiments, we combined the three sparsifying schemes,
i.e., SS1, SS2, and SS3, with the five parcellation approaches,
i.e., the mean MSC, two-level MSC, MKSC, mean SLIC, and
two-level SLIC approaches, to yield fifteen kinds of parcellations
and then compared their clustering performances under different
evaluation metrics.

Resting-state fMRI data from 40 subjects were utilized in
the experiments. The 40 subjects were randomly separated into
two groups, 20 subjects in each group. This procedure was

repeated 10 times, resulting in 10 pairs of groups. For each
parcellation approach, each sparsifying scheme, each cluster
number, and each pair of groups, we obtained two group level
parcellations based on the two groups of data. Figures 4, 5
show the illustrations of the atlases with different parcellation
approaches, different sparsifying schemes, and different cluster
numbers. These methods were applied on a random group of
subjects. Supplementary Figures 1, 2 show the same atlases by
mapping them onto the inflated cortical surface. From the figures,
SS1 and SS2 tended to generate clusters with similar sizes and
regular shapes while SS3 behaved differently.

Actual Cluster Number
With a desired parcellation approach, the actual cluster number
of the resultant atlases should be the same as the initialized cluster
number. However, they are usually different due to the intrinsic
properties of the parcellation approaches. Therefore, the actual
cluster number should be counted when evaluating a parcellation
approach. By subtracting the initialized cluster number from the
average actual cluster number, we could obtain their differences.
Figure 6A shows the average results of the differences for the five
parcellation approaches and the three sparsifying schemes.

For the mean MSC, two-level MSC, and MKSC approaches,
the differences were negative because these approaches generated
many empty clusters (Craddock et al., 2012). Another property
of the three approaches was that the absolute values of
their differences were increasing with the initialized cluster
number. For the mean SLIC and two-level SLIC approaches,
the differences were fluctuating near zero, and the magnitudes
were smaller than the other three approaches in most cases.
Therefore, the SLIC approaches outperformed the other three
approaches in approximating the initialized cluster number. The
three sparsifying schemes had few influences on the results except
when they were combined with the two-level MSC approach.

Spatial Contiguity
To calculate the spatial discontiguity index, we separated the
spatially discrete regions belonging to the same cluster and
counted the increased cluster number for each brain atlas. The
results were averaged across all 400 atlases for each parcellation
approach and each sparsifying scheme, as listed in Table 2. The
average increased cluster numbers of SS1 were much smaller
than the corresponding results of SS2 and SS3, especially for the
mean MSC, two-level MSC, and MKSC approaches. It supports
the conclusion in Craddock et al. (2012) which stated that it is
necessary to apply spatial constraint to the weight matrix in order
to enforce spatial contiguity to a parcellation.

Both SS2 and SS3 did not impose spatial constraint on the
weight matrix, but SS2 performed much better than SS3. To
explain the result, we examined the subject level weight matrices
generated by the three sparsifying schemes. Figure 1A shows an
illustration of the three kinds of weight matrices. Most (67.50 ±
1.59%) of the non-zero elements in the weight matrices generated
by SS2 fell into the spatial constraint while the proportion
corresponding to SS3 was much smaller (42.88 ± 4.97%). For
SS2, the coincidence is not surprising because voxels close in
the Euclidean space tend to have high functional connectivity,
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FIGURE 4 | Illustration of the atlases computed by the five parcellation approaches with SS1 when the cluster number is set to be 50, 200, and 1000.

Each atlas is represented by its three orthogonal cross sections. The colormap for each atlas is randomly generated, and each color represents a cluster.

and then the largest values in each row and each column tend
to fall into the spatial constraint. In other words, though SS2
does not employ spatial constraint explicitly, it has a substantial
relationship with spatial constraint. This is the reason why Shen
et al. (2013) declared to obtain spatially contiguous parcellations
without applying spatial constraint. For SS3, since the threshold
is set globally to the weight matrix, much more non-zero
elements fall outside the spatial constraint. Consequently, the
parcellations of SS3 containmuchmore spatially discrete regions.
For SS1, there are very few (0.06 ± 0.04%) negative elements
and very few (3.50 ± 1.16%) elements smaller than 0.5 within
the spatial constraint. With the negative and weak weights, the
corresponding parcellations still exhibit good spatial contiguity.

When comparing the spatial contiguity across the five
parcellation approaches, the mean SLIC and two-level SLIC
approaches greatly outperformed the other three approaches
when SS2 and SS3 were applied. It indicates that the SLIC
approaches intrinsically enforce spatial contiguity and the other
three approaches do not possess this ability. The reason is that
SLIC incorporates spatial structures in the clustering procedure,
while the MSC and MKSC algorithms do not.

In conclusion, the spatial contiguity largely depends on the
spatial structures, which could be introduced by the weight
matrix or by the SLIC algorithm. Only with appropriate spatial
structures, the resultant parcellations could have satisfying spatial
contiguity.

Functional Homogeneity
Then we investigated the homogeneity of the parcellations. For
each parcellation approach, each sparsifying scheme, and each
cluster number, there were 10 pairs of atlases. For each atlas,
homogeneity was calculated based on the atlas and the resting-
state fMRI data of the remaining 20 subjects that did not
participate in generating the atlas. Then the homogeneity results
were averaged across the 20 atlases. Figure 6B shows the averaged
homogeneity results. Note that homogeneity was plotted against
the average actual cluster number rather than the initialized
cluster number. It could be observed that homogeneity generally
increased with increasing cluster number, which is consistent
with Craddock et al. (2012), Gordon et al. (2016). In addition,
the homogeneity of a parcellation was influenced both by the
parcellation approach and the sparsifying scheme.

For SS1, the homogeneity results of the five approaches fitted
to the same curve. That is to say, when SS1 is employed,
homogeneity has little relevance to the parcellation approach.
It is similar to the results in Craddock et al. (2012) where
the modified silhouette width turns out to be very close for
various clustering methods. The homogeneity results of the mean
MSC, two-level MSC, and MKSC approaches fitted to the same
curve for SS2, but were quite different for SS3. The two SLIC
approaches obtained similar homogeneity results with any of the
three sparsifying schemes. By putting the homogeneity results
of the mean SLIC approach for the three sparsifying schemes
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FIGURE 5 | Illustration of the atlases computed by the five parcellation approaches and the three sparsifying schemes when the initialized cluster

number is 200. Each atlas is represented by its three orthogonal cross sections. The colormap for each atlas is randomly generated, and each color represents a

cluster.

together, we obtained Figure 7. The results of SS2 and SS3 were
close, both of which were slightly better than the results of SS1.
Based on this comparison, we infer that the best homogeneity
results are obtained by the mean MSC, two-level MSC, and
MKSC approaches with SS2; the second best homogeneity results
are obtained by the mean SLIC and two-level SLIC approaches
with SS2 or SS3.

The cluster homogeneity tends to decrease with increasing
cluster size (Gordon et al., 2016). This could be derived from
the fact that the homogeneity of a brain atlas tends to increase
with increasing cluster number since increasing cluster number
indicates decreasing cluster size. With the consideration, we
tried to explain the homogeneity results from the distribution of
cluster sizes. Figure 8 shows the histograms of the cluster sizes
for different parcellation approaches and different sparsifying
schemes when the initialized cluster number is 200. Except for
the mean MSC, two-level MSC, and MKSC approaches with
SS3, the histograms of the other methods all fitted well to
normal distributions with similar parameters. It indicates that
the clusters in the resultant parcellations have comparable sizes.
The homogeneity results corresponding to the three exceptions
were the worst among all methods. Therefore, the homogeneity
of a brain atlas is influenced by the distribution of its cluster
sizes. The distribution of cluster sizes depends on spatial
structures in the sense that SS1 and SS2 are related with spatial

constraint and the SLIC algorithm introduces spatial structures
in the clustering procedure. Therefore, the homogeneity results
could be explained by the spatial structures to a certain
degree.

The calculation of homogeneity involves not only the
parcellation, but also the functional connectivity of the fMRI
data that does not participate in generating the parcellation.
Some related factors that influence the fMRI data are the partial
volume effects and susceptibility artifacts due to low image
resolution (Craddock et al., 2012), and the smoothing effects
in the preprocessing procedure. These factors might diminish
the differences of the homogeneity results between different
conditions.

Group-To-Group Reproducibility
The group-to-group reproducibility was evaluated by the Dice
coefficient (Dice, 1945; Craddock et al., 2012). Specifically, we
first calculated a Dice coefficient for each pair of independently
generated atlases and then averaged the Dice coefficients across
the 10 pairs. Figure 6C shows the average Dice coefficient for
each parcellation approach, each sparsifying scheme, and each
cluster number. Similarly, it was plotted against the average actual
cluster number.

The SLIC approaches greatly outperformed the other three
approaches regardless of the sparsifying scheme. The reason
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FIGURE 6 | The results of different evaluation metrics of the five parcellation approaches and the three sparsifying schemes. The four rows correspond

to (A) the difference between the actual cluster number and the initialized cluster number, (B) the functional homogeneity, (C) the group-to-group reproducibility, and

(D) the group-to-subject reproducibility in order. The three columns correspond to SS1, SS2, and SS3 in order.

is likely to be that SLIC introduces spatial structures in
the clustering procedure while MSC and MKSC do not. It
demonstrates that the atlases generated by the SLIC approaches
generalize well between different groups of data. Comparing
between the two SLIC approaches, two-level SLIC outperformed
mean SLIC when SS3 was employed. With either of the other
two sparsifying schemes, the two SLIC approaches obtained

very close results. For SS1, two-level MSC outperformed mean
MSC, which is consistent with Craddock et al. (2012). However,
for SS2 and SS3, mean MSC generally outperformed two-
level MSC. Therefore, which one is better in the two MSC
approaches is largely determined by the sparsifying scheme. A
similar conclusion could be obtained when MKSC is added for
comparison since MKSC outperformed the twoMSC approaches
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TABLE 2 | The spatial discontiguity indices of the five parcellation

approaches and the three sparsifying schemes.

SS1 SS2 SS3

Mean MSC 0.05 8.46 22.09

Two-level MSC 2.14 11.74 374.04

MKSC 0.53 5.71 206.31

Mean SLIC 1.00 1.23 1.48

Two-level SLIC 1.06 1.43 2.25

FIGURE 7 | Homogeneity results of the three sparsifying schemes

when the parcellation approach is fixed to be the mean SLIC approach.

for SS3 but did not show any advantages over them for SS1
and SS2.

The Dice coefficients of the mean MSC, two-level MSC, and
MKSC approaches were generally decreasing with increasing
cluster number, which is consistent with Craddock et al. (2012),
Blumensath et al. (2013), Shen et al. (2013). In Blumensath
et al. (2013), the Dice similarity increased with increasing
cluster number for most approaches except the MSC approach.
The causes are suggested to be the spatial constraint and the
restriction on cluster size. This explanation is applicable to SS1
and SS2 since the two sparsifying schemes are closely related
to the spatial constraint and their resultant clusters are prone
to have comparable sizes and shapes, as shown in Figures 4,
5, 8. For the two SLIC approaches, the Dice coefficients were
relatively stable with different cluster numbers. Their trends
are not only influenced by the spatial constraint, but also
influenced by the additional spatial structures introduced by
SLIC.

By comparing the Dice coefficients across different sparsifying
schemes for each parcellation approach, we found that in most
cases, the results of SS2 were worse than the results of SS1, and
the results of SS3 were even worse. Considering the relationships
between their weight matrices and the spatial constraint, we
could infer that the Dice coefficients are positively influenced by
the spatial constraint.

As discussed above, the Dice coefficients could be explained
by spatial structures from three different kinds of viewpoints. It

indicates that the group-to-group reproducibility relies largely on
spatial structures.

Group-To-Subject Reproducibility
To assess the ability of a group level parcellation to generalize to
an individual subject level parcellation, we calculated the Dice
coefficient between the group level atlas generated by a group
of subjects and the individual subject level atlases generated by
the subjects in the complementary group. The results were then
averaged across subjects and groups. Note that the mean SLIC
and two-level SLIC approaches reduced to the same approach
when parcellating an individual subject. Similarly, the mean
MSC, two-levelMSC, andMKSC approaches reduced to the same
approach when parcellating an individual subject. Figure 6D
shows the results of group-to-subject reproducibility. The Dice
coefficients decreased comparing to the corresponding results in
Figure 6C. Nevertheless, most of conclusions from Figure 6C

were applicable to the results in Figure 6D. Most importantly,
the two SLIC approaches still greatly outperformed the other
three approaches regardless of the sparsifying scheme. The
results demonstrate the consistency between the group-to-group
reproducibility and the group-to-subject reproducibility.

In conclusion, the proposed SLIC approaches could obtain
relatively good overall clustering performances with different
evaluation metrics. The SLIC approaches combine Ncut and
SLIC. Ncut effectively captures the spatial structures from weight
matrices, and leads to good results in terms of spatial contiguity
and functional homogeneity consequently. On the other hand,
SLIC greatly improves reproducibility, which indicates better
generalization ability across different groups of data. Then by
combining Ncut and SLIC, the resultant parcellations could
obtain good results in all of the three evaluation criteria, which
fulfills our original purpose well.

Influences of Confounding Factors
Considering that many confounding factors might affect the
parcellation results, it is valuable to investigate their influences, as
stated below. Another two sparsifying schemes by which we tried
to match the sparsifying schemes in Craddock et al. (2012) and
Shen et al. (2013) were also investigated. See the Supplementary
Materials. In these experiments, we only randomly separated the
subjects into two groups twice in order to save computational
time. Table 3 lists the results of different evaluation metrics
of all experiments in order to make a full comparison. They
were calculated by averaging the results across different cluster
numbers for each parcellation method.

Influences of Global Signal Regression
In our study, we had applied a standard pipeline to preprocess the
resting-state fMRI data. Changes in the preprocessing steps such
as coregistration and spatial smoothing are likely to affect the
final parcellations (Craddock et al., 2012; Shen et al., 2013), but
it is difficult to investigate the influences of all potential changes.
Possibly the most controversial step in the preprocessing pipeline
is global signal regression (GSR; Yan et al., 2013). Therefore,
we tried to investigate the influence of GSR on parcellations
by incorporating GSR in the preprocessing pipeline. The three
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FIGURE 8 | The histograms of the cluster sizes for the five parcellation approaches and the three sparsifying schemes when the initialized cluster

number is 200. A normal distribution is fitted to each histogram in red.

sparsifying schemes and the five parcellation approaches were
applied likewise. The results of different evaluation metrics are
shown in Figure 9 and Table 3. Most of the results were very
close to the corresponding results on data without GSR except for
that the functional homogeneity results became much lower. The
reason might be that GSR leads to anticorrelations. Therefore, we
chose to preprocess the resting-state fMRI data without GSR.

Influences of Overclustering
For the two-level MSC approach and the two-level SLIC
approach, the cluster number at the individual subject level

was set to be the same as that at the group level by
default. However, van den Heuvel et al. (2008) claimed that
overclustering (OC) at the individual subject level would not
change the nature of the group clustering results. We tried to
validate this claim since it could reduce many computations.
Specifically, we fixed the cluster number at the individual
subject level to be 1000 and varied the cluster number at the
group level from 50 to 1000 with a step of 50. With this
setting, the two two-level approaches and different sparsifying
schemes were employed to generate parcellations. The results of
different evaluation metrics are shown in Figure 10 and Table 3,
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Wang and Wang Supervoxel-Based Whole Brain Parcellation

FIGURE 9 | The results of different evaluation metrics of the five parcellation approaches and the three sparsifying schemes when GSR is included in

the preprocessing pipeline. The four rows correspond to the difference between the actual cluster number and the initialized cluster number, the functional

homogeneity, the group-to-group reproducibility, and the group-to-subject reproducibility in order. The three columns correspond to SS1, SS2, and SS3 in order.

wherein the two-level approaches without overclustering are also
included for comparison. On the one hand, with or without
overclustering, the parcellations achieved very close results
in terms of homogeneity. On the other hand, overclustering
produced deteriorated reproducibility. Therefore, we did not
apply overclustering by default. The influences of overclustering
in van den Heuvel et al. (2008) and in our study are different. The
reason might be that the cluster number in the individual subject

level in van den Heuvel et al. (2008) is very small, i.e., from 15 to
45, but it is much larger in our study.

Influences of Different Weighting Functions
Then we proceeded to investigate the influences of different
weighting functions. To do this, we changed the weighting
function from the Pearson correlation coefficient to the Gaussian
kernel function. The Gaussian kernel function with SS2 would
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Wang and Wang Supervoxel-Based Whole Brain Parcellation

FIGURE 10 | The results of different evaluation metrics of the two-level approaches and the three sparsifying schemes. The two-level approaches, i.e.,

the two-level MSC approach and the two-level SLIC approach, with and without overclustering (OC) are displayed for comparison. The four rows correspond to the

difference between the actual cluster number and the initialized cluster number, the functional homogeneity, the group-to-group reproducibility, and the

group-to-subject reproducibility in order. The three columns correspond to SS1, SS2, and SS3 in order.

generate the weight matrix in Shen et al. (2013). The three
sparsifying schemes and the five parcellation approaches were
then applied likewise. The results of different evaluation metrics
are shown in Figure 11 and Table 3.

From those results, changing the weighting function
from the Pearson correlation coefficient to the Gaussian

kernel function would hardly affect the clustering
performances.

A major reason for the result is that the clustering
performance of a Ncut-based approach is stable with different
weighting functions (Shi and Malik, 2000). To explain further,
the Gaussian kernel function is positively related to the Pearson
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Wang and Wang Supervoxel-Based Whole Brain Parcellation

FIGURE 11 | The results of different evaluation metrics of the five parcellation approaches and the three sparsifying schemes when the weighting

function is chosen to be the Gaussian kernel function. The four rows correspond to the difference between the actual cluster number and the initialized cluster

number, the functional homogeneity, the group-to-group reproducibility, and the group-to-subject reproducibility in order. The three columns correspond to SS1, SS2,

and SS3 in order.

correlation coefficient by the following equation

e
−‖vi−vj‖22

σ
2 = e

− (1−corr(vi ,vj))×2

σ
2 .

However, when SS1 is employed, even if the weighting function
is set to be a constant value one, the MSC approaches

could obtain comparable results in terms of homogeneity
and reproducibility (Craddock et al., 2012). It is known
as the random parcellation, and it brings quite a lot of
doubts to the rationality of the connectivity-based parcellations
(Craddock et al., 2012; Blumensath et al., 2013; Shen et al.,
2013; Gordon et al., 2016). To sum up, when SS1 is
employed, different weighting functions such as the Pearson
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correlation coefficient, the Gaussian kernel function, and a
constant function would not greatly affect the clustering
performances.

Then it is interesting to investigate whether the other two
sparsifying schemes also possess this property. To do this, we
constructed trivial weight matrices (all reserved weights = 1)
for the three sparsifying schemes. It was achieved by setting the
non-zero elements in the three kinds of sparse weight matrices
constructed by the Pearson correlation coefficient to be ones. This
operation was only applied to the individual subject level weight
matrix, but not to the second level weight matrix. The trivial
weight matrices with SS1 was equal to the spatial constraint,
which was identical for different subjects. In this case, the mean
MSC, two-levelMSC, andMKSC approaches reduced to the same
approach that was denoted as the MSC approach. Meanwhile,
the mean SLIC and two-level SLIC approaches reduced to the
same approach that was denoted as the SLIC approach. For
each of the two approaches, there was only one parcellation
for each initialized cluster number. Therefore, no corresponding
reproducibility was calculated. The results of different evaluation
metrics on these trivial weight matrices corresponding to the
three sparsifying schemes are shown in Figure 12 and Table 3.

The homogeneity results of the MSC approach on the spatial
constraint were close to the homogeneity results of the mean
MSC and two-level MSC approaches on the weight matrix with
SS1, which is consistent with Craddock et al. (2012). For SS2 and
SS3, the differences between the initialized cluster number and
the actual cluster number of the mean MSC approach became
lower, the reproducibility results of the mean MSC and mean
SLIC approaches became lower, and the spatial discontiguity
indices of all of the five approaches became larger. The remaining
results were close to the corresponding results when the other
two weighting functions were employed. To sum up, changing
the weighting function from the Pearson correlation coefficient
or the Gaussian kernel function to the constant function would
lower some of the clustering performances, butmost of the results
would be similar.

A potential reason of this finding is that the reserved weights
with the Pearson correlation coefficient are large, all close to
ones, thus leading to similar clustering performances. It cannot
fully explain the results, as shown in Figure 1C. Then the
underlying reason might be the spatial structures incorporated
in the parcellation approaches, which are invariant with different
weighting functions. The spatial structures corresponding to
different sparsifying schemes are different. This could explain
why the results of the three sparsifying schemes have significant
differences. In conclusion, all of the five parcellation approaches
might rely heavily on spatial structures. This is the major
limitation of the Ncut-based approaches.

Average Results
Table 3 concentrates the average results of different evaluation
metrics. Since the actual cluster numbers of different parcellation
methods are not the same, it is generally not appropriate to
compare these methods by the overall results. An exception
is that with the same parcellation approach and the same
sparsifying scheme, setting the weighting function to be the

Pearson correlation coefficient or the Gaussian kernel function
would obtain very similar results in terms of the actual cluster
number, though still not the same. Under the premise that the
differences are negligible, we could compare the corresponding
results. The results in this table demonstrate that the two
weighting functions obtain very close clustering performances.

DISCUSSION

Alternative Algorithm Procedures
The SLIC algorithm could be directly applied on the resting-
state fMRI time series to perform parcellation, similar to the
case when SLIC is applied to segment 3D images (Lucchi et al.,
2012). By this way, the intensity information rather than the
connectivity information is utilized. A study which built on this
idea and focused on individual subject level parcellation had
been previously presented in (Wang et al., 2016). By extending
the idea, we could construct the mean approach and the two-
level approach accordingly in order to generate group level
parcellations. For the mean approach, the fMRI time series
were concatenated or averaged across subjects. For the two-
level approach, a two-level weight matrix was defined by the
averaged adjacency matrix, and then SLIC was applied on the
two-level weight matrix to perform parcellation. We had tried
the two approaches and found that they tended to be worse
than the connectivity-based parcellation approaches under the
three evaluation metrics. The reason might be that connectivity
information is much richer than intensity information.

Another category of parcellation approaches is to perform
parcellation directly on the connectivity matrices. Namely, we
skipped the step of extracting features from the connectivity
matrices by Ncut. Except for this change, all of the other steps
were the same as in the algorithm procedures in Figure 3. The
major problem of this thought is that the dimensionality of
the connectivity matrices is very high and it becomes much
harder to compute in practice. In fact, Ncut is very important
in the parcellation procedure not only because it could extract
relevant features but also because it could effectively reduce data
dimensionality.

Factors That Determine the Parcellation
The factors that determine the functional connectivity-based
parcellation could be concluded into five major aspects. The
first aspect is the choice of the preprocessing pipeline of fMRI
data. The impacts of different preprocessing steps such as
coregistration and spatial smoothing had been discussed in
Craddock et al. (2012), Shen et al. (2013). In our study, we
had examined the influences of GSR and found that GSR led
to worse homogeneity results. Therefore, we did not apply GSR
in the preprocessing procedure by default. Generally, we made
our parcellations reasonable by utilizing a standard preprocessing
pipeline (Yan and Zang, 2010; Yan et al., 2013). The second aspect
is the selection of the cluster number. Since there is no optimal
choice as far as we know, we varied the cluster number from 50
to 1000 with a step of 50 to generate parcellations at multiple
granularities. To achieve group level parcellations, we set the
cluster numbers at the individual subject level and at the group
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FIGURE 12 | The results of different evaluation metrics of the five parcellation approaches and the three sparsifying schemes when the weighting

function is set to be a constant value one. The four rows correspond to the difference between the actual cluster number and the initialized cluster number, the

functional homogeneity, the group-to-group reproducibility, and the group-to-subject reproducibility in order. The three columns correspond to SS1, SS2, and SS3 in

order.

level to be the same. From the results of functional homogeneity
and reproducibility, we still could not find an optimal cluster
number. Therefore, parcellations with different granularities
might be applied to different studies in accordance with
requirements. Note that they are not hierarchically consistent
which is a property possessed only by parcellations generated
from hierarchical clustering. The third aspect is the definition

of the weight matrix. It includes the choice of the weighting
function, the choice of the sparsifying scheme, the choice of
parameters in the weighting function and the sparsifying scheme,
whether to set the diagonal elements in the non-empty rows and
columns to be zeros or ones, and whether to apply the sparsifying
schemes to the mean and second level weight matrices or not.
These factors were carefully investigated in our experiments. The
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fourth aspect is the parcellation approaches utilized. Attentions
should be paid to the initialization of the SLIC supervoxels and
the definition of the unified distance in SLIC. We initialized the
supervoxel centers by the centers of tightly stacked spheres in
3D space. The unified distance is composed of the functional
distance and spatial distance, and we set the parameter m in
the unified distance to be one empirically. The fifth aspect is
postprocessing. After obtaining the atlases by these parcellation
approaches, we might separate the spatially distinct regions and
merge some small clusters to make the atlases more reasonable
(Achanta et al., 2012). However, from the results in Table 3 and
Figure 8, there were only few spatially distinct regions and small
clusters except when the mean MSC, two-level MSC, and MKSC
approaches were combined with SS3. To avoid the influences
of the postprocessing steps on functional homogeneity and
reproducibility, we did not apply postprocessing on the atlases.
Considerations on the above aspects guarantee the rationality of
our parcellations.

Limitation of the Parcellation Approaches
The SLIC approaches yield clusters with comparable shapes and
sizes, which are unlikely to be the functional units (Glasser et al.,
2016) in the brain. This is a common problem encountered
by all of the Ncut-based approaches (Craddock et al., 2012;
Shen et al., 2013) since they incorporate strong spatial structures
represented by the spatial constraint in the clustering procedure.
The spatial constraint is necessary in order to guarantee spatial
contiguity for the MSC and MKSC approaches, as shown in
the experiments. For the SLIC approaches, additional spatial
structures are introduced by initializing an ideal geometric
pattern, integrating the spatial distance into the unified distance,
and searching in a local space. The additional spatial structures
lead to improved reproducibility, but are likely to aggravate the
aforementioned problem. Recently, Parisot et al. (2016) applied
spectral clustering with spatial constraint on supervertices to
perform whole brain parcellation and encountered the same
problem. It is because spatial structures were introduced by the
supervertex generation procedure and the spatial constraint.

Except for Ncut, a major category of whole brain parcellation
approaches is based on hierarchical clustering (Blumensath et al.,
2013; Moreno-Dominguez et al., 2014; Thirion et al., 2014;
Parisot et al., 2016). In order to guarantee spatial contiguity of
resultant clusters, spatial structures should be incorporated by
only merging the neighboring regions. This rule also applies to K-
means in whole brain parcellation (Parisot et al., 2016). For these
clustering algorithms, the influences of the spatial structures on
the resultant parcellations are yet to be investigated.

When subdividing a small ROI into a few clusters, the
parcellation approach could be purely data-driven without
incorporating spatial structures. For example, Kim et al. (2010)
applied K-means to parcellate the medial frontal cortex into
two subregions, Fan et al. (2016) applied spectral clustering
to parcellate each of the 82 seed regions in the Desikan-
Killiany atlas into 2–12 clusters. In these studies, no spatial
constraint was applied. Since fMRI data are typically noisy
and smooth, the generated clusters could have good spatial
contiguity. However, these properties of fMRI data are not

adequate to guarantee the spatial contiguity of whole brain
parcellation approaches. Generally, spatial structures might
be unnecessary when parcellating a small ROI, but are
necessary when parcellating the whole brain. Therefore, it
is urgent to find a proper way to tackle the limitations
introduced by the spatial structures for whole brain parcellation
approaches.

With the limitation, the proposed approaches are still
well-suited to fulfill the original purpose of parcellating the
brain into spatially contiguous, functionally homogeneous, and
reproducible clusters. Consequently, they could find applications
in various studies. For example, the atlases generated by the
Ncut-based approaches had been successfully applied in tracking
ongoing cognition (Gonzalez-Castillo et al., 2015), identifying
individuals (Finn et al., 2015), measuring sustained attentional
abilities (Rosenberg et al., 2016), etc. Therefore, we remain
optimistic about our approaches and expect the generated atlases
to facilitate related studies.

Alternatives of the Evaluation Metrics
As far as we know, there is no gold standard to evaluate a
functional connectivity-based parcellation. In other words, how
to judge whether a parcellation is good or not still remains
to be an open problem. A comprehensive review of different
evaluation criteria and many related metrics could be found in
Eickhoff et al. (2015). The review claimed that it is natural for the
connectivity-based parcellation analysis to resort to exploratory
statistics rather than inferential statistics, because it is difficult
to formulate a null hypothesis for a parcellation to test against
and consequently it is difficult to assess the statistical significance
of the parcellation. The exploratory statistics include various
cluster validity criteria, i.e., various evaluation criteria, and there
are many different choices for each criterion. It is suggested
that a parcellation should be assessed globally and synthetically
using different cluster validity criteria, as done in this study.
Some alternatives of the evaluation metrics employed in our
experiments are discussed as follows.

Several alternative metrics concerning functional
homogeneity are presented in related studies. In van den
Heuvel et al. (2008), the Ncut cost is employed as an evaluation
metric which measures inhomogeneity. In Craddock et al.
(2012), a modified silhouette width (Rousseeuw, 1987) and an
accuracy of representation are defined. The modified silhouette
width considers not only within-cluster homogeneity but also
between-cluster heterogeneity. The accuracy of representation
intends to evaluate the ability of a brain atlas to represent the
functional connectivity patterns at the voxel scale, and its result
depends on the seed region chosen in prior. In Shen et al. (2013),
an inhomogeneity metric is defined by the average within-cluster
dissimilarity wherein the dissimilarity is defined by Euclidean
distance. In Gordon et al. (2016), principal component analysis
is applied on the whole brain connectivity patterns of each
cluster, then the cluster homogeneity is defined by the percent
of variance explained by the largest principal component, and
finally the cluster homogeneity results are averaged to obtain the
homogeneity of a brain atlas. These metrics are closely related to
the functional homogeneity.
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Alternative metrics for evaluating reproducibility include, but
are not limited to, Jaccard index, Hausdorff distance, mutual
information, variation of information, and Rand index (Shen
et al., 2013; Thirion et al., 2014; Ryali et al., 2015). In our study,
we focus on the Dice coefficient since it is widely used and very
typical.

One way to extend the class of evaluation criteria is to measure
the overlap between the clusters generated by connectivity-
based parcellation approaches and the regions generated from
task activation, myelin maps, cortical thickness, topography, or
electrical cortical stimulation (Blumensath et al., 2013; Laumann
et al., 2015; Wang et al., 2015; Parisot et al., 2016) etc. It
provides external validity different from the aforementioned
evaluation metrics. However, it is based on the assumption that
neuroimaging data with different modalities should yield the
similar parcellations, which has long been suspectable (Amunts
et al., 2014; Eickhoff et al., 2015). Recently, Glasser et al. (2016)
treated the spatially overlapping gradient ridges in at least two
independent modalities as an areal border and found that the vast
majority of areal borders satisfied this requirement. It provides a
strong evidence for that assumption. Therefore, the rationality
of the connectivity-based parcellations could be validated by
comparing with multi-modal areal features. Nevertheless, it is
difficult to quantify this evaluation criterion at whole brain
level for parcellations with multiple granularities. This kind of
evaluation is beyond the scope of our study.

Another independent evaluation criterion is the hierarchical
consistency (Kahnt et al., 2012). That is, with an ideal hierarchical
structure, the clusters in a fine parcellation should always stem
from the clusters in a coarse parcellation. This parent-child
congruency is perfectly guaranteed by hierarchical clustering
(Blumensath et al., 2013; Moreno-Dominguez et al., 2014),
but unlikely possessed by other kinds of clustering methods,
especially when the cluster number is large. Hence, it is not
discussed in this study.

Limitation of the Evaluation Metrics
We used three different evaluation criteria, i.e., spatial contiguity,
functional homogeneity, and reproducibility, to evaluate
different classes of properties of a brain atlas. The evaluation
metrics are majorly inherited from Craddock et al. (2012), Shen
et al. (2013) in order to make a direct comparison with these
studies. However, from the experiments, we find that these
evaluation metrics have some inherent limitations.

The first criterion, i.e., spatial contiguity, is generally
reasonable. It is unlikely that the clusters in a good parcellation
contain many spatially discrete regions, though few ones are
tolerable. There might be paired clusters across hemispheres due
to the symmetrical property of the brain. However, they tend to
be recognized as separate clusters due to long spatial distance. An
exception is that some paired clusters might be joined together
around the midline.

The second criterion, i.e., functional homogeneity, suffers
from the problem that it could hardly differentiate various
methods. As long as the clusters are spatially contiguous, e.g.,
when the sparsifying scheme is chosen to be SS1 or SS2, the
homogeneity of a brain atlas is largely determined by the

cluster number. Related metrics such as the modified silhouette
width and the accuracy of representation also behaved like
this in Craddock et al. (2012). Therefore, it is worthwhile
to seek or design a metric that could evaluate homogeneity
with higher discriminative power. Attentions should be paid
to the factors that might influence functional connectivity
since it is a key role other than the atlas in defining
homogeneity.

The third criterion, i.e., reproducibility represented by the
Dice coefficient, could distinguish different methods. However,
a problem exists that we cannot definitely claim the higher the
reproducibility the better. A high reproducibility result indicates
more commonalities across subjects while a low reproducibility
result indicates more idiosyncrasies from each subject. In this
study, we aim to obtain group parcellations that would be
widely applicable. Therefore, high reproducibility results are
more preferred. From this viewpoint, the purposed approaches
achieve good performances. Nevertheless, it should be cautious
that reproducibility might rely on spatial structures heavily and
render the influence of fMRI data very weak. This problem is
difficult to be avoided in whole brain parcellation since it is
necessary to incorporate spatial structures in order to guarantee
the spatial contiguity of the generated atlases.

In conclusion, both spatial contiguity and reproducibility rely
on spatial structures. When spatial structures are dominant in
the parcellation procedure, the generated atlases might only
weakly relate with fMRI data, as demonstrated by the random
parcellation (Craddock et al., 2012). Measuring to what degree
fMRI data is utilized in a parcellation is the task of homogeneity
related metrics, but these metrics typically do not have enough
power to distinguish different parcellation approaches. The
limitations of the evaluation metrics complicate the studies
of brain parcellation since the suitabilities of these metrics
are yet to be evaluated. Moreover, parcellation approaches
are usually designed to fit the purposes represented by these
evaluation metrics. Then inappropriate evaluation metrics might
increase the risk of overfitting or bias. It is therefore very
urgent to seek or design some evaluation metrics that are
necessary and sufficient to judge whether a parcellation is good
or not. This is the prerequisite for a good brain parcellation
approach and consequently good brain parcellations. As things
stand, the most credible evaluation criterion is to compare
a parcellation with multi-modal areal features manually by
experienced neuroanatomists (Glasser et al., 2016).

Future Directions
For validation and application of the proposed approaches,
it is meaningful to evaluate them on an independent dataset
collected with a different scanner (Craddock et al., 2012;
Gordon et al., 2016) and to apply the approaches to data
with different modalities such as architecture, function, and
topography (Blumensath et al., 2013; Finn et al., 2015; Wang
et al., 2015). Integrating multi-modal neuroimaging data to carry
out parcellation naturally guarantees the rationality of its findings
(Glasser et al., 2016), thus also being worthwhile to explore. In
addition, the inter-individual variability of the parcellations is
worth studying since it is particularly important in applications
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such as development, aging, disease, and personalized medicine
(Wang et al., 2015; Glasser et al., 2016).

For improving whole brain parcellation approaches, since
existing approaches tend to rely heavily on spatial structures,
it is necessary to find a way to weaken this dependence. In
addition, the lack of a gold standard in evaluating a whole
brain parcellation makes the efforts in algorithm design and
evaluation very difficult, and thus it is very urgent to be dealt
with.

CONCLUSION

This paper presents two novel approaches, i.e., the mean
SLIC approach and the two-level SLIC approach, to parcellate
whole brain resting-state fMRI data into spatially contiguous,
functionally homogeneous, and reproducible clusters. The
proposed approaches integrated Ncut and SLIC. Specifically,
Ncut was employed to extract features from connectivity
matrices, and then SLIC was applied on the features to
generate parcellations. Three existing Ncut-based parcellation
approaches, i.e., the mean MSC, two-level MSC, and MKSC
approaches, were compared with the proposed approaches
in the study. The two SLIC approaches obtained relatively
good overall performances. In terms of spatial contiguity,
the SLIC approaches had evident advantages over the three
competing approaches when the spatial constraint was not
employed. In terms of functional homogeneity, the SLIC
approaches obtained the second best results that were just
slightly lower than the best ones. In terms of reproducibility,
the SLIC approaches greatly outperformed the three competing
approaches, both in the group-to-group aspect and the group-
to-subject aspect. In addition, we had investigated the influences

of GSR, overclustering, different weighting functions, and
different sparsifying schemes on clustering performances. The
results demonstrate the superiority of the proposed approaches.
Therefore, the resultant atlases could be applied in related
studies. Since our study did not find an optimal cluster
number, the cluster number could be set according to one’s
requirements.
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