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Though fairly well-studied in adults, less is known about the manifestation of resting state

networks (RSN) in children. We examined the validity of RSN derived in an ethnically

diverse group of typically developing 6- to 7-year-old children. We hypothesized that the

RSNs in young children would be robust and would reliably show significant concordance

with previously published RSN in adults. Additionally, we hypothesized that a smaller

sample size using this robust technique would be comparable in quality to pediatric

RSNs found in a larger cohort study. Furthermore, we posited that compared to the adult

RSNs, the primary sensorimotor and the default mode networks (DMNs) in this pediatric

group would demonstrate the greatest correspondence, while the executive function

networks would exhibit a lesser degree of spatial overlap. Resting state functional

magnetic resonance images (rs-fMRI) were acquired in 18 children between 6 and 7

years recruited from an ethnically diverse population in the Mid-South region of the United

States. Twenty RSNs were derived using group independent component analysis and

their spatial correspondence with previously published adult RSNs was examined. We

demonstrate that the rs-fMRI in this group can be deconstructed into the fundamental

RSN as all the major RSNs previously described in adults and in a large sample that

included older children can be observed in our sample of young children. Further, the

primary visual, auditory, and somatosensory networks, as well as the default mode, and

frontoparietal networks derived in this group exhibited a greater spatial concordance with

those seen in adults. The motor, temporoparietal, executive control, dorsal attention, and

cerebellar networks in children had less spatial overlap with the corresponding RSNs in

adults. Our findings suggest that several salient RSNs can be mapped reliably in small

and diverse pediatric cohort within a narrow age range and the evolution of these RSNs

can be studied reliably in such groups during early childhood and adolescence.
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INTRODUCTION

Over the course of the past decade, there has been an increased
effort toward understanding the functional architecture of brain,
specifically in relation to resting brain networks (Gusnard et al.,
2001). The most common approach for characterizing the
resting brain networks is to quantify the temporal correlation
of neuronal activity between anatomically distant brain regions,
termed functional connectivity. Most commonly, the distributed
functional connectivity patterns between brain areas that share
similar variation in their activity over time are identified using
a data driven technique, the independent component analysis
(ICA) (Jafri et al., 2008; Sohn et al., 2012). Each independent
component represents a functional network that consists of
constituent brain regions having a closely correlated time course.
Several such components or networks, each with its own
temporal characteristic can be simultaneously derived without
specifying brain regions. Utilizing the ICA approach, large-scale
fMRI studies of neurologically intact adults have identified a set of
robust and reproducible brain networks, generally acknowledged
to reflect the normative profile of brain activity during rest (Smith
et al., 2009; Zuo et al., 2010; Doucet et al., 2011; Yeo et al., 2011;
Allen et al., 2014). The functional relevance of these resting state
networks (RSN) are interpreted, primarily, on the basis of their
spatial profile and include: default mode (DMN), medial, lateral,
and parietal visual, auditory, somatosensory, motor, attention,
executive control, cerebellar, and frontoparietal networks.

Though fairly well-studied in adults, less is known about
the manifestation of these functional networks in typically
developing children. In the few published studies to date,
derivation of RSNs using fMRI in typically developing children
has been attempted in a small number of infants and toddlers
during various stages of sleep (Fransson et al., 2011; Manning
et al., 2013), in children under sedation (Funakoshi et al., 2016),
in awake children (5–10 years old; de Bie et al., 2012), and
adolescents (9–15 years old; Littow et al., 2010; Jolles et al.,
2011; Thomason et al., 2011). In a small study on six healthy
preschool children aged 2–5 years during stage 3, non-rapid
eye movement sleep, 18 non-artifactual RSNs were derived
(Manning et al., 2013). While the sensorimotor, auditory, visual,
cerebellar, and executive control networks were identifiable, the
RSNs were contaminated by artifacts since noise components
from individual data were not removed. In another study of
18 infants (average age 10 months), most connected regions
in these children were limited to primary motor and sensory
cortices, where as in adults, prefrontal and association areas
were better connected (Fransson et al., 2011). The DMN was
seen to be present in children (1–8 years of age) even under
sedation, albeit with decreased connectivity than that noted in
adults (Funakoshi et al., 2016). However, this study included
mainly boys (14/15) and did not examine other RSNs. The RSNs
supporting basic motor and sensory functions were found to
have a functional organization similar to mature adult patterns
in a study on eighteen 5- to 8-year-old children in an awake
state. However, in these children, the DMN and RSNs relating
to attention and executive control were observed to be more
fragmented than the corresponding adult networks (de Bie et al.,

2012). Recently, a large sample study in Dutch children (6–10
years old) extracted RSNs from 536 children (Muetzel et al.,
2016). Similar to previous studies in awake children, the large
cohort study found cerebellar, default-mode, executive control,
frontoparietal, parietal, sensorimotor, and visual networks to
be highly reproducible. Overall, the studies of RSNs in awake
children, the ICA-derived primary networks like visual, auditory,
somatosensory, and motor networks closely resemble adult
networks in their spatial configuration, while the networks
that mediate higher cognition including executive control, and
frontoparietal networks demonstrate greater variability with
fewer regions in the putative RSNs in children (de Bie et al., 2012;
Muetzel et al., 2016).

While the studies in young children provide a good
foundation to future studies of RSNs in children in this age, they
do have a few disadvantages: 1. There is variability in the number
of derived networks that range from 20 to 70, which precludes
direct comparisons (Smith et al., 2009; de Bie et al., 2012; Muetzel
et al., 2016); 2. The age ranges of 6–10 years (Muetzel et al.,
2016) and 5–8 years (de Bie et al., 2012) are large, especially since
there is significant motor and cognitive development during this
time span; In fact, age related changes in default mode and
executive control networks are observed in a cohort of 6–10
year olds (Muetzel et al., 2016); 3. Often, the studies examine
few selected RSNs. 4. Racially and socioeconomically diverse
populations have not been widely studied as most studies are
from European countries with mostly Caucasian children from
higher socioeconomic strata (Littow et al., 2010; de Bie et al.,
2012; Muetzel et al., 2016). Hence, this study aims to address
the lack of diversity in current normative developmental studies
by studying a more inclusive population and a narrower age
range of 6–7 year old children in order to identify age specific
RSNs.

Accordingly, the purpose of this study was to derive resting-
state networks in a diverse group of 6- to 7-year-old children from
the Mid-South region of the United States and compare their
spatial pattern with established RSNs in adults and approximately
age-matched children. We quantified the spatial concordance
between the RSNs identified in our study population and the
publicly available 20 Component adult sample set generated
by Smith et al. (2009). However, as the RSNs in children
between 5 and 10 years (de Bie et al., 2012; Muetzel et al.,
2016) were not publically available, comparison between our
study and the previous pediatric studies was limited to visual
evaluation. We predicted that the RSNs in young children would
be robust and could be mapped reliably in our diverse cohort.
We also expected that the RSNs of typically developing 6- to
7-year-old children would be qualitatively similar to previously
reported pediatric RSNs and show significant spatial overlap
with published adult RSNs. Consistent with previous reports, we
expected that primary sensory networks, i.e., visual, auditory, and
somatosensory as well as primary motor and the default mode
networks (DMNs) in this racially diverse pediatric group would
demonstrate significant spatial concordance with those reported
in adult cohort studies, while higher cognition networks (like the
executive control and frontoparietal networks) would exhibit a
lesser degree of spatial overlap.
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MATERIALS AND METHODS

Participants
Participants were recruited from the Conditions Affecting
Neurocognitive Development and Learning in Early Childhood
(CANDLE) study (www.candlestudy.com) cohort enrolled
between 2007 and 2011. Out of 893 children who had completed
their 4-year visit at the time of recruitment for the current
study, 492 children fulfilled the age criteria of turning 6 years
between January 1st and November 7th of 2015. From this group,
200 children meeting the following criteria were identified as
potential participants: 1. No prenatal exposure to drug, alcohol
or smoking; 2. Born full term; 3. An average or above score on
the full scale Stanford-Binet Intelligence Scales (SB5) (Roid,
2003) at the age of 4; 4. Score in the normal range on the Child
Behavior Checklist for Ages 1½–5 (CBCL-3) (Achenbach and
Rescorla, 2000; Achenbach and Ruffle, 2000) syndrome scale,
DSM-oriented scales, broadband scale, or total problems score;
and 5. Children without history of autism spectrum disorder
screened by the Modified Checklist for Autism in Toddlers
(M-CHAT; Robins et al., 1999, 2001). Flyers were mailed out
in batches based on the child’s age (older children were invited
first). Parents of 70 children contacted the study personnel
and expressed their interest in participating in the study. Of
them, 20 children having metal in body or mouth, were left
handed, had a history of neurological disease, concussion,
or head injury were not included in the study. Thirty-seven
typically developing children between the ages of 6 and 7
years were enrolled in the study. The cohort of 37 children
with a mean age of 6.7 years included 20 girls and 17 boys
and their racial profiles (56% African American, and 44%
Caucasian) were representative of the area of recruitment. The
structural brain MRI scan was reviewed for abnormalities by a
Board Certified Pediatric Neuroradiologist. Participants’ right
handedness was confirmed by the short form of the Edinburgh
Handedness Inventory (Veale, 2014) and observation by the
research staff. Seven participants were excluded from the study
post-consent where 2 were found to be left handed, 1 had
prenatal tobacco exposure, 1 had prenatal alcohol exposure,
and 3 had scores on CBCL-3 in the clinical range. Two children
could not tolerate the fMRI scanning and 10 participants
were further excluded from fMRI analysis due to excessive
motion artifacts. Therefore, the sample size included in the final
analysis was 18 children. Their mean age was 6.7 years, and
the gender composition of the children was equal number of
males and females. The racial profile of the study group included

equal distribution of both African-American and Caucasian

children. Other characteristics of the participants are detailed in

Table 1.
The study was performed in accordance with the

Declaration of Helsinki and approved by the Institutional
Review Board of the University of Tennessee Health Science
Center. The study procedures were explained in an age-
appropriate manner to the participants, and a written
informed consent was obtained from their legally authorized
representatives, and the families were compensated for their
time.

TABLE 1 | Basic characteristics of study population (n = 18).

Mean ± SD Range

Age (years) 6.7 ± 0.5 6.3–7.9

Sex (M/F, n) 9/9

Height (cm) 122.1 ± 5.1 111.0–128.8

Weight (kg) 25.0 ± 4.5 17.2–36.1

BMI percentile 62.3 ± 24.7 15.0–98.7

Race (AA/CA, n) 9/9

Gestation age (weeks) 39.3 36.5–41.1

Full-scale IQ 102 90–128

Avg. RMS relative motion (mm) 0.17 0.03–0.49

BMI, Body Mass Index; AA, Non-Hispanic, African American; CA, Non-Hispanic,

Caucasian; IQ, intelligence quotient; RMS, root mean square.

Data Acquisition
A Siemens 3T Verio MRI Scanner (Siemens AG, Munich, DE)
with a 12-channel head coil was used to perform structural and
functional brain imaging. A T2∗-weighted gradient-echo echo-
planar-imaging BOLD-fMRI was acquired as the children lay
still in the scanner with closed eyes. Two hundred and three
volumes with a voxel size of 2.55 × 2.55 × 3.5 mm, TR of
3,000s, TE of 30s, a flip angle of 90◦, and Field of view = 256
× 204 × 140 were acquired in an ascending slice order. After
the fMRI, a high-resolution anatomical image was acquired using
a T1 weighted 3D sequence (TR/TE/flip angle = 1,900/2.93/9◦)
with slice-select inversion recovery pulse (TI = 900 ms), field
of view = 512 × 512 × 176, and 0.5 × 0.5 × 1 mm spatial
resolution. The children practiced lying still with their eyes closed
in the MRI scanner prior to scanning. Children were allowed to
watch cartoons during the anatomical MRI session. As part of
this study, diffusion tensor images were also acquired and will be
reported separately.

Preprocessing and Registration
The initial 3 volumes of the fMRI data were discarded and the
remaining 200 volumes acquired when fMRI signals were in
steady-state were further analyzed. The DICOM images were
converted to the NIFTI format using the Multi-image Analysis
GUI (Mango; ric.uthscsa.edu/mango/). Structural images were
stripped of the cranial and outer visceral layer using the Brain
Extraction Tool (BET) plug-in withinMango (Smith, 2002). Both
functional and structural images were visually inspected to look
for major movement artifacts and usability of data and removed
from the study as necessary.

The fMRI data were processed using FMRIB Software Library
(FSL) (v5.0; http://fsl.fmrib.ox.ac.uk/fsl/; Jenkinson et al., 2012).
The data were preprocessed and corrected for slice timing and
motion artifacts using motion correction based on FMRIB’s
Linear Image Registration Tool (MCFLIRT; Jenkinson et al.,
2002). The absolute and relative movements were evaluated
and 4D volumes with movement >2 mm were removed. This
resulted in exclusion of 10 participants, resulting in a final sample
size of 18. Brain extraction was carried out on the fMRI data
using BET (Smith, 2002). fMRI images were smoothed (Full
width half maximum—FWHM 5 mm), normalized by a single
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multiplicative factor, and high pass temporal filtering applied at
a sigma = 50.0s (Jenkinson and Smith, 2001; Jenkinson et al.,
2002). FSL’s FMRIB’s Linear Image Registration Tool (FLIRT)
algorithm registered each participant’s fMRI to their respective
anatomical MRI using boundary based registration and to the
Montreal Neurological Institute (MNI) asymmetric 4.5–8.5 year
old standard brain (http://nist.mni.mcgill.ca/; Fonov et al., 2011).

Individual Independent Component
Analysis
The ICAs were decomposed from each preprocessed, 4D
volume into using single-session ICA using FSL’s Multivariate
Exploratory Linear Optimized Decomposition into Independent
Components tool (MELODIC v3.14) (Beckmann and Smith,
2004). The time course and the spatial distribution of
components in each participant were visually inspected and
components identified to be motion or physiological artifacts
resulting from large blood vessel and cerebral spinal fluid
pulsations were removed using the fsl_regfilt program within the
FSL package. In addition, components that had sudden spikes
in the time course or significant high frequency content were
also rejected. This step was performed with three thresholds: A
liberal threshold where 20–25% components were identified as
noise and removed, moderate where 40–60% components were
identified as noise and removed, and conservative where 60–
80% components were identified as noise and removed. In this
scenario, with liberal threshold, any noisy IC that had some
brain-derived components was not removed. However, with
conservative threshold, such ICs were excluded. The resulting
filtered and de-noised 4D volumes were transformed to standard
space and input into the group analysis pipeline.

Group Independent Component Analysis
The cleaned and transformed volumes (n = 18) were run
through the multisession temporal concatenation option in
MELODIC to generate group level independent component
networks (Beckmann and Smith, 2005). We restricted the
dimensionality to 20 components as the study in adults that we
are comparing against also used similar values. The similarity of
spatial distribution between the RSN components derived from
this group analysis and the 20 Component adult sample set, as
generated by Smith et al. (2009) was examined using Pearson
cross-correlation algorithm implemented in FSL (fslcc). We
applied Fisher’s r-to-z transform using a conservative degrees-
of-freedom value of 500 (number of independent resolution
elements) and converted the resultant z score to a P-value (Smith
et al., 2009). Using this method, we found that comparisons with
Pearson’s r > 0.204 were significantly spatially correlated (P <

0.0001). The RSNs identified in our cohort were also compared to
previously published pediatric RSNs (de Bie et al., 2012; Muetzel
et al., 2016) by visual inspection.

Dual Regression Analysis
In order to investigate if any of the demographic,
anthropometric, and cognitive metrics influenced the spatial
composition of each participant’s RSNs, we performed a dual
regression analysis. The demographic variables examined

included gender, race, age, and gestational age at birth. The
anthropometric parameters including the raw value and their
gender and age adjusted percentiles of height, weight, and
body mass index (BMI), and the cognitive variable of full-scale
intellectual quotient (IQ) were also used as regressors. First,
the degree to which each group level RSN was represented in
each subject was estimated. For this, the spatial map of each
group level RSN was regressed into each subject’s 4D volume
and subject specific time courses were generated and these time
courses were regressed into the same 4D volume to derive a
subject specific set of RSNs. Then, the associations between each
variable listed above and subject specific RSNs were examined
using FSL’s Randomize tool (Winkler et al., 2014) with 5,000
permutations and corrected for multiple comparisons using
threshold free cluster enhancement threshold.

RESULTS

Individual Independent Component
Analysis
On average, 48 ± 6 ICs were derived in each participant. Using a
liberal threshold, 12.5± 4.0 components were identified as noise
and removed. The number of noise components removed was
25.2± 4.3 with amoderate threshold, and 32.1± 7.7 components
were identified as noise and removed with a conservative
threshold. Of the three noise removal thresholds examined, the
moderate noise threshold that removed 40–60% of components
as artifacts, was found to be optimal and was applied to the data.

Group Independent Component Analysis
Each subject contributed 200, three second volumes to the group
analysis for a total of 3,600 3D volumes. At a dimensionality of
20, 15 RSNs were found to be brain-derived networks consistent
with previously described networks in adults and children. Five
of the remaining RSNs were identified to “noise” resulting
from motion, large blood vessel, and cerebral spinal fluid
pulsations. The brain-derived RSNs were named in accordance
of their spatial distribution and are listed in Table 2. The
constituent brain regions in each RSN are also listed in Table 2.
The main RSNs identified in our study include the DMN,
visual networks—medial, lateral, and occipital pole components,
auditory, somatosensory, and motor networks (See Figures 1, 2
and Table 2). Other RSNs identified included the left and
right frontoparietal, temporoparietal, executive control, dorsal
attention, anterior DMN, and cerebellar networks (see Figure 2).

We also examined how the RSNs identified in our cohort
compared to the previously published adult RSNs in their
spatial distribution pattern. The 15 labeled RSNs were compared
to the adult cohort data reported by Smith et al. (2009).
All 15 of these networks had cross correlation coefficients
>0.204, corresponding to p < 0.0001 are listed in Table 2 and
illustrated in Figure 2. The DMN and the medial visual network
demonstrated the highest correlations of the analysis (Figure 2
and Table 2). Of the ten well-matched RSNs (DMN, medial
and lateral visual networks, auditory network, frontoparietal
networks, and executive control) described by Smith et al. (2009),
all were found within our study in 6- to 7-year-old children.
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FIGURE 1 | Five resting state networks derived from 6- to 7- year olds rs-fMRI selected for relevance and high correlation. Each independent component

was paired to the components derived in adults (Smith et al., 2009), for spatial overlap which was quantified as a spatial cross correlation coefficients. The networks

with a spatial cross-correlation coefficient (r) ≥ 0.204 relating to P < 0.0001 are depicted here. The images are shown in neurological convention, with the left side of

the brain is represented in the left side of the figure. All overlays were made from the z-statistical images and thresholded to 4 < Z < 12.

A notable difference between the 10 well-matched networks is
that in the 6- to 7-year olds the motor (IC 6) and sensory
(IC 8) networks were found separated in the children, but in
adults, they were described in one single network. The DMN,
the sensory networks (visual, auditory, and somatosensory) and
the frontoparietal network were found to have the highest spatial
cross correlation to the adult RSNs. The motor, temporoparietal,
executive control, dorsal attention, and cerebellar networks were
found to have a lower level of spatial concordance, as compared
to those RSNs described in adults. Lastly, the RSNs that were only
partially resolved when compared to adults had the least degree
of spatial concordance. For example, the anterior DMN (IC 17)
including only the ventromedial frontal brain areas was found to
have a spatial cross correlation value of 0.275 when compared to
the adult DMN.

Compared to a larger cohort study of similar developmental
status that estimated 25 components (Muetzel et al., 2016),
only visual inspection between the studies was performed. The
findings of our networks appeared to have close resemblance to
the large European study and the RSNs reported in this study
including the DMN, visual, motor, sensory, executive control,
dorsal attention, frontalparietal, and cerebellum networks were

clearly demonstrated in the present study of 18 children who
were 6 and 7 years old. One exception we noted was that the
large study did not report a separately identified auditory RSN,
and upon review, the IC 20 listed as insular network most
likely includes the auditory network. In the networks related to
higher cognitive functions, like the frontoparietal and executive
control RSNs, the larger cohort study could resolve several sub-
networks (6 out of 25) while our study identified fewer RSNs
(2 out of 20).

In another study with similar number and aged cohorts (de
Bie et al., 2012) 28 components were estimated at the group level,
15 of which were identified as functionally relevant RSNs. Of
these, similar to our findings, the DMN, medial and lateral visual,
motor, somatosensory, auditory, and left frontoparietal networks
were clearly identifiable. However, similar to the large pediatric
cohort study, RSNs that were identified as one network in the
present study were found to be distributed across 2–3 RSNs in
the study by de Bie et al. (2012). For instance, the RSN labeled
auditory network in our study included temporal regions and
cingulate cortex, while in the de Bie study (de Bie et al., 2012)
reported two separate networks, one with only temporal regions
and another with the cingulate cortex. This finding is most likely
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FIGURE 2 | Fifteen well-matched resting state networks from the 20-dimensional component analysis to the 20-dimensional study of a healthy adult

population, as described elsewhere (Smith et al., 2009). Each individual component is shown with three informative orthogonal slices with the corresponding

adult network slices at the given MNI152 standard space coordinates. The left column represents resting state networks in 6-7-year-old children overlaid on the

group’s averaged anatomical brain. The right column represents the closest adult network overlaid on the adult MNI brain atlas. The networks demonstrated spatial

cross-correlation coefficient (r) > 0.204, which based off methods outlined in Smith et al. (2009) relates to P < 0.0001. All overlays were made from the z-statistical

images and thresholded to 3 < Z < 19. The coronal and axial images are shown in neurological convention, with the left side of the brain is represented in the left side

of the figure.

a result of decomposing the data into fewer components in our
study.

Dual Regression Analysis
No correlations of statistical significance were found for any of
the parameters that we examined as a regressor. The negative
findings of these analyses is expected given the cohort consisted
of healthy, typically developing children tightly controlled for age
and IQ (see Table 1).

DISCUSSION

We have shown that in a small sample of racially diverse,
healthy, typically developing, right handed, 6- to 7-year-old
children, resting-state fMRI data can be deconstructed into the

fundamental RSN shown in normal adult populations through an
ICA. All the major RSNs previously described in adults (Smith
et al., 2009) and in a large sample that included older children
(Muetzel et al., 2016) were observed in our smaller sample of
young children. Our findings were also consistent with RSNs
reported in a study with similar number of 5-to 8- year old
children (de Bie et al., 2012). To the best of our knowledge,
this is the first demonstration of RSNs in the awake state in a
group consisting of typically developing children in a narrow age
range of 6 and 7 years. Previous studies in such young children
have been under sedation (Funakoshi et al., 2016), during sleep
(Fransson et al., 2011; Manning et al., 2013), or included children
older than 7 years of age (de Bie et al., 2012; Winkler et al., 2014;
Muetzel et al., 2016; Sato et al., 2016). Further, compared to the
Dutch cohort studies that mostly included European Caucasian
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children (de Bie et al., 2012; Muetzel et al., 2016), our study
included equal number of children from both African American
and Caucasian backgrounds, which is comparable to the captured
population of Shelby County, Tennessee, USA.

Importantly, we demonstrate that the primary networks,
such as the visual, auditory, sensory, motor, default mode,
frontoparietal, executive control, and cerebellar networks are
present in healthy 6- and 7-year olds and that they are consistent
with those seen in healthy older children and adults. Further,
The DMN identified in our study is similar to that reported in
a smaller groups of typically developing children aged between 5
and 8 years scanned in awake state (de Bie et al., 2012) and under
sedation (Funakoshi et al., 2016). Our findings suggest that the
RSNs in a small racially and socioeconomically diverse cohort
is representative of the larger pediatric population, and may be
sufficient to examine physiological and pathological alterations
in these salient RSNs. For example, the monitoring these robust
networks thorough childhood can potentially be useful in early
detection and follow up of childhood disorders such as autism
spectrum disorder, epilepsy, and attention deficit hyperactivity
disorder (Mohan et al., 2016). Particularly, we were able to label
networks we believe to be the executive control network based off
the correlative data with the adult sample. However, compared
to the larger cohort study that also included children slightly
older than our cohort (Muetzel et al., 2016), the resolution of this
network appeared to be weaker in our study. This may be a result
of the procedures used for data preprocessing and de-noising, the
small sample size, or the young age of participants in our study.

A smaller sample size does have shortcomings when compared
to larger sample sizes. A single individual attributes more
influence over the group’s data, which allows artifact such as noise
and movement to influence results more profoundly (Desmond
and Glover, 2002). During the cleaning of the data, the noise
attributed to movement was typically found at the beginning of
each decomposition and explained up to 30% of the variance
observed. The removal of movement components that were
due to lateral, rotational, or anterior-posterior movements could
potentially bias the results, specifically the auditory, temporal,
visual, and frontal networks. To reduce the possibility of this
error, the cleaning process used spatial and temporal patterns
along with the eigenvalues of the decomposition to evaluate
the quality of each independent component. Furthermore,
the cleaning process was performed at three thresholds for
component removal: liberal (20–25% or 12.5 ± 4.0 components
removed), moderate (40–60% or 25.2 ± 4.3), and conservative
(60–80% or 32.1 ± 7.7). The ICs identified with the moderate
threshold revealed optimal cross-correlations coefficients and
spatial distribution patterns consistent with the adult brain
networks. In case of both liberal and conservative thresholding,
the spatial cross correlations were lower and the many networks
were found to be less resolved with liberal thresholding and were
completely absent, when conservative threshold was used. Our
findings are consistent with other reports that show that noise
correction beyond a certain threshold is detrimental (Bright and
Murphy, 2015). Therefore, we believe that the data presented here
are valid and are not adversely influenced by noise correction.

The sample population in our study is young in age, which
presents a unique addition of noise to the sample (Thomason

et al., 2005). Children at the age of 6- to 7-years are more prone to
movement and noncompliance during the scanning procedures.
Other studies of young populations have used early stages of
sleep scanning (Manning et al., 2013) and mouthpiece/bite-
holding apparatus (Thomason et al., 2011) as a means to reduce
the inherent movement of the participants during the scan.
Both methodologies reported results comparable to what is
presented in our findings in terms of discovering the major
accepted neural networks, which are believed to be present
during gestation (Smyser et al., 2010) or at birth (Fransson et al.,
2007). In our study, we had to exclude data from 10 children,
which is reasonable at this age. There were no statistically
significant differences in demographic measures, such as age,
BMI percentile, gestational age, IQ, sex, or race between the
individuals who included in the final analysis and those removed
from the study. Additionally, there was no statistically significant
influence of IQ, demographic measures of gender, race, age and
gestational age at birth, or anthropometric parameters of height,
weight, and BMI on spatial distribution of RSNs, indicating to the
homogeneity of our group. Given the aforementioned difficulties
in a young pediatric cohort, the sample size in our study is
a realistic aim for other cohorts of similar demographics. The
cost and labor to create large studies of certain characteristics
is certainly a barrier to further research, but we have shown
that major RSNs could be resolved in a small sample size
representative of the catchment area.

Further, the areas that varied the most consistently between
our population and the Smith data (Smith et al., 2009) were
within the frontal lobe and cingulate cortex. Specifically, the
frontal regions had fewer significant voxels in the DMN and
dorsal attention networks (see Figure 2-IC 1 and IC 4), and
the cingulate cortex activity was not present in our data in the
motor (IC 8), anterior default mode (IC 15) and the executive
control (IC 17) networks. As our participants were still growing,
the executive function portion of the brain may not be fully
developed, indicating lesser degree of coupling or integration
with sensory and motor regions. Other studies have shown that
higher cognitive function develops through pre-school age and
continues into puberty (Moriguchi and Hiraki, 2013). This is
also consistent with the report of age related changes seen in the
frontoparietal, DMN and executive control networks as well as
increasing connectivity between the frontal and parietal regions
(Muetzel et al., 2016). Another notable finding in our study is the
separation of somatosensory andmotor networks which in adults
resolved as one RSN (Muetzel et al., 2016). In our cohort, the IC
that overlapped the most with the adult sensorimotor network
was labeled as somatosensory as it predominantly included the
postcentral gyrus, and inferior parietal lobule. However, this IC
also had significant clusters in the precentral gyrus, the SMA,
and cerebellum. The IC that was labeled as motor network in
our study primarily included precentral gyrus relating to hand
and mouth primary motor cortices as well as dorsal and ventral
premotor cortex. This motor RSN may represent the developing
fine motor and speech networks in children. The sensory and
motor networks observed in previous studies in awake children
also had similar spatial patterns (de Bie et al., 2012; Muetzel
et al., 2016). This observation is consistent with the finding in
adults, where the RSN identified as sensorimotor includes pre-
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and post-central gyrus, premotor cortices, the supplementary
motor area (SMA), the cingulate cortex, and parietal association
cortices, indicating to an integrated somatosensory and motor
system.

The finding of correlative RSNs networks in the primary
sensory and motor domains in this group is consistent with
the finding that in infancy, the motor, somatosensory, auditory,
and visual cortices exhibited strong connectivity to other brain
regions (Fransson et al., 2011). This pattern changes over
the course of development and in adults, the prefrontal and
association cortices demonstrate greater connections to other
brain regions (Fransson et al., 2011). Therefore, the prefrontal
and association cortices are better visualized in adult RSNs.
Future longitudinal studies would be of value to further
elucidate the development of these networks and inter-network
connections.

In a small, diverse, young pediatric population, we have
demonstrated that the visual, auditory, temporal, sensorimotor,
frontoparietal, executive control, and DMNs are developed
enough to be detected by similar means as the adult and large
scale pediatric studies. However, the observation that the present
findings are not fully replicated in a symmetrical manner to
those of previous adult (Smith et al., 2009) and, the smaller
number of children (de Bie et al., 2012), studies, does merit some
discussion. For example, these comparative differences may be
due to previously mentioned sources of induced noise, as well as
neurobiological differences in children and adults (Jolles et al.,
2011). Moreover, while the aforementioned RSNs may be stable
across individuals, the small sample size of the current study
suggests some caution when interpreting the significance of the
present findings. Accordingly, addressing this limitation would
be necessary in future studies wishing to determine the degree to
which RSNs in 6–7 year olds with neurodevelopmental disorders
or neuronal injury may deviate from the normative profile, and
determining the utility of resting-state fMRI as a diagnostic tool
in clinical pediatric populations.

CONCLUSION

We have shown that the ICA approach to fMRI analysis is
a robust technique that can replicate the results of larger
studies in adults and children in a smaller sample study of

awake 6- to 7-year-old children. As our understanding of
cognitive changes shown by RSNs increases, the utility of
the ICA approach toward diagnosing conditions with complex
diagnoses will increase alongside. The data shown here could
serve as a diverse normative dataset to compare 6- to 7-year-
old patients with suspected neuropsychiatric disorder against a
homogenous, baseline sample set. Future studies investigating
the longitudinal growth and changes in RSNs as measured
by ICA-based resting-state fMRI analyses in diverse pediatric
population will provide further insight on the development
of the intrinsic connectivity networks. The MRI data and
the derived RSNs from this study will be made available to
other researchers via the CANDLE Study Data Repository
(www.candlestudy.com).
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