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Speech impairment is a frequent and often serious symptom of Parkinson’s disease
(PD), characterized by a disorder of phonation, articulation and prosody. While research
on the pathogenesis of the prominent limb motor symptoms has made considerable
progress in recent years, the pathophysiology of PD speech impairment is still
incompletely understood. To investigate the neural correlates of speech production in
PD, EEG was recorded in 14 non-demented patients with idiopathic PD and preserved
verbal fluency on regular dopaminergic medication (8 women; mean age ± SD:
69.5 ± 8.0 years). The control group consisted of 15 healthy age-matched individuals
(7 women; age: 69.7 ± 7.0 years). All participants performed a visually-cued, overt
speech production task; required utterances were papapa and pataka. During the
preparatory phase of speech production, in a time window of 200–400 ms after
presentation of the visual cue, β-power was significantly increased in PD patients
compared to healthy controls. Previous research has shown that the physiological
decrease of β-power preceding limb movement onset is delayed and smaller in PD
patients off medication and normalizes under dopaminergic treatment. By contrast, our
study demonstrates that β-power during preparation for speech production is higher
in patients on dopaminergic therapy than controls. Thus, our results suggest that the
mechanisms that regulate β-activity preceding limb movement and speech production
differ in PD. The pathophysiological role of this increase in β-power during speech
preparation needs to be determined.
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INTRODUCTION

Impairment of speech production, first described by James Parkinson in his classical Essay
on the Shaking Palsy (Parkinson, 1817), is an often serious sequela of Parkinson’s disease
(PD), characterized by a disorder of phonation, articulation and prosody (Sapir, 2014).
During the course of the illness, a majority of patients experiences difficulties of speech
production. At the baseline visit of a large cohort study including 419 PD patients, 51% of
patients reported at least slight impairment of speech production (Perez-Lloret et al., 2012). In a
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group of 125 patients with PD, speech intelligibility of PD
patients as rated by listeners unfamiliar with dysarthric speech
was significantly worse compared to unaffected age-matched
controls (Miller et al., 2007). With progression of the disorder,
speech impairment increases in frequency and intensity (Skodda
et al., 2013). In the early stage of the disease, a disorder
of phonation is often the leading symptom of PD speech
impairment, presenting with a breathy and harsh voice of
reduced loudness (Ho et al., 1998; Holmes et al., 2000). In
a later stage, difficulties of articulation may develop. The
articulatory precision in the production of consonants—in
particular, stop consonants such as /k/, /p/ and /t/—is typically
reduced (Ackermann and Ziegler, 1991) and speech rate declines
(Martínez-Sánchez et al., 2016). Prosody, the natural variations
in loudness, pitch and rhythm of fluent speech, is frequently
impaired as well (Darkins et al., 1988).

PD is an adult-onset neurodegenerative disorder associated,
at its core, with a loss of dopaminergic neurons within the
substantia nigra that project to the striatum and, hence,
changes of the functional connectivity within basal ganglia-
thalamocortical circuits (Wichmann et al., 2011; Göttlich et al.,
2013). Multiple lines of evidence suggest that neural oscillations
within these circuits differ between healthy individuals and
patients with PD (Oswal et al., 2013; Brittain and Brown,
2014; Brittain et al., 2014). Subcortical recordings of local
field potentials, mainly from the subthalamic nucleus, identified
excessive neural oscillations in the β-band in PD patients
(Bronte-Stewart et al., 2009; Hirschmann et al., 2011). This
increase in rhythmic brain activity in basal ganglia-cortical
circuits is now regarded as a key concept in the pathophysiology
of motor and cognitive deficits in PD (Oswal et al., 2013). Several
studies have shown that task-related modulation of cortical
β-band activity is reduced in PD patients compared with healthy
controls (Pollok et al., 2012; Heinrichs-Graham et al., 2014; te
Woerd et al., 2014).

While research on the pathogenesis of the prominent
limb motor symptoms in PD has made considerable progress
(Wichmann et al., 2011), the pathophysiology of PD speech
impairment is still little understood (Sapir, 2014). PD speech
impairment has traditionally been characterized as a pure speech
motor disorder—a hypokinetic dysarthria—due to hypokinesia,
bradykinesia and rigidity of laryngeal and orofacial muscles.
This pathophysiological model has been challenged by several
experimental and therapeutic observations, though. Studies of
orofacial muscle tone in patients with PD suggested that rigidity
alone does not fully explain the characteristics of PD speech
disorder (Sapir, 2014). Moreover, dopaminergic stimulation with
L-dopa or apomorphine, highly effective in the treatment of
limb motor symptoms in PD, does not consistently improve
PD speech disorder (Kompoliti et al., 2000; Schulz and Grant,
2000; Ho et al., 2008). Finally, deep brain stimulation of
the subthalamic nucleus may even result in a deterioration
of PD speech disorder (Skodda et al., 2014; Tsuboi et al.,
2015).

The aim of the present study was to investigate β-band
rhythmic activity in the preparatory phase of overt non-lexical
speech production in PD patients and in a control group

of age-matched healthy individuals using EEG. We chose
two target utterances, papapa and pataka. Both trisyllabic
utterances are challenging because they require fast alternating
(diadochokinetic) motions of the articulators. Pataka is
particularly difficult because the three stop consonants demand
a swift and precise movement of the tongue from the front to
the back of the oral cavity. Actual speaking is associated with
electromyographic activity in many different muscles, including
the temporalis muscle that covers large parts of the temporal and
parietal bone (Tuller et al., 1981). To minimize contamination of
our EEG recordings by muscle artifacts, we only chose to analyze
the preparatory phase, between the onset of the visual cue and
the onset of vocalization.

MATERIALS AND METHODS

Participants
Twenty-three patients with idiopathic PD (12 women)
were recruited at the Outpatient Clinic, Department of
Neurology, University of Lübeck. For details of recruitment,
see Figure 1. One patient was excluded because the Parkinson
Neuropsychometric Dementia Assessment (PANDA, Kalbe
et al., 2008) indicated cognitive impairment. EEG recordings
from seven patients had to be excluded because of excessive
muscle activity during preparation for speaking. Another patient
was excluded because the audio recording was missing due to
a technical failure. The data sets of the remaining 14 patients
(8 women) were analyzed for this study. Mean age ± standard
deviation was 69.5 ± 8.0 years (age range: 52–81 years).

All patients were diagnosed by an experienced neurologist; the
initial diagnosis was made between 3 years and 16 years before
this study was performed. All patients received antiparkinsonian
medication at the time of the study (mean equivalent L-dopa
dose: 677 mg/day). To assess the severity of motor symptoms,
part III of the Unified Parkinson’s Disease Rating Scale (UPDRS)
was performed in all patients (Fahn and Elton, 1987). The mean
UPDRS III score± SDwas 17± 11 (minimum: 3, maximum: 44).

Twenty-seven healthy individuals (13 women) were recruited
for an age-matched control group. Twenty-five participants
were recruited through the subject database of the Department
of Neurology, two participants were healthy spouses of the
patients recruited for this study. EEG recordings from 10 healthy
participants had to be excluded because of excessive muscle
activity during preparation for speaking. One healthy participant
was excluded because of an exceptionally delayed speech onset.
In this participant, the time between the onset of the visual cue
and the onset of speaking was on average 1965 ms (for the rest
of the control group, speech latency was 659 ± 153 ms). Another
healthy participant was excluded because of an exceptionally high
number of incorrect speech responses (72%). The data sets of
the remaining 15 healthy participants (7 women) were analyzed
for this study. Mean age ± SD was 69.7 ± 7.0 years (age range:
55–80 years).

All included patients and control participants were right-
handed, had normal or corrected-to-normal vision and no
history of neurological or psychiatric disorder (except PD in
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FIGURE 1 | Recruitment of patients (A) and healthy controls (B). PANDA, Parkinson Neuropsychometric Dementia Assessment. BDI, Beck Depression Inventory.

the patient group). The five cognitive tasks of the PANDA
(Kalbe et al., 2008) showed no cognitive impairment. The Beck
Depression Inventory (Beck et al., 1961) indicated no depressive
symptoms. To assess verbal fluency at the behavioral level, all
participants were asked to produce as many words beginning
with ‘‘m’’ as possible within 2 min as part of the Regensburger
Wortflüssigkeits-Test (Aschenbrenner et al., 2000).

This study was carried out in accordance with the
recommendations of the Research Ethics Board of the University
of Lübeck with written informed consent from all subjects. All
subjects gave written informed consent in accordance with the

Declaration of Helsinki. The protocol was approved by the REB.
Participants received a remuneration of 40 Euro.

Experimental Paradigm
A visually cued overt speech production task was performed
during the EEG recording. Participants were seated in a
comfortable chair with their eyes about 80 cm in front of a 20 inch
LCD computer screen. To cue speech production, the syllables
papapa or pataka were shown in the middle of the screen for
2000 ms. Patients were instructed to speak aloud the required
utterance as soon as the cue appears. The onset-to-onset time
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interval between cues was 5000 ms. To reduce task-switching
effects and to facilitate the task, a blocked presentation was
chosen. Each block was preceded by the instruction ‘‘Jetzt kommt
papapa (Now we’ll present papapa)’’ or ‘‘Jetzt kommt pataka
(Now we’ll present pataka)’’. Each block consisted of five papapa
and five pataka trials. Five blocks were presented in pseudo-
randomized order for each condition. In total, 25 papapa and
25 pataka trials were recorded. All stimuli were presented using
Presentation software (Neurobehavioral Systems, Berkeley, CA,
USA)1.

All utterances were recorded using a microphone and stored
for off-line analysis with the open source audio software
Audacity2. All utterances were examined by the same listener
(CW) and double-checked by another researcher (PS). Trials
without a correct, intelligible utterance were excluded from
further data analysis. In the patient group, on average 0.9 trials
per participant were excluded because a correct verbal response
was missing (minimum: 0 trials, maximum: 5 trials). In the
control group, on average 1.7 trials per participant were excluded
due to a missing correct response (minimum: 0 trials, maximum:
9 trials). Speech latency (the time difference between onset
of the instruction and onset of overt speech) was determined
for all correct responses and all participants. On an individual
basis, speech latencies were z-transformed and trials with
exceptionally short or long latencies (z <−3 or z > 3) excluded.
On average, 0.9 trials per participant in the patient group
(minimum: 0, maximum: 2) and 0.7 trials per participant in
the control group (minimum: 0, maximum: 2) were excluded
after z-transformation of latencies. The average individual speech
latency was finally calculated for every participant.

EEG Acquisition
EEG data were recorded in a sound-dampened and
electromagnetically-shielded room using an elastic 32 electrode
cap (Electro-Cap International, Eaton, OH, USA)3 and
a Synamps amplifier (Compumedics Neuroscan, Singen,
Germany)4. To record brain electric activity, 29 tin electrodes
were mounted on the scalp according to the 10/20 system
with modified combinatorial nomenclature (American
Electroencephalographic Society, 1994). Scalp electrodes
were referenced online against the left mastoid. To monitor
vertical and horizontal eye movements, electrodes were placed
above and below the left eye and on the outer canthus of each
eye. Data was sampled at 250 Hz, with a bandpass filter of
0.01–50 Hz. Electrode impedances were kept below 5 kΩ.

EEG Analysis
Raw data were re-referenced to the average activity of both
mastoid electrodes. An independent component analysis (ICA)
was performed using an extended information maximization
algorithm (Bell and Sejnowski, 1995) as implemented in
EEGLAB (Delorme and Makeig, 2004)5 to identify and remove

1www.neurobs.com
2web.audacityteam.org
3http://electro-cap.com
4http://compumedicsneuroscan.com
5http://sccn.ucsd.edu/eeglab

components related to eye blinks and ocular movements
(Hoffmann and Falkenstein, 2008).

To calculate time-frequency spectra, single-trial data were
convolved with a complex Morlet wavelet using the open
source MATLAB toolbox FieldTrip (Oostenveld et al., 2011)6.
The width of the wavelet was set at seven cycles. To avoid
contamination of EEG data by speech-related muscle artifacts,
individual EEG epochs were truncated at speech onset. Thus,
the number of analyzed trials and hence the signal-to-
noise ratio decreased after approximately 400 ms. Figure 2
illustrates the number of trials (mean ± SD) available at a
given time point for the papapa and the pataka conditions,
separately.

After wavelet transform, oscillatory power in the studied
frequencies (1–50 Hz, linear increase) was computed for each
trial in the time window −1000 ms to speech onset and averaged
for each subject time-locked to the onset of the visual cue before
calculating a grand average. The interval −100 ms to 0 ms
(onset of visual cue) served as baseline for all computations.
A baseline close to the onset of the visual cue was chosen
to minimize contamination by muscle artifacts related to the
preceding trial.

After inspection of the time course of β-activity (Figure 7),
we decided to test changes in β-power in the time window of
200–400 ms after onset of the visual cue.

An ANOVA was calculated for the averaged power in the
β-band (16–31 Hz) and the 200–400 ms time window using
the between-subjects factor group (patients vs. controls) and
the within-subjects factors condition (papapa vs. pataka),
anteriority of EEG electrodes (with 3 levels: F7/F3/Fz/F4/F8;
T7/C3/Cz/C4/T8; P7/P3/Pz/P4/P8) and laterality of EEG
electrodes (with 5 levels: F7/T7/P7; F3/C3/P3; Fz/Cz/Pz;
F4/C4/P4; F8/T8/P8) using IBM SPSS Statistics (version 23)7.
Greenhouse-Geisser correction was performed when necessary.
To estimate the effect size of ANOVA results, partial η2 was
calculated.

RESULTS

Behavioral Data
No significant difference between patients and controls regarding
the number of words produced in the verbal fluency test
(Regensburger Wortflüssigkeits-Test, Aschenbrenner et al.,
2000) was found (16 ± 6 vs. 17 ± 4, p = 0.69). During the EEG
experiment, speech latency of included trials was not significantly
different between patients and controls (651 ± 145 ms vs.
659 ± 153 ms; p = 0.89).

EEG Data
Raw EEG data of two PD patients are shown in Figure 3.
Figure 3A displays the first four papapa trials of a patient whose
data were included in the final analysis. By contrast, Figure 3B
displays the first four papapa trials of another patient whose data
were excluded due to massive muscle artifacts.

6http://www.fieldtriptoolbox.org
7https://www.ibm.com/analytics/us/en/technology/spss/
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FIGURE 2 | Number of trials over time. The analysis of EEG data focused on the preparatory phase of speech production. Thus, individual EEG epochs were
truncated at speech onset. The Figure shows the mean number of trials at a given time (bold blue line) for the papapa condition (A) and the pataka condition (B)
across all participants. The error bars represent the standard deviation.

Figure 4 illustrates the time-frequency spectra for the papapa
condition in the control (A) and the patient group (B). Figure 5
illustrates the time-frequency spectra for the pataka condition in
the control (A) and the patient group (B). The time-frequency
spectra in Figure 6 show the differences of spectral power
between patients and controls for the papapa condition (A) and
the pataka condition (B). Figure 7A depicts the averaged time
courses of spectral power in the β-band for both experimental
conditions (papapa vs. pataka) and groups (patients vs. controls).
Figure 7B demonstrates individual changes in β-band power
(averaged across the time window of 200–400 ms) for patients
vs. controls and for both speech production conditions. The
topological distribution of changes in β-power in the time
window of 200–400 ms relative to the baseline (−100 to 0 ms)
for controls and patients is illustrated in Figure 7C.

In the ANOVA, β-power was significantly higher in PD
patients than in controls in the time window of 200–400 ms
after the visual cue (significant effect of group; F(1,27) = 10.90,
p = 0.003, partial η2 = 0.288). The main effect of condition
and the interactions condition × group, condition × anteriority,
condition × group × anteriority, condition × laterality,
condition × group × laterality, condition × anteriority ×

laterality and condition × group × anteriority × laterality were
not significant (p> 0.05).

DISCUSSION

The present study demonstrates significant differences in
the time course of oscillatory brain activity in the β-band
(16–31 Hz) between PD patients and healthy controls during
the preparation for overt speech. In a time window of
200–400 ms after presentation of the visual cue, β-power was

significantly increased in PD patients compared to healthy
controls (Figure 7A).

Oscillatory Brain Activity in Speech
Production
Overt speech production is a highly complex task, accomplished
by a distributed bilateral cortical and subcortical neural network
(for a review, see Kemmerer, 2015). The brain areas that
are crucial for the different stages of speech production are
well known. Using functional magnetic resonance imaging
(fMRI), activation was detected in the primary motor cortex,
supplementary motor area, cingulate motor area, thalamus, basal
ganglia, insula, temporal lobe and cerebellum during non-lexical
speech production (Sörös et al., 2006). The information
flow between these areas of the speech production network,
in contrast, is only partially understood. Models of speech
production propose detailed motor plans that activate dozens
of muscles in a well-defined order on a millisecond time-scale
and that are constantly updated by auditory and somatosensory
feedback (Hickok, 2012).

Multiple lines of evidence, using electroencephalography,
magnetoencephalography and electrocorticography, have
demonstrated that electrical brain oscillations are crucial
for information flow within distributed brain networks
(Pfurtscheller and Lopes da Silva, 1999; Fries, 2005; Schnitzler
and Gross, 2005; van Wijk et al., 2012; Cheyne, 2013). One of
the most widely replicated finding is that preparation for and
execution of limb movements are correlated with a gradual
decrease of oscillatory power in the β-band, starting about 1 s
before movement onset (Jasper and Penfield, 1949; Pfurtscheller,
1981; Leocani et al., 1997; for a review, see Hari and Salmelin,
1997; Cheyne, 2013; Kilavik et al., 2013).
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FIGURE 3 | Individual EEG data. The figure illustrates EEG recordings of two patients with Parkinson’s disease (PD), showing the first four papapa trials of the
experiment. The onset of the visual cue (papapa) is represented by a red line. Epochs of EEG data have been extracted between −1000 and 1000 ms relative to the
onset of the cue. The upper recording (A) displays artifacts related to overt speech, starting around 500 ms after onset of the cue (marked by arrows). As these
artifacts started with speech onset, the recording was included in the final data analysis. The lower recording of another patient with PD (B) shows massive
high-frequency artifacts due to muscular activity. This recording was excluded from the final data analysis.

Similar to voluntary limb movements, the preparation of
speech production is also associated with a decrease of β-power
(Gehrig et al., 2012; Jenson et al., 2014; Mersov et al., 2016).
Mersov et al. (2016) studied brain rhythms of fluent speakers
and adults who stutter using magnetoencephalography before
and during cued overt reading of words in a carrier phrase.
During speech preparation, a decrease of β-power (in this study:
15–25 Hz) was found in the bilateral cuneus of fluent individuals.

In addition, a decrease of β-power was found in the mouthmotor
cortex (Mersov et al., 2016). Similarly, Gehrig et al. (2012) used
magnetoencephalography to investigate the preparatory phase
of overt and covert reading in healthy individuals. The authors
found a decrease of β-power in the bilateral parietal lobe and
the left articulatory motor region during preparation, beginning
about 350 ms after the onset of a visual preparation cue (Gehrig
et al., 2012).
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FIGURE 4 | Time-frequency spectra for the papapa condition. The figure represents averaged changes in spectral power relative to a baseline period of −100 ms to
0 ms during the preparation for speech production. Time (in seconds) is shown on the x-axis; 0 s is the onset of the visual cue (papapa). Frequency (1–50 Hz) is
shown on the y-axis. Time-frequency spectra are shown for controls (A) and patients (B). The boxes represent the frequency range (16–31 Hz) and time window
(200–400 ms) of the ANOVA.
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FIGURE 5 | Time-frequency spectra for the pataka condition. The figure represents averaged changes in spectral power relative to a baseline period of −100 ms to
0 ms during the preparation for speech production. Time (in seconds) is shown on the x-axis; 0 s is the onset of the visual cue (pataka). Frequency (1–50 Hz) is
shown on the y-axis. Time-frequency spectra are shown for controls (A) and patients (B). The boxes represent the frequency range (16–31 Hz) and time window
(200–400 ms) of the ANOVA.
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FIGURE 6 | Differences in time-frequency spectra between controls and patients. For this figure, averaged changes in spectral power in controls, relative to a
baseline period of −100 ms to 0 ms, were subtracted from changes in spectral power in patients. Yellow and red colors indicate higher spectral power in patients vs.
controls. Time (in seconds) is shown on the x-axis; 0 s is the onset of the visual cue. Frequency (1–50 Hz) is shown on the y-axis. (A) displays the difference in
spectral power for the papapa condition, (B) for the pataka condition. The boxes represent the frequency range (16–31 Hz) and time window (200–400 ms) of the
ANOVA.
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FIGURE 7 | Time courses, individual changes and topographies of spectral power in the β-band. (A) shows averaged time courses of spectral power in the β-band
(16–31 Hz) relative to a baseline period of −100 to 0 ms for controls (blue lines) and patients (red lines). Dashed lines depict the papapa condition, solid lines the
pataka condition. Time (in seconds) is shown on the x-axis; the vertical line at 0 s represents the onset of the visual cue. Relative change (in % of the baseline value)
is shown on the y-axis. The boxes represent the time window (200–400 ms) of the ANOVA. (B) demonstrates the changes in β-band power relative to the baseline
for each individual participant, averaged across the time window of 200–400 ms. Healthy controls are shown in blue (1: papapa condition; 2: pataka condition),
patients with PD are shown in red (3: papapa condition; 4: pataka condition). Data were plotted for the central electrodes Fz, Cz and Pz. The black diamonds
represent the group mean, the error bars the standard deviation. (C) displays the topographical distribution of changes in spectral power in the β-band relative to the
baseline in controls and patients. For each topological plot, the average of the papapa and pataka condition was calculated.

Although the dynamics of β-power have been investigated
for decades, the functional significance of event-related

fluctuations of oscillatory brain rhythms has not been fully
elucidated (Cheyne, 2013). The pre-movement decrease of
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β-power is thought to reflect the preparation for the motor
response (Pfurtscheller and Lopes da Silva, 1999; Cheyne, 2013;
Kilavik et al., 2013). In contrast, an increase of β-power in the
motor cortex preserves the current motor state and inhibits
the initiation of new motor plans (Neuper and Pfurtscheller,
2001; Engel and Fries, 2010). Several studies suggest a causal
relationship between β-oscillations and motor functions (van
Wijk et al., 2012). Stimulation of the subthalamic nucleus at
20 Hz slowed the development of maximal grip force in PD
patients relative to healthy controls (Chen et al., 2011). Even
in healthy adults, non-invasive transcranial alternating-current
stimulation at 20 Hz over the contralateral motor cortex slows
voluntary hand movements (Pogosyan et al., 2009).

Brain Oscillations during the Preparation
for Speech in PD Patients
With the advent of deep brain stimulation for the treatment of
PD and the possibility to record local field potentials through
the stimulation leads, an increase of β-band oscillations in
cortico-basal ganglia circuits at rest (Brittain and Brown, 2014),
even at an early stage of the disease (Pollok et al., 2012), has
been described. Excessive β-band oscillations are believed to be
directly linked to chronic dopamine depletion (Mallet et al.,
2008) and are now regarded as neurophysiological signature
of PD (Oswal et al., 2013). In PD patients who underwent
bilateral implantation of deep brain stimulation electrodes in the
subthalamic nucleus and who were off dopaminergic medication,
a significant correlation was found between the power of local
field potentials in a 8–35 Hz frequency band and clinical severity
of PD as assessed by the total UPDRS III score (Neumann et al.,
2016). Treatment with dopamine or deep brain stimulation of
the subthalamic nucleus has been shown to decrease or even
normalize excessive β-band oscillations (Giannicola et al., 2010;
Jenkinson and Brown, 2011; Quinn et al., 2015). In PD patients
off medication, the onset of pre-movement β-power decrease
(Pollok et al., 2012; Meziane et al., 2015) was delayed during the
preparation for limbmovements. Heinrichs-Graham et al. (2014)
used magnetoencephalography to study brain oscillations during
planning, execution and termination of a tap of the right index
finger in unmedicated PD patients and healthy age-matched
controls. PD patients had a significantly smaller decrease of β-
power prior and during movement than controls (Heinrichs-
Graham et al., 2014).

While cortical and subcortical activity associated with limb
movement has been widely investigated in PD, only a small
number of studies have examined the neural correlates of speech
production in PD. Functional neuroimaging research using
positron emission tomography (PET; Pinto et al., 2004) and fMRI
(Rektorova et al., 2007; Arnold et al., 2014) found increased
activation, mainly in motor areas, in PD patients compared to
controls. Overt speech production was associated with increased
activation in the supplementary motor area (Pinto et al., 2004),
primary orofacial sensorimotor cortex (Rektorova et al., 2007)
as well as left dorsal premotor cortex and inferior frontal gyrus
(Arnold et al., 2014) in patients vs. controls. For the study
of brain oscillations, Hebb et al. (2012) recorded local field

potentials in the subthalamic nucleus of PD patients during a
continuous speech-language task, including naming the months
of the year and counting upward from one. The authors observed
a bilateral decrease of β-power preceding and during overt speech
production in the subthalamic nucleus (Hebb et al., 2012). A
recent study by Wojtecki et al. (2017) recorded subthalamic
nucleus activity during a silent word generation paradigm,
followed by overt pronunciation of the generated word. During
silent word generation, an entirely cognitive task, the authors
found a significant increase in α- and θ-power, but not in β- and
γ-power. During overt speech, the recordings indicated a small,
but insignificant decrease of β-power (Wojtecki et al., 2017).

To the best of our knowledge, an increase of β-power
during the preparatory phase preceding movement has not been
described before, neither in limb motor nor in speech control.
The present study cannot provide definite answers regarding
the functional significance of β-activity and its relationship to
speech production, but may stimulate hypotheses for future
research. Hyperactivity in speech motor areas, as demonstrated
by PET and fMRI, has been interpreted as cortical mechanisms
to compensate for basal ganglia dysfunctions. After all we know
of the function of β-oscillations, an increase of β-power has an
anti-kinetic effect (Jenkinson and Brown, 2011) and cannot be
regarded as compensatory in nature.

It is important to note that the PD patients studied here
were non-demented individuals with preserved verbal fluency.
In addition, only fast, correct and intelligible responses have
been included in the EEG analysis. Thus, the increase in β-
power seen here does not necessarily cause speech production
deficits. Moreover, the increase in β-power was seen in PD
patients on medication, receiving a mean equivalent L-dopa
dose of 677 mg/day. Importantly, the increase of β-band
activity in our study was observed in the time window
200–400 ms after presentation of the visual cue, but not
immediately preceding speech onset. Overt speech production
is a multi-stage process that involves cognitive processes
(mental retrieval of phonemes and combination of phonemes
to syllables and words) and motor processes (developing an
articulatory plan and execution of articulatory movements;
Indefrey, 2011). Behavioral and electrophysiological studies
delineated the temporal evolution of this cascade of events
(Indefrey, 2011). The time window of the β-band increase
observed here is dominated by a cognitive process, the retrieval
of the phonological code. Planning of the articulatorymovements
starts later, about 150 ms before onset of articulation (Indefrey,
2011). This time course may explain why our patients had no
symptoms of dysarthric speech with normal verbal fluency in
the neuropsychological assessment and normal speech latency
during the EEG recording. Our results would be compatible
with an impairment of phonological processing, which has not
been expected before and which was not tested explicitly in this
study.

Our study has important limitations. In order to design a
short experimental paradigm, feasible for patients with PD, we
included only 25 trials per condition. In a future study, we would
prefer 50 or more trials per condition to increase the signal-to-
noise ratio of the EEG recordings. Moreover, a relatively high
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number of participants had to be excluded because of ongoing
muscle artifacts. In a future study, we would take more time to
familiarize the participants with the speech production paradigm
and train them to relax their facial and jaw muscles. Regarding
the analysis of EEG data, we decided to reference to the average
activity of both mastoid electrodes. As the choice of reference
may influence spectral power, the use of a neutral reference may
have advantages (Yao, 2001; Yao et al., 2005).

In conclusion, the changes of oscillatory brain activity
preceding limb movement and speech production differ in
PD. While the physiological decrease of β-power preceding
movement onset is delayed and smaller in PD patients off
medication and normalizes under dopaminergic treatment,
speech production is preceded by an increase of β-power in
our patients who were on dopaminergic therapy compared to
controls. This fundamental difference in rhythmic brain activity
may contribute to the poor efficacy of dopamine and deep brain
stimulation in PD speech disorder. Future research is warranted
to determine the generators and the pathophysiological role of
β-oscillations in PD speech disorder. First of all, a comparison of
rhythmic brain activity between PD patients with and without
speech impairment is needed to establish the relationship
between behavioral speech performance and brain oscillations.
Second, speech-related brain oscillations should be studied in
patients on and off treatment (dopaminergic medication or deep
brain stimulation) to gain further insights into the effects of
antiparkinsonian treatment on speech-related β-power. Finally,

a dedicated study on phonological processing in PD should find
out whether the abnormal brain activity seen here influences
cognitive processes in speech production and contributes to
the pathophysiology of PD speech disorder. The results of
these investigations may help to improve the currently often
unsatisfactory therapy of this frequent and debilitating symptom
of PD, e.g., through modification of deep brain stimulation
protocols or further development of non-invasive stimulation
techniques.
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