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Motor cortex transcranial direct current stimulation (tDCS) has been shown to enhance
motor learning in healthy adults as well as various neurological conditions. However,
there has been limited data on whether tDCS enhances jaw motor performance during
different oral behaviors such as speech, maximum syllable repetition, and chewing.
Because the effects of anodal and cathodal stimulation are known to be dependent
on task demands, we hypothesized that tDCS would have a distinct effect on the jaw
motor performance during these disparate oral behaviors. Ten healthy adults completed
speech, maximum syllable repetition, and chewing tasks as their jaw movements were
recorded using 3D optical motion capture during sham, anodal, and cathodal tDCS.
Our findings showed that compared to the sham condition, jaw displacements during
speech and syllable repetition were smaller during anodal stimulation, but larger during
cathodal stimulation for syllable repetition and chewing indicating improved performance
during anodal tDCS. On the other hand, there were no effects of anodal tDCS during
chewing. These results confirm our hypotheses that: (1) tDCS induces a significant
effect on jaw motor function; (2) its effects are polarity dependent; and (3) its effects are
dependent on the task demands on jaw motor function. These findings support future
studies exploring the effects of tDCS on persons with oral sensorimotor impairments
and the development of therapeutic protocols.
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INTRODUCTION

Transcranial direct current stimulation (tDCS) is a form of non-invasive brain stimulation
that is widely being tested to enhance motor learning (Bolognini et al., 2009; Grimaldi et al.,
2016). Although spoken word is highly dependent on motor performance, the impact of tDCS
on speech motor performance has rarely been investigated (Fiori et al., 2014; Bashir and
Howell, 2017; Chesters et al., 2017). When using tDCS, low amplitude currents pass through
the scalp and underlying cortical tissues from the anode electrode to the cathode electrode.
This current flow has a differential effect on resting-state membrane potentials of cortical
neurons depending on the polarity of the stimulation (Fregni and Pascual-Leone, 2007) with
anodal stimulation increasing neuronal excitability and cathodal stimulation decreasing neuronal
excitability (Nitsche and Paulus, 2000). Polarity effects have been most consistently observed
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in studies on motor cortex stimulation (Nitsche and Paulus,
2000; Nitsche et al., 2003; Boggio et al., 2006; Vines et al.,
2006; Cogiamanian et al., 2007; Tanaka et al., 2009; Stagg et al.,
2011; Krishnan et al., 2014) that have reported anodal excitatory
effects (i.e., increased motor evoked potentials, increased muscle
activity, endurance and force) and cathodal inhibitory effects
(i.e., decreased motor evoked potentials, degraded performance).

The effects of anodal or cathodal tDCS on plasticity however,
is complex and highly dependent on task-specific neural activity
and behavioral demands (Bikson and Rahman, 2013; Miniussi
et al., 2013; Pirulli et al., 2014; Bestmann et al., 2015). Given that a
motor behavior is a dynamic process and engages different neural
areas according to the complexity of the task, thus, the effects
of tDCS depends on the task and relative neural engagement.
For complex behaviors, such as spoken word production, this
entails that stimulation of the motor cortex is likely to affect the
many concurrent processes (i.e., linguistic, cognitive, attention)
engaged during speech production (Bohland et al., 2010) and
level of skill required for the specific task. Given these complex
interactions between polarity and task demands, it is critical
to investigate the specific effects of tDCS on speech motor
performance, as to optimize the outcomes of tDCS therapeutic
trials (Bikson and Rahman, 2013).

In this exploratory study, we investigate if tDCS has
short-term effects on jaw motor function during three oral
motor behaviors—speech, maximum syllable repetition, and
chewing gum. Because these three tasks have different behavioral
goals and physiologic demands (Moore et al., 1988; Smith
and Denny, 1990; Moore, 1993), neural modulation might be
expected to have a distinct effect on the neural networks that
govern these disparate oral behaviors. Speech engages motor
and linguistic neural networks (Guenther, 2006; Ackermann
and Riecker, 2010; Price, 2012) whereas chewing predominantly
engages sensorimotor networks that involve motor cortex and
brainstem central pattern generators (Lund, 1991; Quintero
et al., 2013). Chewing gum is presumably highly automatized
(Lund and Kolta, 2006; Mistry and Hamdy, 2008), and lacks
linguistic demands that influence jaw movements produced
during speech and maximum syllable repetition tasks. Unlike
chewing, the maximum syllable repetition task engages speech
motor networks but is likely to only minimally activate linguistic
networks that are engaged during meaningful speech (Ziegler,
2002; Bohland and Guenther, 2006; Sörös et al., 2006; Kent,
2015). This task, however, might be motorically and cognitively
more demanding as it involves more effort than speech or
chewing to produce syllables as fast as possible. We use Levelt’s
‘‘mental syllabary’’ (Levelt et al., 1999) to guide our interpretation
of the effects of tDCS and how that might affect the access
of precompiled speech units resulting in changes to motor
performance.

Our empirical framework assumes that enhanced jaw
motor function during these tasks will be manifested as an
economization of effort (i.e., an efficient jaw movement strategy)
whereas disrupted jaw motor function will be evidenced by
increased effort (i.e., an inefficient jaw movement strategy).
This framework is consistent with limb studies, that have
demonstrated that larger and faster movements tend to be

more energetically costly (Oliveira et al., 2005); and when
motivated, persons converge rapidly on economical and
accurate biomechanic strategies rapidly (Manohar et al., 2015).
The adaptation of efficient jaw movement strategies is well
documented during fast speech where most talkers achieve rapid
rates by minimizing jaw displacement rather than increasing
jaw speed (Nelson et al., 1984; Mefferd and Green, 2010).
This economization of effort is learned during the first decade
of life as children gradually acquire adult-like rates of speech
by minimizing the extent of articulatory movements rather
than increasing the speed (Nip and Green, 2013). By contrast,
large, inefficient jaw excursions have been observed to be
a characteristic of impaired speech in some neurologically
impaired populations (Nip, 2013).

Within this framework, given that anodal tDCS is particularly
useful for novel learning (or learning after a brain lesion), it is
conceivable that anodal tDCS worsens performance of highly
learned and simple movements (such as chewing gum) while
cathodal tDCS has the opposite effect. It is also conceivable that
anodal tDCS would lead to motor performance improvements in
more complex motor tasks that can be enhanced with additional
learning. To test these hypotheses, healthy adults completed
speech, maximum syllable repetition, and chewing tasks while
their jaw movements were recorded using 3D optical motion
capture during sham, anodal and cathodal tDCS.

MATERIALS AND METHODS

The research study was conducted at the Speech and Feeding
Disorders Lab at the Massachusetts General Hospital (MGH)
Institute of Health Professions and all participants gave informed
written consent in accordance with the Declaration of Helsinki.
The experimental protocol was approved by The Spaulding
Rehabilitation Hospital Institutional Review Board.

Ten adults (6 females; 4 males) between the ages of
18–45 years participated in the study. Their primary language
was English and they had no history of speech, language, hearing,
or neurological disorders or contraindications to tDCS including
metal in the head, implanted brainmedical device, or seizures. All
participants passed a pure tone audiometric screening at 1, 2 and
4 kHz at 30 dB. The participants attended three sessions that were
separated by a minimum of 48 h. The sessions consisted of one of
three possible tDCS conditions: anodal, cathodal, or sham. The
order of each condition was counterbalanced across participants.

Experimental Tasks
During each session, participants completed three tasks: speech,
syllable repetition, and chewing gum. The tasks were selected
to represent a range of tasks with differing linguistic and motor
demands. For the speech task, the participants were instructed to
repeat a phrase commonly used in motor speech studies, ‘‘Buy
Bobby a puppy’’, 12 times at their normal speaking rate (Nip
and Green, 2013). For the syllable repetition task, participants
were instructed to produce the syllable, /ba/, as fast as possible
on one breath. For the chewing task, participants were given a
sized controlled piece of gum and instructed to chew on their
right molars 12 times at their natural rate.
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As the participants completed the tasks, jaw movements
were recorded using 3D optical motion capture. An eight-
camera system was used to record jaw movements at 120 frames
per second (Motion Analysis Corporation, Santa Rosa, CA,
USA). Three reflective spherical markers were adhered to the
jaw—one marker was placed on the jaw gnathion and two
markers were placed to the right and left of the jaw gnathion (see
Figure 1). The marker to the right of the jaw gnathion was used
for analysis as it is less prone to error due to flesh movements
(Green et al., 2007). One marker from the rigid 4-marker array
affixed to the forehead was selected to subtract head movements
from the jaw movement trajectories. Full-face videos and audio
data were recorded and synchronized with the motion capture
data at the time of the collection.

Transcranial Direct Current Stimulation
While completing the tasks, the participants received one of
three possible tDCS conditions (i.e., anodal, cathodal, or sham).
A tDCS machine (Soterix Medical) was used to deliver 2 mA
of current to the scalp electrodes (5 cm × 5 cm) in a
2 × 1 montage. The active electrodes were placed bilaterally over
the sensorimotor cortex. We used a bilateral montage because
of the bilateral innervation of the mandible. For placement,
the 10–20 EEG system was used and the electrodes were
placed 2 cm down and over from C3/C4 (see Figure 1). The
reference electrode was placed over the midline frontal area.
The duration of the stimulation was 20 min and all tasks were
completed during active stimulation. Sham stimulation consisted
of ramping up for 15 s immediately followed by ramping down of
the current. The participants and the experimenter were blinded
to the tDCS conditions.

Data Analysis
The tasks were parsed using the distance signal, full-face
recordings and audio. The distance signals were digitally
low-pass filtered at a cutoff frequency of 10 Hz (Butterworth,
eight pole). The Euclidian distance between the top head marker
and the right jaw marker was calculated and used for all analyses
(see Figure 1). From the phrase, the second syllable, /ba/,
was parsed. For the syllable repetition task, 12 syllables across
the entire sequence were selected at regularly spaced intervals.
For the chewing task, 12 chewing cycles were used. After
identifying the syllables and chewing cycles, the closing stroke
of the movement was parsed. The first and last closing stroke
were then excluded and the remaining 10 trials were used for
analyses. For some trials, the chewing task had only nine cycles
as some cycles were deemed to be extraneous jaw movements
related to managing the bolus. The criteria for determining
a chewing cycle was based on the video recordings and the
velocity signal. To be accepted as a chewing cycle, the velocity
of the individual cycle had to fall within the 80th percentile
of the velocity of the entire sequence. For each closing stroke
(i.e., maximum oral opening to maximum oral closure), the
duration, range and peak speed of mandibular movement were
calculated using SMASH, a custom MATLAB program (Green
et al., 2013).

FIGURE 1 | Shown here is marker placement used to record mandibular
movements and the electrode montage for the transcranial direct current
stimulation (tDCS). Informed written consent was obtained for the use of this
image for publication.

Statistical Analysis
Descriptive statistics were calculated by averaging the means of
all the participants for each dependent variable. A linear mixed
model was constructed for each of the dependent variables to
determine the effects of polarity for each task. The experimental
condition (i.e., anodal tDCS, cathodal tDCS and sham) was used
as the fixed factor and the participants were the random factor.
A multiple comparison of means (Tukey Contrasts) was used to
test for differences between the three experimental conditions.
Cohen’s d effect sizes were also calculated between the sham
and the two experimental conditions (i.e., sham—anodal;
sham—cathodal). Statistical analysis was completed using R (R
Core Team, 2016).

RESULTS

Table 1 shows the means and standard deviations for the
experimental conditions. The effect sizes for duration, range of
movement and peak mandibular speed for the three tasks are
shown in Figure 2.

Speech
A main effect of condition was found for the speech task for
duration, F(289,2) = 8.00, p < 0.001, range, F(289,2) = 11.34,
p < 0.001 and peak mandibular speed, F(289,2) = 7.78, p < 0.001.
Post hoc analysis revealed that duration became shorter, as
compared to sham, with anodal tDCS, p < 0.001, and cathodal
tDCS, p = 0.003. Range of movement became smaller with anodal
tDCS, p < 0.001, and cathodal tDCS, p < 0.001, as compared to
sham. Peak speed also became slower as compared to the sham
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TABLE 1 | Task descriptive statistics for the experimental conditions.

Task tDCS Condition Range of movement (mm) M (SD) Peak speed (mm/s) M (SD) Duration (s) M (SD)

Speech
Sham 4.67 (1.47) 67.44 (19.44) 0.13 (0.03)
Anodal 4.14 (1.42) 62.58 (20.79) 0.12 (0.02)
Cathodal 4.23 (1.51) 63.16 (19.16) 0.12 (0.03)

Syllable repetition
Sham 2.64 (0.85) 46.37 (15.11) 0.10 (0.01)
Anodal 2.35 (0.97) 42.45 (17.43) 0.09 (0.01)
Cathodal 2.97 (1.07) 52.58 (19.32) 0.10 (0.01)

Chewing gum
Sham 6.35 (1.45) 45.33 (14.44) 0.34 (0.05)
Anodal 6.43 (1.13) 47.93 (17.34) 0.33 (0.06)
Cathodal 6.78 (1.25) 54.48 (21.56) 0.32 (0.09)

condition for the anodal, p < 0.001, and the cathodal condition,
p = 0.004.

Syllable Repetition
A main effect of condition was found for the syllable repetition
task for range, F(289,2) = 18.76, p < 0.001 and peak speed,

FIGURE 2 | The effect sizes for range of mandibular movements are shown in
Panel (A), peak mandibular speed are shown in Panel (B) and duration of the
closing stroke are shown in Panel (C), for the speech, syllable repetition and
chewing tasks. The effect sizes were calculated between the sham and
anodal/ cathodal conditions. Statistically significant differences are shown with
an asterisk. Statistically significant differences between the anodal and
cathodal conditions are shown with a bar and asterisk.

F(289,2) = 19.61, p< 0.001. Nomain effect was found for duration,
F(289,2) = 1.95, p < 0.14. Jaw movements became larger with
cathodal stimulation as compared to the sham, p = 0.003, and
anodal condition, p < 0.001, but the range became smaller with
anodal stimulation, p = 0.01. With cathodal stimulation, peak
speed was faster than the sham condition, p < 0.001, and the
anodal condition, p < 0.001. Jaw movements were slower with
anodal stimulation, p = 0.04.

Chewing Gum
For the chewing task, a main effect of condition was found for
range, F(288,2) = 4.50, p = 0.01 and peak speed, F(288,2) = 14.29,
p < 0.001. No main effect was found for duration, F(288,2) = 1.47,
p = 0.23. The range of jaw movements became larger with
cathodal stimulation as compared to sham, p = 0.01, and anodal
stimulation, p = 0.056. With cathodal stimulation, peak speeds
became faster as compared to the sham, p < 0.001, and anodal
conditions, p < 0.001.

DISCUSSION

In this exploratory study, we investigated if tDCS affects jaw
motor function during speech, maximum syllable repetition,
and chewing. Because these behaviors have distinct physiological
demands and behavioral goals, we hypothesized that the
effects of neural modulation on jaw motor function would
be task-dependent. Our findings suggest that the interaction
of polarity and task demands resulted in biomechanically
efficient jaw movements (i.e., smaller movement displacements)
during some tasks while jaw movements during other tasks
became biomechanically inefficient (i.e., larger movement
displacements). We speculate that the differential effects for the
three tasks may be due to either motor drive or extramotor effects
depending on the behavior.

Anodal Stimulation Resulted in Improved
Performance for Speech
During anodal stimulation, jaw movements became smaller
and slower and duration became shorter relative to the sham
condition. This finding is indicative of increased biomechanic
efficiency. By reducing their jaw excursions, talkers were
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economizing their articulatory efforts (Perkell et al., 1997),
which is consistent with the articulatory strategy identified
by Lindblom (1990) as hypo-articulation. This bias towards
minimizing movements is also seen in limb studies as an energy
minimization strategy (Oliveira et al., 2005).

We speculate that the speech changes likely resulted from
an effect that was not only from the motor cortex, but also
that tDCS may have enhanced connected speech related areas,
such as, the cognitive and linguistic processes that support
speech rather than the isolated modulation of the primary
motor cortex (Jacobson et al., 2012). For example, anodal
stimulation may have facilitated cognitive control processes
that allowed participants to select the most efficient movement
strategy. Talkers were able to consider the cost of minimizing
articulator movements while still achieving an accurate acoustic
production of the phrase. The increased cognitive effort would
presumably have a top-down effect on jaw motor function
(Sarter et al., 2006). Previous studies have shown that tDCS
can enhance cognitive functioning (Fregni et al., 2005; Coffman
et al., 2014) and in this study, those processes may have been
modulated via network-level effects (Polanía et al., 2011). Several
studies have shown that anodal tDCS leads to an enhancement
of cognitive tasks the subjects are engaged in by accessing
other networks that can improve performance (Lapenta et al.,
2013).

Anodal stimulation may have also impacted linguistic
networks. Previous tDCS studies have shown improvements in
language processing in healthy adults, such as picture naming
and verbal fluency (Iyer et al., 2005; Cattaneo et al., 2011;
Holland et al., 2011; Meinzer et al., 2016; Lifshitz-Ben-Basat
and Mashal, 2017). But few studies have focused on motor
speech production in healthy adults (Fiori et al., 2014; Bashir
and Howell, 2017; Chesters et al., 2017). Fiori et al. (2014)
found shorter durations when participants repeated tongue
twisters with anodal stimulation to the left frontal cortex,
which was consistent with our findings for the speech task.
Potential mechanisms of linguistic enhancement include Levelt’s
‘‘mental syllabary’’ (Levelt et al., 1999). The mental syllabary is a
hypothesized cortical center (Riecker et al., 2008; Brendel et al.,
2011) that stores precompiled speech units that are accessed
during speech. The syllabary allows for the rapid retrieval of
commonly produced and overlearned syllables. Therefore, tDCS
may be improving access and retrieval to the syllabary that then
allows for more efficient articulations. For example, many studies
have demonstrated that familiar words and words with higher
phonotactic probability are producedwith shorter durations than
unfamiliar words and words with low phonotactic probabilities
(Wright, 1979; Munson, 2001; Munson et al., 2005) illustrating a
strong word-frequency effect purportedly due to the rapid access
of the phonological code (Levelt, 1999).

Cathodal Stimulation Resulted in
Inefficient Jaw Movements for Chewing
Contrary to the speech task, during chewing, cathodal
stimulation had the effect of making jaw movements less
efficient. We speculate that the differential tDCS effects on

chewing as compared to speech may be due to the different
demands resulting in task-specific induced neural activity. The
inhibitory release of motor drive or extramotor processes may
be responsible for these changes to jaw motor function. Previous
studies have shown that cathodal tDCS over the motor cortex
decreases the excitability of inhibitory circuits (Batsikadze et al.,
2013; Sasaki et al., 2016). This release of inhibition of motor
drive is consistent with the large movements and faster speeds
found during the chewing task.

Another possible explanation may be that cathodal
stimulation suppressed relevant sensory signals resulting in
degraded performance. Although chewing is heavily mediated by
central pattern generators that are responsible for the rhythmic
patterns of chewing, it is also dependent on the sensorimotor
cortex to provide sensory feedback control regarding the
changes to the physical properties of food during the masticatory
sequence (Lund, 1991; Mistry and Hamdy, 2008). Cathodal
stimulation may have led to a decrease in neuronal activity in the
pathways necessary for chewing. Lang et al. (2005) found that
cathodal tDCS over the motor cortex led to decreased regional
cerebral blood flow in the cortex. This inhibition may have
resulted in less efficient movements evidenced in the chewing
task. Although in this study we cannot ascertain the reasons why
anodal tDCS did not result in changes to jaw motor function
during the chewing task, it is possible that that chewing task was
too simple and thus there were no additional possibilities for
performance enhancement resulting in a ceiling effect for anodal
stimulation. This effect has been observed during cognitive tasks;
while anodal tDCS enhances performance of more complex
tasks, it does not in simpler tasks (Woods et al., 2016). In this
context, we can conclude that the results of tDCS are not only
highly dependent on the nature of the task, but on the task
performance of the person being stimulated. For example, if
a person had never chewed gum before then they may have
benefited from tDCS.

Anodal and Cathodal Stimulation Resulted
in Differential Effects for Maximum Syllable
Repetition
Unlike speech and chewing, polarity effects were found for
the syllable repetition task. Relative to sham, jaw movements
became smaller and slower with anodal stimulation and larger
and faster with cathodal stimulation. During anodal stimulation,
talkers economized their articulatory efforts while producing the
syllable /ba/ as fast as possible. Similar to speech, the efficient
jaw movements observed during anodal stimulation may be
explained by extramotor processes. That is, talkers may have
selected the most efficient movement control strategies due to
enhancement of cognitive process (Manohar et al., 2015) or they
may have been able to retrive syllables via the mental syllabary
faster (Levelt et al., 1999).

During cathodal stimulation, jaw movements became larger,
which is not an optimal strategy for this task. Similar to chewing,
either the inhibitory release of motor drive or attenuation of
relevant neural signals may explain jaw performance during
syllable repetition. Cathodal stimulation during the rapid syllable
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task did not result in the same truncation of jaw movements
that was observed during speech. The syllable repetition task
resulted in differential polarity findings whereas cathodal and
anodal stimulation resulted in similar findings for the speech
task (i.e., smaller jaw displacements). Arguably the speech task
was more linguistically complex, but the syllable repetition
task involved more motoric and cognitive (i.e., attention
and intention) demands. A meta-analytical review found that
differential effects between anodal and cathodal stimulation were
not consistently found in language studies (Jacobson et al., 2012).
In another meta-analytical review of language-based studies, they
concluded that additional studies are needed to determine if there
are dissociable effects between polarities (Price et al., 2015). We
speculate that these inconsistent effects (i.e., between anodal and
cathodal for the speech task and between speech and syllable
repetition tasks) may be due to the differing task demands across
oral behaviors.

Limitations
This study presented with some limitations. Because our
speaking task was a simple sentence repetition, it remains
unknown how tDCS affects jaw control during more demanding
speaking conditions. Because this study was exploratory, we
speculated on the possible causes (i.e., motor drive or extramotor
processes) of the differential findings. Also, due to the
exploratory nature of this study, our sample size was small
therefore we must be cautious in concluding the null effects
for the chewing task and the duration variable. Functional
imaging would have provided additional information to elucidate
the underlying mechanisms of change due to tDCS. Also, the
bilateral, bi-cephalic placement that was used in this study due
to the bilateral innervation of the jaw has not been widely used
therefore it remain unknown how that montage affected the
findings as compared to other studies.

CONCLUSION

The purpose of this study was to investigate the effects of
tDCS on jaw motor function during speech, maximum syllable
repetition, and chewing gum. Our findings revealed that anodal

stimulation resulted in an efficient movement strategy for speech
and syllable repetition whereas cathodal stimulation resulted
in a less efficient movement strategy for syllable repetition
and chewing. The results suggest that the differential effects
were an interaction of polarity and distinct behavioral demands
for each task. We posit that the effects for some tasks were
due to motor drive, while the effects for other tasks were
due to network-level extramotor effects particularly in tasks
where there was room for improvement. In fact, results in
patients with motor speech deficits may be likely larger. The
results of this study help to understand polarity and task
demands during different oral behaviors for the development of
future therapeutic protocols for persons with oral sensorimotor
impairments.
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