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The field of enacted/embodied cognition has emerged as a contemporary attempt to
connect the mind and body in the study of cognition. However, there has been a
paucity of methods that enable a multi-layered approach tapping into different levels
of functionality within the nervous systems (e.g., continuously capturing in tandem
multi-modal biophysical signals in naturalistic settings). The present study introduces
a new theoretical and statistical framework to characterize the influences of cognitive
demands on biophysical rhythmic signals harnessed from deliberate, spontaneous and
autonomic activities. In this study, nine participants performed a basic pointing task
to communicate a decision while they were exposed to different levels of cognitive
load. Within these decision-making contexts, we examined the moment-by-moment
fluctuations in the peak amplitude and timing of the biophysical time series data
(e.g., continuous waveforms extracted from hand kinematics and heart signals). These
spike-trains data offered high statistical power for personalized empirical statistical
estimation and were well-characterized by a Gamma process. Our approach enabled
the identification of different empirically estimated families of probability distributions
to facilitate inference regarding the continuous physiological phenomena underlying
cognitively driven decision-making. We found that the same pointing task revealed shifts
in the probability distribution functions (PDFs) of the hand kinematic signals under study
and were accompanied by shifts in the signatures of the heart inter-beat-interval timings.
Within the time scale of an experimental session, marked changes in skewness and
dispersion of the distributions were tracked on the Gamma parameter plane with 95%
confidence. The results suggest that traditional theoretical assumptions of stationarity
and normality in biophysical data from the nervous systems are incongruent with the true
statistical nature of empirical data. This work offers a unifying platform for personalized
statistical inference that goes far beyond those used in conventional studies, often
assuming a “one size fits all model” on data drawn from discrete events such as mouse
clicks, and observations that leave out continuously co-occurring spontaneous activity
taking place largely beneath awareness.

Keywords: embodied cognition, cognitive load, heart rate variability, sensory-motor integration, pointing
movements, stochastic processes
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INTRODUCTION

Cognitive Science as a field has focused primarily on the
study of the mind, with few studies addressing the mind-body
interactions. In recent years, the field of embodied cognition
has emerged to fill this gap and try to connect mental
representations with physically enacted actions (Wilson, 2002;
Mahon and Caramazza, 2008). However, progress in this
nascent field has stalled, partly because there are no proper
ways to statistically quantify cognition and action under a
common framework. Given that motor action is a result of the
central and peripheral nervous systems working together, it is
necessary to study continuous output signals from all layers of
the nervous systems in tandem. These include the brain, the
heart and the body in motion. Conventional studies are often
based on discrete epochs of biophysical signals obtained during
constrained (unnatural) actions whereby decisions are marked
by mouse clicks, self-reports and/or observation. Such classes
of actions contrast with signals obtained during naturalistic and
self-generated continuous behaviors.

In the naturalistic case, spontaneous movement segments
coexist with deliberate ones and are performed largely beneath
the person’s awareness (Torres, 2011). Indeed, naturalistic
actions involve varying levels of functional control, which range
from those that are intentional and goal-directed, to those that
are autonomic in nature (Figure 1A). Activities of daily living
require the coordination and control of motions along all these
levels of functionality. Accordingly, it is important to understand
the evolving dynamics of biophysical signals across the multiple
layers of the nervous systems, under different levels of functional
control within these systems. To that end, the current study
introduces a new theoretical and methodological framework that
assesses the influences of cognitive loads on bodily motions.
We use the hand’s and the heart’s rhythmic motions during
continuously repeated pointing gestures to indicate cognitive-
loaded decisions.

In order to understand the interactive dynamics across
the different nervous systems, we introduce a new theoretical
framework (Torres et al., 2013a) grounded on the principle of
reafference (VonHolst andMittelstaedt, 1950), from the works of
Von Holst and Mittelstaedt, stating that ‘‘Voluntary movements
show themselves to be dependent on the returning stream of
afference which they themselves cause.’’ Our work expands
the use of this principle to other non-voluntary movements’
functionalities and to movements that may be independent of the
returning afferent stream but coexisting within voluntary actions.
These include supportive motions that occur spontaneously
and do not pursue a goal, involuntary motions inherent in
the person’s system, automated and autonomic motions. These
motions have different dynamics and funnel differently the
influences of dynamics on the geometry of the paths their
trajectories describe—as compared to those intended to a goal,
i.e., deliberately performed with intent or purpose (Torres, 2001,
2010, 2011; Torres and Zipser, 2004; Torres and Andersen, 2006;
Torres et al., 2013c). They also have the common feature that
the person is less aware of them than those performed under
voluntary control.

Within this framework, studying physiological signals with
varying levels of functional control, it is then essential to
understand co-existing levels of functionality permeating the
closed feedback loops between the CNS, the PNS, and within
the PNS, the ANS. These multi-modal flows of information
exert influences over one another. For instance, it has been
shown that spontaneous actions (e.g., retracting motion of
the pointing hand) co-exist with, and are instrumental to the
goal-directed segments of complex motions, as they provide
fluidity to behavior at large (Torres, 2011). Along those lines,
prior work concerning neuromotor features of complex actions
with coexisting multi-functional movement segments examined
the interplay between deliberate and spontaneous movements
to characterize their stochastic signatures among athletes vs.
novices (Torres, 2011, 2013b). Within the realm of basic
perceptual science, the new framework has been used to examine
top down influences of visual illusions onmulti-functional motor
control (Nguyen et al., 2013, 2014a,b). In the health space, these
new methods under the aforementioned theoretical construct
have been used to examine individuals with autism spectrum
disorders (Torres, 2013c; Torres et al., 2013a), schizophrenia
(Nguyen et al., 2016), Parkinson’s disease (Torres et al., 2011),
stroke (Torres et al., 2010) and deafferentation (Torres et al.,
2014). More generally, these methods have been deployed as a
new platform for personalized medicine drawing on principles
of the Precision Medicine approach (Torres et al., 2016a,b) for
Big Data analyses (Torres and Denisova, 2016; Torres et al.,
2017) and mobile health concepts (Torres, 2013a; Torres and
Lande, 2015; Torres et al., 2016c). The use of the fluctuations in
amplitude and timing extracted from parameters in biophysical
signals provides a proper level of detail to detect preferences
in sensory guidance and help evoke and steer the system’s
autonomy, its volitional control and ultimately its agency
(Figures 1B,C).

We posit that interactions among signals from the full
range of functionalities and from different nervous systems are
necessary for the development and maintenance of deliberate
autonomy (i.e., the ability to deliberatelymaintain a robust course
of action on demand, impervious to external/environmental
influences).

Under the lens of this framework, to examine how increase
in cognitive demands are manifested across different nervous
systems, we assessed the variability inherent in the biophysical
rhythms that we harnessed noninvasively from the various
layers of the nervous systems. We characterize the influences
of increases in cognitive demands on the hand movement
kinematics and the heart signals, using new statistical methods
under the renovated kinesthetic reafference framework, as
applied to the multi-layered and multi-functional nervous
systems. Here, we vary the level of cognitive demands during
a pointing task to communicate a decision. Under those
conditions, we examine: (1) the goal-directed segment of the
pointing motion; (2) the supplemental segments of the retracting
motions; and (3) the heart rate variability, as these provide
a window into the individual’s mental states during cognitive
decisions, in an interactive closed-loop between the central and
the peripheral nervous systems.
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FIGURE 1 | Micro-movements from different nervous systems’ biorhythms. (A) Continuum of different levels of control ranging from those that are conscious and
goal-directed to those that are autonomic and unconscious (taken from Torres, 2011). (B) Different waveforms from different instrumentations (e.g., heart activity,
temperature and movement) registered from physiological sensors. Raw biophysical signals give rise to a time series of peaks and valleys, which vary in amplitude
and timing. The fluctuations in the amplitude and timing of the peaks are the “micro-movements” of biophysical signals. (C) The micro-movements datatype can be
used in an empirical estimation of families of probability distributions (e.g., using a Gamma process) to estimate parameters of the probability distribution functions
(PDFs), track the integrated signatures from different layers of the nervous systems on the Gamma parameter plane, and separate regimes of low vs. high
noise-to-signal ratio (NSR), and low vs. high symmetry of the distribution based on the shape values.

MATERIALS AND METHODS

Participants
Nine undergraduate students (two males and seven females)
between the ages 18 and 22 were recruited from the
Rutgers human subject pool system and received credit for
their participation. This study took place at the Sensory
Motor Integration Laboratory of Rutgers University. All
participants signed the consent form approved by the Rutgers
University Institutional Review Board (IRB). The entire study
protocol was approved by the Rutgers University IRB. The
study conforms to the guidelines of the Helsinki Act for
the use of human subjects in research. Two participants
were left-handed, and all had normal or corrected-to-normal
vision.

During the experiment, the motor and heart signals were
recorded from each participant. However, one participant’s
heart signals did not record successfully due to instrumentation

malfunctioning, resulting in an analysis on motor data for nine
individuals and heart data for eight individuals.

Sensor Devices
In this study, two sensor devices—motion capture system and
a wireless heart rate monitor—were used to record the signals
coming from the bodily movements and the heart. The data
obtained from these two devices were analyzed separately.

Motion Capture
Fifteen electromagnetic sensors at a sampling frequency of
240 Hz (Polhemus Liberty, Colchester, VT, USA) were used
to continuously capture the participant’s movements across the
upper body. Nine sensors were placed on the following body
segments using sports bands to optimize unrestricted movement
of the body: center of the forehead, thoracic vertebrate T7, right
and left scapula, right and left upper arm, right and left forearm,
the dominant hand’s index finger. An additional sensor was used
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to digitize the body in constructing a biomechanical model using
the Motion Monitor (Innovative Sports Training Inc., Chicago,
IL, USA) software. One sensor was placed at the backside center
of the iPad (Apple, Cupertino, CA, USA) display screen. This
sensor served to measure the physical position of the fixed target,
to help obtain a distance-based criterion to automatically classify
motions into forward (from the resting position of the hand to
the target) and backward (from the target to the resting position).
There were also four positional sensors placed at the four corners
of the table on which the iPad was standing. This physical
information enables us to build computational models of these
movements to study Bernstein’s degree of freedom problem
(Torres and Zipser, 2002; but that work is beyond the scope of
this article). During the experiment, the participant’s motion was
captured in real-time, recording the location and speed of the
upper body movements.

Heart Rate Monitor
Heart signals were obtained via electrocardiogram (ECG) from
a wireless Nexus-10 device (Mind Media BV, Netherlands) and
Nexus 10 software Biotrace (Version 2015B) at a sampling rate of
256 Hz. Three electrodes were placed on the chest according to
the standardized lead II method and were attached with adhesive
tape. A typical ECG data includes a set of QRS complexes and
detecting R-peaks (within the QRS complex) is essential, as the
heart rate metrics needed for this study focuses on the oscillation
of intervals between consecutive heartbeats. To remove any
baseline wandering and to accurately detect the R-peaks, ECG
data were preprocessed using the Butterworth IIR band pass filter
for 5–30 Hz at 2nd order. The range of the band pass filter was
selected based on the finding that a QRS complex is present in the
frequency range of 5–30 Hz (Kathirvel et al., 2011). To retrieve
the time between R-peaks (i.e., inter-beat intervals, IBI) from the
preprocessed ECG data, simple peak detection method was used,
and was plotted using Matlab graphics to ensure that there were
no missed R-peaks.

Stimulus Apparatus and Experimental
Procedure
Once all sensors were donned and calibrated, participants were
seated at a table facing an iPad used as a touchscreen display. An
in-house developed MATLAB (Release 2015b, The MathWorks,
Inc., Natick, MA, USA) program controlled the presentation
displayed on the touchscreen display and recorded the timing
and location of the touches made by the participant. The
MATLAB program was presented on the touchscreen display
using the TeamViewer (Germany) application.

As shown in the schematics of Figure 2, for each trial, the
participant was presented with a circle on the center of the display
screen. This presentation prompted the participant to touch the
circle on the screen within 5 s. After the touch, the participant
heard a tone at 1000 Hz for 100 ms. The duration between the
touch and the tone was randomly set to be 100 ms, 400 ms,
or 700 ms. Then, on the display screen, the participant was
presented with a sliding scale ranging from 0 to 1. On the sliding
scale, the participant indicated how long they perceived the time
to have elapsed between the touch and the tone, by touching

the corresponding number on the scale within 5 s. Note, the 5 s
time-windows allowed ample time for the participant to touch
the screen at their own pace, as the time to reach the screen and
then to retract the hand took approximately 1.5 s. Supplementary
Table S1 of the Supplementary Material summarizes the median
time to move the hand under each condition.

The experiment consisted of three conditions—control, low
cognitive load and high cognitive load condition. Under the
control condition, the participant simply performed this task for
60 trials. Under the low cognitive load condition, the participant
performed these tasks for 60 trials, while repeatedly counting out
loud one through five. Under the high cognitive load condition,
the participant performed these tasks for 60 trials, while counting
backwards from 400 subtracting by 3.

Participants performed the conditions in the order of control-
baseline, low cognitive load condition, and high cognitive load
condition. Note, the order was not counterbalanced, because
performing high cognitive load tasks prior to low load tasks
would have caused cognitive load and fatigue to be carried
over to the low cognitive load condition. This might have
influenced the effect of cognitive load to be mixed with fatigue,
but this was necessary to keep the low cognitive load tasks
to be minimally taxing as possible. For both low and high
cognitive load conditions, the participant was instructed to count
at a comfortable pace. Participants took breaks in between
conditions, and the entire experiment took about 40 min.

Justification and Assessment of Levels of
Cognitive Load
To illustrate the effects of subtle increases in cognitive demands
on the hand kinematics, we use Figure 3A where the hand speed
profiles for the low and high cognitive load conditions show
marked differences in variability as the movements unfold in
each trial, and as they are performed from trial to trial. Besides
the speed profiles, these differences can be appreciated in plots of
heat maps where the peaks are highlighted for 60 trials. Indeed,
the results extend to the heart beat, as illustrated in Figure 3B
using similar format as in Figure 3A (i.e., the waveform of the
raw signal and the heat map of the peaks).

To justify the use of this paradigm to test influences of
cognitive demands on movement kinematics, we evaluated the
number of peaks in the angular acceleration waveform for both
the deliberate portion of the reach (forward to the target) and the
spontaneous retraction (backward to rest).

The effects of the increase in cognitive demands manifested
in statistically significant changes in the accuracy of the task
and the time of performance. The group incurred a significant
increase in the time to point (t(8) = 0.15, p < 0.01) explained
by the statistically significant increase in the number of angular
acceleration peaks as the cognitive demands increased. The
accumulation of peaks in the rates of hand angular speed
with higher cognitive load resulted in higher physical effort,
as the participants had longer angular excursions with higher
cognitive demands. The insets in Figure 3C show the increase in
number of peaks for both types of motions under consideration
(forward and backwards). Lastly, we confirmed that the increase
in cognitive demands affected their accuracy in estimating time.
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FIGURE 2 | Experimental design. The participant was presented with a display screen as shown on (A). During the first 5 s, the screen presented a circle prompting
the participant to touch the circle on the screen. After the touch, the participant heard a tone. The duration between the touch and the tone was randomly set to be
100 ms, 400 ms, or 700 ms. In the next 5 s, the participant was presented with a sliding scale, where the participant would indicate how long they perceived the
time to have elapsed between the touch and the tone, by touching the corresponding number on the scale. (B) For each trial, the participant made a pointing
gesture to touch the circle and to indicate their time estimation on the sliding scale. The pointing movement is composed of a voluntary/goal-directed forward
segment (red) and a spontaneous backward segment (blue).

This is shown in Figure 3D, where the increase in the cognitive
loads resulted in statistically significant higher errors of the time
estimation (t(8) = 4.21, p < 0.01). All these preliminary tests
confirmed that the motor task we designed was adequate to
assess variations in cognitive load and their potential effects
on physiological parameters of interest. We then proceeded
to examine these physiological waveforms’ peaks in terms of
spike trains under the general rubric of continuous stochastic
processes.

Data Analysis
The Statistical Platform for Individualized Behavioral
Analyses (SPIBA)
The current study employs a new platform, Statistical Platform
for Individualized Behavioral Analyses (SPIBA; Torres and
Jose, 2012), which was created for personalized assessments
required in the Precision Medicine and mobile Health concepts
(Hawgood et al., 2015). For the present study, the SPIBA
was used to first characterize each participant individually,
which could potentially be used to automatically (without
heuristics of e.g., machine learning algorithms to classify labeled
data) identify self-emerging clusters of participants based on
their similar statistical patterns in subsequent studies. This
platform stands in stark contrast to current approaches in
health sciences (e.g., significant hypothesis testing method),
which tend to compare hand-picked grouped data under some

inclusion/exclusion criteria and assumed to follow a normal
distribution with homogenous variance. The pitfalls of such
methods have been discussed by others (Gallistel, 2009; Gallistel
and King, 2009) and the Bayesian framework has been offered
(e.g., in fields of Cognitive Science and Neuroscience) as
an alternative to address some of the known weaknesses of
traditional approaches to statistical inference. However, the
Bayesian approach has not been adapted to analyze multiple
types of biophysical data in tandem, obtained from different
layers of the nervous systems, including those that are internally
generated with disparate levels of functionality.

The SPIBA framework, with the use of a new datatype
coined ‘‘the micro-movements’’ of biophysical signals (explained
in the following section), was precisely designed to longitudinally
tackle the emergence, dynamic development, maintenance and
degeneration of the signals produced by the multi-layered
nervous systems, including those with different pathologies over
the human lifespan (Torres et al., 2016a).

New Data Type: Definition of Micro-Movements
The raw biophysical data continuously registered from
physiological sensors (i.e., physiological signals obtained by
ECG, respiration patterns, kinematics from bodily, head and
eye movements, tremor data, etc.) give rise to time series
of peaks and valleys, which vary in amplitude and timing
(Figure 3). The fluctuations in amplitude and timing of the
peaks are treated as spikes and assumed to follow a continuous
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FIGURE 3 | Biorhythms from different nervous systems and motor/behavioral results from cognitive load. (A) Biorhythm of motor signals, from hand pointing
movements, in the form of temporal speed profiles across 60 trials, exhibit moment by moment variations with different levels of cognitive load. Motions are aligned
to the touch of the screen and heat maps are used to show the speed peaks (cm/s) for the forward and backwards motions. Peaks of the electro-cardiogram signals
(ECG) are aligned (4 s) and represented in (B) as spikes. Later in the analyses, these peaks become standardized as unit-less micro-movements ranging on the
real-valued scale from 0 to 1 for further stochastic analyses (see “Materials and Methods” section). (C,D) To validate the effect of cognitive load, movement time
(i.e., time was registered from the time when the participant was prompted to reach the target, to time of completion of the reach by touching the screen), error in
time estimation, and average number of angular acceleration peaks per trial were compared between the high and low cognitive load conditions, and between
pointing and time estimation tasks. Movement time showed significant difference between control and high cognitive load condition (t(8) = 3.53, p < 0.01) and
between low and high cognitive load condition (t(8) = 0.15, p < 0.01). Error in time estimation also showed significant difference between control and high cognitive
load condition (t(8) = 2.89, p = 0.04) and low and high cognitive load condition (t(8) = 4.21, p < 0.01). Number of angular acceleration peaks were significantly
different between low and high cognitive load conditions for forward motions (t(8) = 5.4, p < 0.01) and backward motions (t(8) = 7.6, p < 0.01); and between pointing
and time estimation tasks for forward motions (t(8) = 2.2, p = 0.05) and borderline significant for backward motions (t(8) = 2.1, p = 0.07). ∗∗p < 0.01; ∗p < 0.05. The
experimental paradigm described in Figure 2 proved efficient to probe cognitive demands and characterize cognitive loads by time series of peaks in trajectories
described by the hand’s angular acceleration. See Supplementary Tables S2–S4 for all pairwise comparisons of these metrics.

random process where events in the past may (or may not)
accumulate evidence towards the prediction of future events.
Under this framework, we distinguish the processes, whereby
the consequences of the signals dependent on the returning
stream of afference which the (voluntary) motions themselves
cause, from the independent processes. The latter are those for
which the present events are independent of the past events.
All fluctuations treated as standardized spikes in the 0–1
unit-less real number range are the ‘‘the micro-movements’’
of biophysical signals. To model them, we build on our

original work (Torres et al., 2013a) whereby random variables
follow a Gamma process (rationale behind this is explained in
next).

For the current study, the goal is to show an example of using
SPIBA and micro-movement data involving signals harnessed
in tandem from the PNS and ANS while performing CNS
driven decisions. To that end, we will examine biophysical data
from body movements and the heart activities in a personalized
fashion, as each participant is exposed to a decision-making task
with different levels of cognitive load.
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Different Classes of Movement Segments—Forward
vs. Backward
The continuous positional trajectory of the participant’s
dominant hand index finger was decomposed into forward and
backward movements (schematics of Figure 2 (bottom panel)
and sample hand movement trajectory in Figure 4A). The
forward movement corresponds to the movement when the
hand resting on the table would reach out to touch the display

screen. As this movement involves an explicit goal in mind
(i.e., to touch the display screen), this movement involves a high
level of intention. On the other hand, the backward movement
corresponds to the movement when the hand touching the
display screen would spontaneously (without any instruction)
retract back to the table. Because this uninstructed movement
does not involve an explicit goal and is more automatic, it
involves a relatively lower level of intention. Note, this forward-

FIGURE 4 | Analytical and visualization methods. (A) Continuous positional trajectory of the dominant hand performing a single pointing movement loop forward to
the target (instructed) and backwards to rest (spontaneous). Forward motion corresponds to the movement from the time when the index finger is resting on the
table and lifts to move until the time the finger touches the target displayed on the screen and stops. The backward movement corresponds to the movement from
the time the index finger leaves the target and retracts back to the table. (B) Time series of angular acceleration of the dominant hand’s index finger rotations during a
typical pointing task. Peaks (maxima) and valleys (minima) are shown in red and black dots, respectively. The inset shows a zoomed-in picture of a single angular
acceleration segment (i.e., two local minima and a single local peak in between). This is a schematic of computing the amplitude micro-movements (AM;
i.e., normalized peak amplitude) from a continuous time series of signal data, where the AM is computed by dividing the peak value by the sum of the peak value and
the average of the signal values between the two local minima (see equation 1). (C) Spike train for a typical pointing task. All peak values from (B) are normalized
between 0 and 1, while all non-peak values are set to 0. (D) All AM values were identified and gathered across all trials. For these data, a frequency histogram was
then plotted, and fitted with a Gamma PDF using maximum likelihood estimation (MLE). In addition to the AM values (used here to explain these methods), we can
also plot an inset PDF of the raw data (i.e., angular acceleration or time to peak TM) to show the differences in PDF between the raw data and the data scaled by
equation (1). (E) The estimated Gamma parameters from the fitted probability distribution corresponding to the parameters registered in two sample conditions
(e.g., high load and low load) were then plotted on a Gamma parameter plane, with lines representing the 95% confidence interval (CI). (F) Empirically estimated
Gamma moments: mean, variance, and skewness plotted on the x, y, and z axes respectively. The size of the marker reflects the level of kurtosis, where larger size
indicates high kurtosis level of the fitted PDF. The arrows connecting the markers indicate the order of the task conditions. The marker’s face color represents the
median values of the underlying physical units (e.g., the range values of deg/s2). For example, the marker with blue edge representing Condition 1, is yellow, signaling
a color of lower values in the color bar than the blue color of the marker with red edge representing Condition 2. This representation to visualize the data means that
from Condition 1 to Condition 2, the skewness dropped towards the 0-value reference for symmetric distributions (also marked by a right-shift in (E) along the shape
axis); a decrease in kurtosis (peakier distribution in Condition 2 than in Condition 1) with a drop in the NSR in (E) along the scale axis from Condition 1 to Condition 2.
Further, the shift from Condition 1 to Condition 2 shows an increase in the mean with a reduction in the variance (explaining the drop in NSR, i.e., mean/var).
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retraction motion paradigm has been developed (Nguyen et al.,
2014a) and translated in clinical (Torres et al., 2010, 2011,
2013a,b, 2016a; Yanovich et al., 2013; Hong et al., 2014; Amano
et al., 2015; Nguyen et al., 2016) and sports research (Torres,
2011).

For each trial, as the participant moved the dominant hand
from the table to the display screen and back to the table, the
movement trajectory consisted of a single forward and backward
movement segment. Within the trajectory, the two movement
segments were extracted, by identifying the time when the
distance between the index finger and the display screen was at
the minimum. Naturally, the linear velocity of the index finger
reaches near instantaneous zero at that point. Hence, the forward
movement would correspond to the movement from the time
when the index finger is resting on the table until the time the
finger stops at the display screen. The backward movement, on
the other hand, would correspond to the movement from the
time when the index finger stops at the display screen until it
reaches back to the table and rests (i.e., the speed value is near
zero again).

As explained above, the rationale behind the separation
between forward and backward movement is that one is
instructed and goal-directed, while the other is not, thus differing
in their levels of intent. The latter is spontaneously self-initiated
by the person without instruction. The statistical characteristics
have been shown to differ between forward and backward
movements (i.e., motion segment with high vs. low level of
intent) during reaching, pointing, and grasping actions among
different patient populations and across the general human
population (Torres et al., 2010, 2011, 2013a, 2014; Nguyen et al.,
2016). For that reason, we expect that separating the movements
in such a manner would allow us to examine the impact of
cognitive load on movements involving different levels of intent.

Analyses of the sensors from other body parts are beyond the
scope of this article and will be disseminated in future work.

Motivation and Rationale: Micro-Movements
Analytics for Motor Signals
For each forward and backward movement, we examined the
linear and angular positional data and their higher order
derivatives: the linear velocity, the angular velocity, the linear
acceleration and the angular acceleration. For each time-series
data the peak amplitudes and inter-peak intervals were identified,
converted to micro-movements (see below) and gathered across
all trials. Among the four types of parameters, for both forward
and backward movements, angular acceleration was analyzed,
as it has the largest number of peaks and provides the signal
with the highest statistical power (hundreds of peaks per
person) to carry on our stochastic estimation with high (95%)
confidence.

We underscore that the current paradigm relies on the
statistical power of an estimation procedure (which will be
detailed in the next paragraph) so the higher the number of
samples used to make an empirical estimation for a given person,
the less taxing the experiment is to the participant, as it takes less
time to attain a robust estimate. For instance, during a typical
point-to-point reaching action, which consists of a single forward

and backward movement, the linear velocity would typically
provide at least two salient samples (peaks; see Figure 3A),
one for forward and one for backward movement. To gain
enough peak data from the linear velocity speed profile during
a single experimental session and attain proper statistical power,
the participant would need to perform at least 100 reaches.
These would give us statistical power for the estimation of the
probability distribution function (PDF) describing each segment
but would likely lead to fatigue-related effects. However, using
underlying kinematic parameters with higher number of samples
(i.e., higher order of peak data) instead can result in shorter
experiments. In turn, this would allow us to include additional
conditions to manipulate various contextual parameters. For
that reason, the current study focused on examining the peak
data obtained from angular acceleration, as this provides the
most power in the statistical estimation within the shortest
time. The tradeoff here is that higher order derivatives of
the position/orientation data (such as angular acceleration)
can introduce large fluctuations from instrumentation noise.
However, we have developed in house filtering/smoothing
methods (Nguyen et al., 2014a) and combined them with
traditional filtering (Paarmann, 2001) to eliminate such potential
issues when using higher order derivatives of the position
and orientation data. In the present work, we further rely
on a variety of filtering algorithms embedded in the data
collection interface we used (Sports Inn, The Motion Monitor,
Chicago, IL, USA).

To build a unit-less normalized scale, and to address
possible allometric effects (Mosimann, 1970) due to individual
anatomical differences, the peak amplitudes of the angular
acceleration were normalized as:

Norm Peak Amplitude (AM) =
Peak Amplitude

Peak Amplitude+ AvrgMin to Min
(1)

Normalized peak amplitude (coined amplitude micro-movements
(AM), Torres et al., 2013a) provides a scaled summary of the
continuous data, and is computed using equation (1), by dividing
each local peak amplitude by the sum of the peak amplitude
and the average of the signals sampled within the neighboring
points of two local minima surrounding the peak (Figure 4B
inset). While we convert the analog continuous signal into a
point process and treat it as a continuous random process
for statistical estimation, the averaging in the denominator
preserves the information contained in the points surrounding
the maxima. Higher values of the AM imply lower values
of the signal amplitude on average. Likewise, shifts towards
lower values of AM imply increases on the magnitude of the
amplitude values on average. We emphasize that representation
of spike trains is not reduced to a binary scale (unlike the
binary representation of cortical neuronal spikes). We work with
a continuous (normalized) scale with real values ranging from
0 to 1. Further the averaged peaks in the denominator are Gamma
distributed and so are the peaks in the numerator. As such the
resulting scaled value is also Gamma distributed.

Besides the amplitude information, peak data can provide
estimates related to the motion’s temporal dynamics. To that
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end, normalized inter-peak interval timings were computed by
extracting the time elapsed between consecutive peaks (timing
TM) and normalizing the array of these TM values using
Equation 1 (coined timing micro-movements NTM). The two
types of normalized, unitless spike-dependent data (i.e., AM,
NTM) can be visualized in a spike train format as shown in
Figure 4C. Further, the physical ranges (deg/s2 and seconds)
of the original peaks can be used to color code the graphs
and show the range of parameters of each participant as
shown in Figure 4F. This is a personalized approach that
enables us to distinguish the physiological features of each
person, while automatically unveiling self-emerging trends in a
group.

The micro-movements are then used as input to a Gamma
process. These spike-train data are accumulated within a time
window that depends on the sampling resolution of the sensors
and on the physical phenomena under investigation. In this case,
the sampling resolution is 240 Hz and the physical phenomena
(i.e., a self-generated pointing movement consisting of a forward
and backward motion, produced by the nervous system) are on
the order of approximately 1500 ms each (see Supplementary
Table S1). As such, we have many sample peaks within a single
minute. Usually, we set the size of the sampling window to 1 min
(e.g., when we collect data continuously for 12 h in a hospital
setting; Torres and Lande, 2015), but in the present article we
use all trials in a given condition accrued across the experimental
session. The time window for the estimated statistical parameters
is the duration of the session (see experimental epochs for one
trial in Figure 2). For each condition we gather all peaks of
the angular acceleration and plot a frequency histogram using
optimal binning (Freedman and Diaconis, 1981; Shimazaki and
Shinomoto, 2007; Figure 4D). The histogram is then fitted
using maximum likelihood estimation (MLE; see Supplementary
Figure S3) to estimate the best continuous family of probability
distributions that fits the data with high confidence. We have
set the confidence intervals (CIs) for the empirically estimated
Gamma parameters to 95%.

Prior work from our lab was the first to explore in human data
the differences between multiplicative (e.g., lognormal family)
and additive (e.g., exponential families) random processes of the
micro-movement spike trains during voluntary, automatic and
involuntary motions (Torres, 2011). Among these are micro-
movements data from boxing routines involving voluntary and
spontaneously performed movements (Torres, 2011, 2013c),
forward-retracting motor loops during target-directed reaches
(Torres et al., 2010, 2011, 2013a, 2014; Nguyen et al., 2016),
natural walking involving automatic gait patterns (Torres et al.,
2016b), and involuntary head motions during resting state
within fMRI experiments (Torres and Denisova, 2016; Torres
et al., 2017). In all cases, the continuous Gamma family of
probability distributions has been the best fit (based on MLE
and Kolmogorov-Smirnov tests (KSTs) for empirically derived
cumulative distributions), showing that the human data has a
wide range of PDFs, ranging from the exponential to the normal
distribution. This contrasts with the assumption of a one size fits
all model guided by the theoretical Gaussian distribution. Given
that we found good fitting for the Gamma family under MLE,

here we opted for the Gamma process to represent our spike
trains of micro-movements. The Gamma PDF is given by:

y = f (x|a, b) =
1

0(a)ba
x a −1e

−x
b (2)

in which a is the shape parameter, b is the scale parameter, and
Γ is the Gamma function (Ross, 1996). The two parameters in
equation (2)—shape (a) and scale (b)—were estimated for each
histogram of the micro-movement data, as mentioned, using
MLE with 95% CIs. The estimated parameters with their CI
were plotted on a Gamma parameter plane, where the x-axis
represents the shape parameter value and the y-axis represents
the scale parameter value (Figure 4E).

The Gamma scale value conveys the noise to signal ratio
(NSR) since the Gammameanµ0 = a·b and the Gamma variance
is σ0 = a·b2, the scale:

b = NSR =
σ0

µ0
=
6a· 6b 2

6a· 6b
(3)

In this sense, according to equation (3), the scale axis of the
Gamma parameter plane allows us to infer behaviors leading
to higher noise levels vs. lower noise levels. Along the shape
axis, the Exponential distributions at a = 1 are found in autism
cases (Torres, 2011, 2013c). Using this approach, we can track
processes whereby events in the past do not contribute to the
prediction of future events and are well characterized by the
Exponential (the most random) distribution. We can also track
processes where the events in the past predict future events with
high certainty and observe skewed to symmetric distributions
along the shape axis with the Gaussian distribution at the
opposite extreme of the Exponential case. We have indeed done
so and provided the first empirical characterization of human
motions on the Gamma parameter plane (Torres et al., 2016a).

Additionally, the estimated Gamma moments were obtained
and plotted in a four-dimensional graph (Figure 4F). Here, the
empirically estimated mean, variance and skewness of the fitted
Gamma PDFs are plotted on the x, y and z axes respectively.
The size of the marker reflects the level of kurtosis, where larger
size indicates higher kurtosis level (distributions with sharper
peaks) of the fitted PDF. Negative skewness means that the
data are spread out more to the left of the mean than to the
right. Positive skewness means that the data are spread out
more to the right. Zero skewness indicates a perfectly symmetric
distribution. This four-dimensional graph allows us to visualize
the statistical features of the micro-movements and understand
how the stochastic signatures shift across different conditions
and/or individuals. The arrows are included to indicate the
orderly flow of changes across different conditions. Note, that we
standardized the waveform to a unit-less real-number ranging
from 0 to 1 and lost the original range of the physical units.
To capture the physical range of the raw data for each person,
we include color as a fifth dimension to visualize the gradient
of physical ranges of the data underlying the AM (expressed in
deg/s2) and NTM (expressed in second), giving us the change
in physical units along this color gradient for each participant.
The marker’s face represents the median of the physical values
within a condition, and the marker’s edge is used as another

Frontiers in Human Neuroscience | www.frontiersin.org 9 April 2018 | Volume 12 | Article 116

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Ryu and Torres Cognitive Load on Biophysical Signals

feature to represent the condition (i.e., cognitive load type). This
visualization tool allows us to see the physical ranges of each
individual person in transition from one condition to another,
while expressing all parameters along a common unit-less
standard scale. Note that reporting on the physical parameter
ranges of each instrument while maintaining the standardized
unit-less scale for statistical estimation and inference is amenable
for data exchange and reproducibility of results in our fields of
study.

Graphs such as Figures 4E,F produce a useful visualization
tool to uncover patterns (see Torres et al., 2016a, 2017)
for examples of large population groups that self-cluster
according to nervous systems pathologies using these methods).
Here, we can visualize participants as a group and uncover
self-emerging clusters of the general population, without a priori
hand-picking homogeneous groups for significant hypothesis
testing comparison (as it is traditionally done across the fields
of brain and health sciences). This is very important because the
patterns that we uncover are entirely data-driven, as the patterns
self-emerge from the inherent variability of the nervous systems
signals.

In the present work, we only have nine participants. However,
we underscore the personalized and empirically driven nature
of this statistical platform, as the statistical power lies in
the number of samples per person. The population family
of Gamma distributions for the human spectrum has been
empirically characterized in prior work (Torres et al., 2016a)
for this basic pointing task. This platform enables us to make
well-informed statistical inferences and interpret the empirically-
driven statistical phenomena under consideration.

Note also that we can examine the deliberate and spontaneous
processes by analyzing the micro-movement of forward and
backward motor signals, since the empirical data showed that
these processes map well onto voluntary goal-directed motions
and automatic uninstructed/goal-less motions, respectively
(Torres, 2011, 2013c).

Analytics for Heart Signals (Inter-Beat Interval)
Like the analysis performed on the micro-movement peak data
of motor signals (i.e., AM, NTM), we applied the distributional
analyses on the IBI data for each condition. As with the hand
kinematics, we fitted the PDF using MLE (see Supplementary
Figure S4). Histograms for the IBI data were fitted among the
Gamma, exponential, lognormal, and normal for each condition,
and we determined that the continuous Gamma family of
distributions would be appropriate for fitting the IBI data. For
that reason, the parameters of the Gamma PDF were estimated
for each histogram of the IBI data, and the shape and scale values
were plotted on the Gamma parameter plane with 95% CIs, and
the Gamma moments of the estimated PDFs were plotted on a
4D graph. Through this analysis, we could examine the inevitable
processes emerging from the ANS.

RESULTS

Given the preliminary analyses of Figure 3C, demonstrating
statistically significant effects given by increases in cognitive

demands on the participants’ performance (accuracy and time),
and their influences on the number of peaks of the biophysical
signals, we felt confident to explore the stochastic nature of
signals and more precisely characterize such effects at different
levels of functionality and control.

ANS Assessment of (Inevitable) Autonomic
Control of IBI
The estimated Gamma parameters characterizing the PDFs of
the IBI showed a distinct trend in the separation between the
two conditions at 95% CI. Figure 5A shows the individualized
profiling of each participant’s stochastic transitions from low to
high cognitive load condition, with the arrow marking the order
of those conditions. As the cognitive load increases, there is a
trend across participants to increase the PDF skewness (note, the
PDF shape is symmetric when the skewness value is 0), and an
overall tendency to increase the variance.

The increase in the IBI’s timing variance as the cognitive load
increases is reflected in the increase of the NSR (i.e., the value of
the Gamma scale parameter in Figure 5B bottom panel showing
the Gamma parameter shape-scale plane) across all participants.
Each participant’s PDF for low (blue) and high (red) cognitive
load is plotted in the inset of Figure 5A. Each point on the
Gamma parameter plane represents a single participant, and
the CIs are set to 95% level. Figure 5C illustrates the results
of using the KST to compare two empirically estimated PDFs
estimated under each condition. In particular, rows 1–3 are Low
vs. High; Low vs. Control baseline pointing; and High vs. Control
respectively; while the fourth and fifth rows of the color matrix
in Figure 5C show the departure of the estimated PDF from
the normal distribution for the low and high load condition
respectively. In all cases, a significant shift of the PDF can be
appreciated for different conditions performed during the same
pointing task.

In contrast to the task requiring different cognitive demands,
the time estimation task elicited modest changes when compared
to the baseline pointing task in the estimated Gamma PDF
parameters of the IBI, as is shown in Figures 5D–F. Yet,
the comparison of the empirically estimated PDFs to those
of the normal distribution did yield significance (Figure 5F
rows 2 and 3 of the matrix). This underscores the skewed
nature of these distributions and the variety of the family across
the general population (see inset in Figure 5D). Although the
changes in dispersion and shape were more modest in time
estimation-pointing task than in the high-low cognitive load
task, the overall shifts in PDF recorded within one experimental
session and the variations in skewness and dispersion across
subjects were quantifiable and significant.

Further distinction between the two tasks can be appreciated
in the fitting line to the log-log of the scatter and the behavior
of the scatter on the line. These are shown in insets to
Figures 5B,E. There, the high-load case shows a broader variety
of PDFs with a broader and more separable distributions per
condition; while the time estimation case shows a narrower
range of PDFs and a more mixed scatter of points between the
baseline pointing and the pointing during time estimation. Both
slopes and intercepts of the fitting line were similar (Low/High
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FIGURE 5 | ANS autonomic control assessment under high and low cognitive load conditions. Inter-beat intervals (IBI) signal. When comparing between high and
low cognitive load conditions (A–C) and basic pointing with pointing during time estimation (D–F). (A) Shifts in the empirically estimated Gamma moments of the IBI
distinguish Condition 1 (low load) from Condition 2 (high load) along moment axes, and PDFs spanning a family (inset). (B) Gamma parameters separate conditions
whereby high load have higher NSR and lower shape (higher skewness) than low load condition. Insets show the linear fitting of the log-log scatter (see Table 1 for
slope and intercept values). (C) Pairwise Kolmogorov-Smirnoff test (KST) for empirically estimated distributions (1–3 are Low vs. High; Low vs. Control; and High vs.
Control respectively). Comparisons 4, 5 refer to the KST for each empirically estimated distribution vs. the theoretical normal for low and high cognitive load
respectively. (D) Similar plots as in (A–C) in reference to the basic pointing and pointing during time estimation. (E) Note the different location of the scatter on the
Gamma parameter plane and the difference in slope and intercept of the inset. (F) Pairwise comparison of empirically estimated distributions using KST for each
participant: (1) baseline point vs. time estimation; (2) baseline pointing vs. normal distribution; (3) Time estimation vs. normal distribution.

load slope −1.01 intercept −0.27; Point/Time estimation slope
−1.01 intercept−0.23; also see Table 1) while the scatters shifted
along the line.

CNS Assessment of Deliberate and
Spontaneous Processes in Hand
Kinematics
Low Cognitive Load vs. High Cognitive Load
The estimated Gamma parameters characterizing the PDFs of
the hand kinematics were extracted from the pointing task
and separated into a deliberate forward movement segment
and a spontaneous backward movement segment. Then, for
each of these segments, the stochastic transitions of kinematic
micro-movements were examined between the low and high
cognitive load conditions.

Fluctuations in normalized inter-peak-time intervals (NTM)
The changes in the estimated Gamma moments referring to
the fluctuations in timing information are shown in Figure 6.
Both the deliberate (forward) and the spontaneous (retraction)
motions showed a large departure from 0-shift across all
participants. This means that the PDF of each participant shifted
to a different PDF altogether; thus, strongly advising against the
assumption of a theoretical uniform statistical approach to assess
the entire group. This is the one size fits all model currently in
use by traditional approaches and discussed in Supplementary
Figure S1.

The PDFs that we empirically estimated for each participant
were skewed, as is shown in the insets of Figures 6B,D;
thus, strongly advising against the theoretical assumption of
symmetric distributions such as the Gaussian distribution
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TABLE 1 | Power law fit of estimated gamma parameters.

Parameter Scatter points from Slope Intercept

IBI Low load vs. High load −1.0053 −0.2703
Point vs. Time estimation −1.0109 −0.2278

NTM forward Low load vs. High load −1.0304 −0.3678
Point vs. Time estimation −1.0352 −0.3372

NTM backward Low load vs. High load −1.0178 −0.4466
Point vs. Time estimation −1.0409 −0.3131

AM forward Low load vs. High load −1.0260 −0.3856
Point vs. Time estimation −1.0226 −0.4055

AM backward Low load vs. High load −1.0003 −0.5324
Point vs. Time estimation −1.0133 −0.4600

for statistical inference. Besides visual inspection, this result
was further verified using the Kolmogorov Smirnov test
to compare the empirically estimated distribution against

the normal distribution, yielding significant departure from
normality (p� 0.01) across all participants (see Supplementary
Figure S5D).

FIGURE 6 | CNS voluntary control assessment of goal-directed forward normalized inter-peak-time intervals (NTM) (A,B) and CNS automatic backward NTM (C,D)
during low and high cognitive load conditions. (A) Estimated Gamma moments showing shifts in NTM distribution parameters from low to high cognitive load
condition for forward motions, and color gradient denoting the range of physical parameter (time, seconds), where marker color for each participant noticeably shifts
range between conditions. (B) PDFs family across participants for the unitless NTM along with those for the raw TM in inset (left) and Gamma parameter plane (right).
Log-log scale aligns scatter along linear fit (see Table 1 for slope and intercept information). (C) Same as in (A) for spontaneous retractions with inset plotted at local
scale to appreciate the shifts in PDFs moments. (D) Estimated NTM PDF family along with raw TM PDFs in inset (left) and Gamma parameters (right). Inset shows the
shift of the scatter along the line fitted to the log-log plot (see Table 1 for slope and intercept values and Supplementary Figure S5 for detailed comparisons of
pairwise KST distribution comparisons for each participant).
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Furthermore, comparisons of the parameters of the estimated
Gamma PDFs and moments yielded differences in skewness and
dispersion with the task. In the forward case of Figure 6A, a
trend denoting an increase in skewness and dispersion of the
fluctuations in timing with the increase in cognitive demands
was quantified. The large shifts in PDFs for forward motions
contrasted with the backwards reach (retracting the hand to rest
without instructions), where the changes were more modest (see
Figure 6C). Specifically, each participant had a unique type of
shift in PDF as the cognitive load increased during backward
reaches (i.e., spontaneous process). Inset in Figure 6C zooms
in the scatter to show the shifts in the moments of the PDF
estimated and shown in Figure 6D for the backwards case.

The results of assessing these stochastic transitions with the
Kolmogorov Smirnov test are detailed for each participant in
Supplementary Figure S5A. Importantly, besides the shifts in
PDFs, we also quantified shifts in the physical range of the
parameters underlying the NMT (i.e., the range concerning
the number of seconds the original inter-peak time intervals
manifested). These are appreciated in Figures 6A,C, where the
changes of marker-face colors should be examined following the
arrow representing the order of presentation (from low to high
cognitive load). The shifts in physical range correspond to the
color gradient in the color bar.

To further quantify the shifts in PDFs between forward and
backward cases, we used the line fitting the scatter represented
in log-log transform of the Gamma parameter plane. These are
depicted in the insets of Figure 6B-right panel and Figure 6D-
right panel along the shape and scale axes. Forward slope
−1.03 intercept −0.37; Backward slope −1.02 intercept −0.45;
also see Table 1 reflect similarity in the fitting lines with different
locations and spread of the scatters. In the forward motions
the stochastic signatures of the NTM have a broader and more
uniform spread along the line while in the backward motions
the spread tended to lower NSR ranges and more symmetric
shapes (down and to the right of the line). This suggests a
stochastic process in the spontaneous retractions that is more
predictable (towards the Gaussian ranges) and less random
(away from Exponential ranges) than those quantified in the
deliberate case.

Fluctuations in angular acceleration amplitude micro-
movements (AM)
The analyses of the fluctuations in the amplitude of the angular
acceleration, as normalized by the micro-movements data type
(AM) using equation (1) show departure from 0-change in PDF
for all participants. As with the TM and NTM cases, these
results also advise against the use of a grand average treatment
to these biophysical data. Each participant manifested a different
stochastic shift. Further, there were no visible patterns across
all participants. Here, both the forward and backwards cases
showed unique shifting patterns for each person’s stochastic
signatures. The trend was rather in the physical ranges of angular
acceleration, which tended to decrease with the increase in
cognitive load for the forward reaches. This trend in reduction
of angular acceleration amplitude (Figure 7A) was generally
opposite in the backwards retractions (Figure 7C), with some

variations unique to each participant. The color bar (deg/s2) of
Figures 7A,C provide information on the median physical range.

Of note is the skewed (Exponential-fit) distributions of the
original peaks of the angular acceleration shown in Figures 7B,D
insets. The scaling of equation (1) transformed the micro-
movements data from Exponential to Gamma distributed
angular accelerationmicro-movements, as shown on the Gamma
parameter plane and corresponding PDFs of Figures 7B,D. This
family of PDFs estimated within the time span of a section further
confirms that the motor signatures under cognitive load are non-
stationary. They shift stochastic signatures in quantifiable ways
even within the experimental session, in the first 10–20 min.

As with the NTM parameter, here, besides uncovering
individual shifts between high and low cognitive loads for
each movement type, it is also possible to ascertain the
overall shifts of the group scatter between the deliberate and
spontaneous movements. In the log-log Gamma parameter
planes of Figure 7B vs. Figure 7D we can see these shifts in
the slope and intercepts of the line fitting the log-log transform
of the scatter (Forward slope −1.03 intercept −0.39; backward
slope −1.00 intercept −0.53; see also Table 1). For the forward
case there is broader spread (as in the case of NTM) than the
backwards case. The latter shows a trend to PDFs with lower
NSR (lower dispersion) and more symmetric shape. See also the
PDF plots corresponding to Figure 7B (flatter) and Figure 7D
(peakier). These features are reflected as well in lower skewness
and higher kurtosis when comparing the Gamma moments
across forward and backward reaches (Figure 7A vs. Figure 7C).

Pointing vs. Time Estimation (Decision-Making) Task
Deliberate forward and spontaneous backward reaches revealed
systematic shifts in PDFs for all participants and parameters
under examination, when comparing the basic pointing task to
the pointing task under time estimation. Several features for each
parameter are reported below.

Fluctuations in normalized inter-peak-time intervals (NTM)
A trend across all participants in the deliberate forward reaches
was a marked decrease in parameter range (time in seconds)
underlying the NTM data. Namely, basic pointing on average
took longer time between peaks (blue range of the color gradient
in Figure 8A) than pointing under time estimation, exhibited by
shifts in color gradient towards green/yellow range. These shorter
time intervals between peaks denote faster transitions in the
acceleration of the hand’s rotations. Another trend with the time
estimation task was a decrease in the dispersion (shown along the
scale axis of the Gamma parameter plane) with most participants
shifting to lower NSR and towards distributions of higher shape
value (more symmetric), as shown in Figure 8B. For backward
motions (Figures 8C,D), the patterns of the underlying physical
time reverted, whereby marker colors in Figure 8C shifted from
light to dark blue ranges for some, indicating an increase in the
number of time between peaks (i.e., slower rates of rotation).

The stochastic transitions in PDF signatures were tested
against the normal distribution for each estimated PDFs across
conditions for both forward and backward motions and showed
to significantly depart from the normality (details can be found in
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FIGURE 7 | CNS voluntary control assessment of goal-directed forward AM (A,B) and CNS automatic backward AM (C,D) during low and high cognitive load
conditions. (A) Estimated Gamma moments showing shifts in AM PDF from low to high cognitive load condition for forward motions, and (B) its AM estimated family
of PDFs along with raw angular acceleration peaks PDF in the inset (left) and Gamma parameters (right). (C) Same as in (A) for the spontaneous retractions. (D) Same
as (B), showing the shifts in PDFs towards lower dispersion and more symmetric shapes on the Gamma parameter plane and the log-log inset showing the linear fit
(see Table 1 for slope and intercept reports and Supplementary Figure S5 for detailed comparisons of pairwise KST distribution comparisons for each participant).

Supplementary Figure S5E). We obtained the slope and intercept
of the line fitting the log-log transform of the scatters (Forward
slope −1.04 intercept −0.34; backward slope −1.04 intercept
−0.31; also see Table 1) and found a more modest shift down
and to the right of the line than in the conditions involving low
vs. high loads. Nonetheless, the changes can be best appreciated
in the insets showing the PDFs whereby the more skewed
distributions in Figure 8B as compared to Figure 8D inset are
evident. Further the reduction in dispersion from inset PDFs in
Figure 8B as compared to inset PDFs in Figure 8D is also evident.
These visible effects were quantified and their significance shown
in Supplementary Figure S5.

Fluctuations in angular acceleration amplitude (AM)
A change in the estimated PDF from basic pointing to pointing
during time estimation was registered for the fluctuations
in the amplitude of the angular acceleration peaks, AM, as
scaled by equation (1). The individual shifts in the empirically
estimated Gammamoments were registered for both the forward
and backward reaches. The overall trend in the scatter of

forward reaches of Figure 9A is an increase in skewness of
AM distributions corresponding with higher ranges of physical
angular accelerations (see color gradient depicting median range
values of deg/s2).

Comparing between the movement classes, forward reaches
tended to have distributions with higher skewness as quantified
in the moments graphs of Figure 9A vs. Figure 9C. Further,
Figure 9B vs. Figure 9D show the differences between these
deliberate and spontaneous processes reflected in the NSR
(Gamma scale) and the Gamma shape estimated values for each
movement class.

In the forward goal-directed motion, the stochastic signatures
had higher NSR and lower shape parameters than the
spontaneous backward motions. The lower shape corresponds
to the higher positive skewness of Gamma moments plot in
Figure 9A. These features are visualized and apparent in the
corresponding panels of PDFs in Figure 9B vs. Figure 9D. They
are also quantifiable as shifts of the overall scatter along the line
fitting the log-log transform of the Gamma parameter plane. The
slope and intercepts of the log-log transform of the scatters for
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FIGURE 8 | CNS voluntary control assessment of goal-directed forward NTM (A,B) and CNS automatic backward NTM (C,D) during pointing and time estimation
tasks. Similar layout as in previous Figure 6.

the forward and backward reaches are similar (Forward slope
−1.02 intercept −0.41; backward slope −1.01 intercept −0.46;
also see Table 1); yet the scatter in the backwards motions
shifted down and to the right towards more distributions with
lower dispersion (downward-shift) and higher shape (right-
shift). Furthermore, Supplementary Figure S5B points the reader
to differences in the PDF between the two tasks as quantified by
the KST. These differences were significant as shown in various
parameters.

DISCUSSION

This work provides a new theoretical research framework,
datatypes, and analytics combined with an experimental
paradigm to study the interactions between mental states
and physical actions. We systematically probed the variability
inherently present in the biophysical rhythms across the multiple
layers of the nervous systems, as participants pointed to
communicate their decisions, and as they were exposed to
different levels of cognitive loads. Under such conditions, and
through a simple pointing task, we examined the influences of

cognitive demands across multiple layers of the nervous systems
and through fundamentally different processes—deliberate,
spontaneous and inevitable. These proposed processes have
specific characteristics and can be studied (non-invasively)
through the variability of various somatic-sensory-motor and
heart signals harnessed in tandem (Ryu and Torres, 2017).

We detected the effects of cognitive load in multi-modal
signals across different levels of functionality, and identified
specific parameters characterizing cognitive load through the
stochastic shifts of biophysical signals. Specifically, using a
personalized method of statistical analyses, we found families of
skewed probability distributions better describing the empirical
variability of the data, as opposed to assuming the normal
distribution for statistical inference.

Within the time span of minutes, the stochastic signatures
of parameters from the pointing motions shifted for each
participant in ways that were well-characterized by a Gamma
process. Using the new datatype that converts continuous analog
kinematic signals to real-valued spike trains normalized between
0–1 and treating the various types of cognitive demands as a
continuous stochastic process, we were able to capture marked
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FIGURE 9 | CNS voluntary control assessment of goal-directed forward AM (A,B) and CNS spontaneous backward AM (C,D) during baseline pointing and pointing
during time estimation tasks. Format as in Figure 7. Note the shift of the scatter in the insets of (B,D) whereby the PDFs denote distributions with lower dispersion
and more symmetric shapes in the backwards reaches.

effects of cognitive load on the somatic-motor parameters. A
simple pointing task performed with the same biomechanical
structure, but while making decisions on time estimations,
or while counting backwards, was sufficient to help us read
out in the motor and heart variability code, the various
mental influences across deliberate, spontaneous and (inevitable)
autonomic processes.

Of relevance here, we highlight the marked differences we
found in IBI with changes in the cognitive demands of the
task, transitioning from low to high cognitive loads. Changes in
PDF of the IBI were not as marked with the time estimation
task, perhaps inviting thoughts about differences between a
task with higher cognitive demands (counting backward) and
one with lower demands (estimating time). Indeed, the mere
quantification of the number of angular acceleration peaks
during the higher cognitive loads denoted higher demands
in bodily motions: i.e., the hand moved significantly more at
the micro-level with higher cognitive demands. As such, when
viewed cumulatively over the timespan of the task, the system

overall required more energy. This may be reflected as well in
the shifts in IBI with higher cognitive loads. In this sense, we
found a statistically quantifiable link between cognitive loads
and physical motions whereby differences are detectable and
have characteristic values that we summarized in various ways.
Among these, the slope and intercept of the log-transform
of the scatter points on the Gamma plane was similar for
each experiment (i.e., low-high cognitive load vs. pointing and
pointing while estimating time), denoting a power-law relation
between the shape and scale estimated parameters for each
participant. Yet the location of the scatter along the fitting
line of these points representing the personalized family of
PDFs changed across conditions and between the deliberate
and spontaneous classes of motions. They also changed for
the IBI timings of the autonomic motions. The main shift
from deliberate to spontaneous mode was down and to the
right on the Gamma parameter plane, consistently denoting
distributions with lower NSR and more symmetric shapes.
During these tasks, across all parameters, the spontaneous
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retractions were unexpectedly more controlled (lower noise
and higher predictability) than the forward ones. Yet it was
the forward motions that broadcasted more clearly the shifts
across conditions in the signatures of variability of the kinematic
parameters. These shifts were also noted in the IBI activity.

One limitation of the present methods is that they depend
on the sampling resolution of the sensors and accordingly,
on the time length of the task. In this study, due to time
constraint of the experiment (to avoid fatigue) we were only
able to examine angular acceleration as a kinematic parameter.
As explained in the methods and Supplementary Figure S2,
within the time constraints of this task, the angular acceleration
provided enough peaks in its waveform for statistical power
in our distribution-parameter estimation (we needed above
100 peaks for tight CIs). If we were to conduct this experiment
for a longer period, we could examine other position-related
parameters, such as linear speed and hand trajectory curvatures.
However, this would have caused participants to experience
fatigue during a prolonged experiment with conditions involving
multiple levels of cognitive loads. The linear speed has fewer
peaks-though we have recently studied the micro-movements
in the context of basic pointing in autism (Wu et al., 2018).
To make these methods amenable to use with commercially
available biosensors like the inertial measurement units (IMUs
embedded in smart phones) we could use linear acceleration.
Linear accelerations would provide us with sufficient number of
peaks in its waveforms, so we could possibly use these wearable
devices in future studies. The trade-off is that we would then
lose the positional data that we have access to with the present
research-grade sensors.

The main take home message from the study is that even
subtle fluctuations in timing and amplitude of the biophysical
signals that we recorded could be detected under the proposed
framework. Thus, the exact same task funneled out very different
stochastic scenarios under slightly different conditions. The
mere act of having to decide or having to do so under
different cognitive loads changed these heart and kinematics
parameters in ways we could capture here. These stochastic
shifts would have been missed if we had averaged across
the group or relied only on observation. In this sense, the
present methods allowed us to detect change at the individual
level on more than one statistical dimension. It also allowed
us to examine the cohort as a group and within each
condition, look at the effects of the cognitive demands on the
deliberate, spontaneous and autonomous functional somatic-
motor classes.

We underscore here that these stochastic shifts in the
biophysical parameters were empirically characterized. We did
not assume a priori any PDF, nor did we assume stationarity
of the random processes under examination (Supplementary
Figure S1). The shifts in the empirically estimated parameters of
the continuous Gamma family of probability distributions, that
we quantified here, occurred on the time scale of minutes, i.e., the
duration of the experimental session. They strongly suggest that
prior assumptions involving kinematics data analyses may be
insufficient to capture the richness of cognitive phenomena,
pertaining to their effects on the somatic-motor signals. Here,

we showed that cognitive phenomena do not merely elicit
a change in the mean or variance of somatic-motor related
variables under a single PDF. Rather, different PDFs are needed
altogether to better characterize cognitive phenomena for each
person under examination, as it is continuously funneled through
physical activity that leads to shifts in the signatures. The process
changes dynamically along the multiple layers of the nervous
systems.

Another aspect of the results alludes to the motor control
literature examining pointing behavior. There, the uninstructed
retraction segments, during which the hand automatically
returns to rest (i.e., backward movement), are hardly ever
considered as part of the overall behavior. However, when we
examined those retraction segments, we quantified the effect of
cognitive load on biophysical signals from spontaneous processes
in the moment-by-moment variations of the angular acceleration
NTM. Indeed, their stochastic signatures showed statistically
significant shifts in the empirically estimated parameters of
the Gamma PDF family (i.e., statistically significant departure
from zero-valued change across all participants for all Gamma
moments).

Pointing is a very automatic task, and yet several motor
signals from the peripheral end-effector were significantly
affected by simply adding an additional task requiring decision-
making (see Supplementary Figure S5 whereby for each
participant at least one change in PDF is highly significant
across pairwise compared conditions). This result implies
that decision-making processes driven by central controllers
at the CNS level can be quantified using the continuous
flow of the motor signal, as the voluntarily generated bodily
motions unfold to communicate the decision; and as the
fast-automatic segments of the motion spontaneously unfold.
In this sense, a parallel between slow-fast (deliberate-automatic;
Kahneman, 2011) decision-making processes and deliberate-
spontaneous somatic-motor signals can be established and well
characterized using continuous physiological signals beyond
discrete mouse clicks. Our conceptualization of multi-layered
influences across the different functional levels of the nervous
systems adds the inevitable (autonomic) afferent processes
feeding back to the cognitive systems. As such, we provide a
new experimental paradigm and a unifying statistical framework
to study embodied cognitive decision-making under a renewed
theoretical construct of multi-modal, multi-functional recursive
kinesthetic afference.

EMBODIED APPROACH TO STUDY
COGNITION

The current study employs a novel methodology to assess
features of embodied cognition. The new method extracts
continuous signals obtained from the PNS, including the
ANS, and statistically characterizes those signals under a
common unit-less (i.e., normalized) scale, using different levels
of cognitive loads (driven by the CNS), thereby allowing
us to gain a glimpse into the brain-body coupled stochastic
dynamics. In this sense, we have characterized cognitive load
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with sensory and somatic-motor signals, alluding to processes
that occur in a closed (recursive) loop between the many
layers of the brain and the body (the body that the brain
aims to control at will); including also those spontaneous
processes that fall largely beneath observational and/or sensing
awareness. For instance, the input signals from the micro-
movements of the movement-kinematics and the heart signals
can be thought of as fluctuations providing an important
source of guidance to the brain. They may be a form of
re-afferent feedback, to help the brain compensate for synaptic
transductions and transmission delays. By selectively shifting
the signatures of statistical variability under different levels
of cognitive load, different functional relations (in terms of
probabilistic maps) between bodily responses and environmental
demands (including cognitive loads) may be built, to be able to
predict ahead the sensory consequences of bodily actions, even in
the absence of, or the intermittent availability of relevant sensory
information.

This multi-layered, multi-modal and multi-functional
embodied approach to the study of cognitive processes has
the potential to provide a more holistic perspective on our
overall understanding of cognition and its development. Indeed,
this simple paradigm was useful to examine the changes in
bodily signals across multiple layers of the nervous systems
and characterize the sensory-motor behavior that underlies
cognitively driven performance. Furthermore, by adopting the
renovated kinesthetic reafferent framework in this study, we
could capture the variations of motor and multifaceted sensory
inputs that must be integrated to drive cognitive processes
(e.g., goal-selection, planning, decision making) under varying
levels of control, ranging from voluntary to automatic to
autonomic.

CONCLUSION

The current study provides important evidence to justify an
embodied and personalized approach to studying cognition
(Gallagher, 2014). This study offers a renovated theoretical
construct grounded on the principle of kinesthetic reafference,
a new unifying statistical method, datatypes and experimental
paradigms to assess voluntary, automatic and autonomic signals
through a common lens. As such, this work is an invitation to use
such tools to help advance the field of embodied cognition.
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