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One of the most promising avenues for compiling connectivity data originates from the
notion that individual brain regions maintain individual connectivity profiles; the functional
repertoire of a cortical area (“the functional fingerprint”) is closely related to its anatomical
connections (“the connectional fingerprint”) and, hence, a segregated cortical area may
be characterized by a highly coherent connectivity pattern. Diffusion tractography can be
used to identify borders between such cortical areas. Each cortical area is defined based
upon a unique probabilistic tractogram and such a tractogram is representative of a group
of tractograms, thereby forming the cortical area. The underlying methodology is called
connectivity-based cortex parcellation and requires clustering or grouping of similar diffu-
sion tractograms. Despite the relative success of this technique in producing anatomically
sensible results, existing clustering techniques in the context of connectivity-based par-
cellation typically depend on several non-trivial assumptions. In this paper, we embody
an unsupervised hierarchical information-based framework to clustering probabilistic trac-
tograms that avoids many drawbacks offered by previous methods. Cortex parcellation
of the inferior frontal gyrus together with the precentral gyrus demonstrates a proof of
concept of the proposed method: The automatic parcellation reveals cortical subunits
consistent with cytoarchitectonic maps and previous studies including connectivity-based
parcellation. Further insight into the hierarchically modular architecture of cortical subunits
is given by revealing coarser cortical structures that differentiate between primary as well
as premotoric areas and those associated with pre-frontal areas.
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INTRODUCTION
Subdividing the cerebral cortex into structurally and functionally
distinct areas, known as cortex parcellation, arises from the notion
that cortical structure reflects function. While many factors such
as cytoarchitecture, myeloarchitecture, and receptor architecton-
ics reflect the functionality of a cortical area, evidence suggests a
close relationship between anatomical connectivity and functional
localization within the cortex (Passingham et al., 2002). Moreover,
anatomical connectivity is thought to constrain functionality and
thus offers a suitable measure for differentiating between function-
ality of different cortical subunits. Conclusively, it has been shown
at the example of the mammalian brain that structural elements of
a distinct cortical region share homogeneous connectivity patterns
(Hilgetag and Grant, 2000; Markov et al., 2010), which are dissim-
ilar to those of other cortical regions and therefore determine, to
some extent, the functional repertoire of that region (Stephan et al.,
2000). These findings provide the basic rationale behind a method-
ology called connectivity-based parcellation: Structural elements
with similar anatomical connectivity are grouped or clustered with
the aim to segregate a cortical region of interest into functionally

distinct subunits – a recent review on this topic is provided by
Knösche and Tittgemeyer (2011).

In the past, information pertaining to anatomical connectivity
has been mostly revealed from post-mortem and animal studies.
With the advent of diffusion MRI (dMRI) and diffusion trac-
tography, in vivo and non-invasive characterization of long-range
connectivity patterns became feasible. This ultimately opened the
possibility to probe the white matter structure in the human
brain (Johansen-Berg and Rushworth, 2009): A convenient way
to characterize anatomical connectivity of small brain areas (usu-
ally single MRI voxels) to the entire brain is the computation of
probabilistic tractograms, which can be seen as an approxima-
tion (with some reservation, see Jones, 2010) to the connectivity
pattern representing this brain area.

Note that, for the purpose of cortical area parcellation, proba-
bilistic tractography does not necessarily have to accurately reflect
the connectivity pattern of an individual area. The sensitivity of
probabilistic tractography to differences in connectivity of corti-
cal areas plays a much more important role. This motivates the
application of tractography for connectivity-based parcellation:
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When each cortical area is characterized by unique cortico-cortical
connections (“connectional fingerprint”), then, any tractogram
within an area should be similar.

Recently, tractography-based parcellation has been applied
to a great variety of sub-cortical and cortical areas, in the
macaque as well as in the human brain. These areas include
the thalamus (Behrens et al., 2003; Johansen-Berg et al., 2005;
Devlin et al., 2006; O’Muircheartaigh et al., 2011), basal gan-
glia (Lehericy et al., 2004; Sillery et al., 2005; Draganski et al.,
2008), amygdala (Bach et al., 2011), midbrain (Menke et al., 2010)
and cortical regions, including inferior frontal cortex (Anwan-
der et al., 2007; Klein et al., 2007; Ford et al., 2010), premotor
cortex (Tomassini et al., 2007; Schubotz et al., 2010), cingulate
cortex (Beckmann et al., 2009), medial frontal (Johansen-Berg
et al., 2005; Crippa et al., 2011) and insular cortex (Nanetti
et al., 2009) as well as the postcentral gyrus (Roca et al.,
2010).

The aforementioned attempts at clustering probabilistic trac-
tograms, however, impose several non-trivial assumptions about
the underlying structure of the data. Particularly, it is often diffi-
cult to justify the choice of a particular number of clusters a priori.
At best, the choice of the number of cortical subunits has been sub-
ject to forming representative, meaningful cortical regions while
still maintaining relative consistency across subjects. To date, two
different types of clustering algorithms have been used to perform
tractography-based parcellation:

(1) Similarity-based clustering methods, such as K -means clus-
tering (Anwander et al., 2007; Klein et al., 2007; Nanetti
et al., 2009) or spectral reordering (Johansen-Berg et al.,
2004), employ correlation as a predefined similarity mea-
sure and thus explicitly rely on the strength of linear
dependency between tractograms in order to form clusters.
It is debatable, however, whether similarity between trac-
tograms should be defined by their linear dependency to one
another.

(2) Dirichlet process mixture models (Jbabdi et al., 2009) embody
a Bayesian non-parametric model for clustering of probabilis-
tic tractograms. Such stochastic processes typically assume
data to be generated from a mixture of Gaussian distribu-
tions. In an application to multiple-subject parcellation of
the thalamus, Jbabdi et al. (2009) represented tractograms
as vectorial data and grouped them based upon a Gaussian
likelihood function. Whether or not individual tractograms
can be interpreted as vectors and subsequently clustered using
Gaussian likelihood functions is undetermined.

A further issue concerning previous clustering attempts is that the
partitioning of data into clusters that form hard borders between
cortical subunits remains unjustified. The existence of a transition
in cortical architecture, no matter how robust or consistent, does
not necessarily signify a boundary between distinct cortical areas.
An architectonic transition may instead reflect gradients or trends
across the full extent of a given area. In fact it is well-known that
such directional changes of cytoarchitectonic, receptor architec-
tonic, or myeloarchitectonic properties of adjacent cortical fields
can occur (Sanides, 1962; Lewis and Van Essen, 2000). A broad

transition region may reflect biologically genuine gradations, such
that neurons within the transition region have anatomical and/or
physiological characteristics intermediate between the neighbor-
ing subdivisions. Hence, an important issue concerning parcella-
tion is to assess the spatial extend over which such architectonic
transitions occur.

Furthermore, previous clustering attempts tend to neglect the
possibility of a hierarchical architecture underlying cortical sub-
units. Actually, brain networks are more appropriately conceived
of as forming nested modules (Bassett et al., 2010; Bassett and
Gazzaniga, 2011), each with a characteristic connectivity pattern –
i.e., modular hierarchies (Kaiser and Hilgetag, 2007, 2010; Kaiser,
2011). The notion of a hierarchically modular organization of cor-
tical subunits (Meunier et al., 2010) stems from the idea that the
subunits themselves are nested into further modular structures at
higher topological scales due to their similarity to one another
with respect to anatomical connectivity.

The problem that an a priori determination of the number of
clusters may not be possible clearly motivates an unsupervised
clustering approach. The purpose of this study is therefore to
formally adopt such an approach. Additionally, we employ an
information-theoretic framework to minimize the assumptions
imposed on data.

We assume for subsequent discussion that the connectivity
pattern of each distinct cortical subunit retains a prototype prop-
erty, referred to as exemplars in subsequent sections, such that
a particular tractogram is approximately representative of the
connectivity pattern of the entire cortical subunit. Further group-
ing of cortical subunits forms hierarchically modular structures
that each contains multiple representative tractograms. Addition-
ally, we make the prior assumption that probabilistic tractog-
raphy is capable of revealing information pertaining to nested
structures.

Our approach makes use of soft-constraint affinity propaga-
tion (SCAP; Leone et al., 2008) to seek exemplar tractograms
that are each representative of cortical subunits. Global clusters
of tractograms are formed by extracting disjoint sets of connected
components each consisting of multiple exemplars. Consequently,
individual global clusters are allowed to share multiple centers
(i.e., exemplars) thereby allowing for the formation of irregularly
shaped clusters.

The number of clusters of the global partition is determined
based upon the robustness of the clustering solution against uncer-
tainty in the data measured by clustering several bootstrap dataset
samples (Fischer and Buhmann, 2003). The rationale behind this
approach is to allow the uncertainty in the data to vote for the
choice of exemplars and therefore the finest granularity level that
gives rise to the most stable partitioning at a higher hierarchical
level.

Rate distortion theory (Tishby et al., 1999) is used to sto-
chastically map tractograms to exemplars thereby inducing a
soft partition between cortical areas. A more informative nested
architecture is obtained using information-theoretic agglomer-
ative grouping (Slonim and Tishby, 1999) of cortical areas by
preserving as much information as possible about the represen-
tative tractograms through the partitioning at each step of the
merging sequence.
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A face validation of this approach is presented using data stud-
ied in previous work, namely parcellation of the left posterior
inferior pre-frontal cortex (IPC) of the human brain: Parcellation
of the inferior frontal gyrus (IFG) together with the precentral
gyrus (PCG) demonstrates a proof of concept of our approach.
These gyri contain brain regions for which the anatomical seg-
regation has been relatively well established (Geyer et al., 1996,
2000; Amunts et al., 2010). Both regions have been intensively
studied in previous approaches to connectivity-based parcellation
from our group (Anwander et al., 2007; Schubotz et al., 2010) as
well as from others (Klein et al., 2007; Tomassini et al., 2007) and
established reproducible results. Moreover, a modular hierarchy
within the posterior IPC, conveyed through areas pointing toward
primary motor, premotor, and pre-frontal brain function, is well
established (Passingham, 1983; Fuster, 1997; Averbeck et al., 2009).

MATERIALS AND METHODS
dMRI DATA ACQUISITION AND PREPROCESSING
Diffusion-weighted data and high-resolution 3-dimensional (3D)
T1- and T2-weighted images were acquired on a Siemens
3T Trio scanner with an eight-channel array head coil
and maximum gradient strength of 40 mT/m. The diffusion-
weighted data were acquired using spin-echo echo planar imag-
ing (EPI; TR= 12 s, TE= 100 ms, 72 axial slices, resolution
1.72 mm× 1.72 mm× 1.7 mm, no cardiac gating). A GRAPPA
technique (reduction factor 2.0) was chosen as parallel imaging
scheme. Diffusion weighting was isotropically distributed along 60
directions (b-value= 1000 s/mm2). Additionally, seven data sets
with no diffusion weighting were acquired initially and interleaved
after each block of 10 diffusion-weighted images as anatomical
reference for motion correction. The high angular resolution of
the diffusion weighting directions improves the robustness of the
tensor estimation by increasing the signal-to-noise ratio (SNR)
and reducing directional bias. To further increase SNR, scanning
was repeated three times for averaging, requiring a total scan
time for the dMRI protocol of approximately 45 min. dMRI data
were acquired after the T2-weighted images in the same scanner
reference system.

As first step in preprocessing the data, the 3D T1-weighted
(MPRAGE; TR= 1300 ms, TI= 650 ms, TE= 3.97 ms, resolu-
tion 1.0 mm× 1.0 mm× 1.0 mm, flip angle 10˚, 2 acquisitions)
images were reoriented to the sagittal plane through the ante-
rior and posterior commissures. Upon reorientation, the 3D
T2-weighted images (RARE; TR= 2 s, TE= 355 ms, resolution
1.0 mm× 1.0 mm× 1.0 mm, flip angle 180˚) were co-registered
to the reoriented 3D T1-weighted images using rigid-body
transformations (Jenkinson et al., 2002), implemented in FSL
(http://www.fmrib.ox.ac.uk/fsl). The images without diffusion
weightings were used to estimate motion correction parameters
with the same registration method. The motion correction for
the dMRI data was combined with the global registration to
the T1 anatomy. The gradient direction for each volume was
corrected using the rotation parameters. The registered images
were interpolated to an isotropic voxel resolution of 1 mm and
the three corresponding acquisitions were averaged. Finally, for
each voxel, a diffusion tensor was fitted to the dMRI data. For
presentation purposes, cortical surfaces were rendered on basis

of the T1-weighted images by using Freesurfer (Dale et al.,
1999).

DEFINITION OF THE REGION OF INTEREST
The region of interest was taken from the same dataset (same indi-
vidual) as presented by Anwander et al., 2007, see here subject I)
for the IFG and by Schubotz et al., 2010, see here subject 188)
for the PCG; both regions are combined in one large region of
interest for the study that is reported here. Note that the data we
present reflect the left hemisphere: the left inferior frontal cortex,
that is, the deep frontal operculum as well as the surface por-
tion of the opercular and triangular part of the IFG. Since the
left lateral premotor cortex cannot be determined on the basis
of macroanatomical landmarks only and individual cytoarchitec-
tonic data is not available, Schubotz et al. (2010) preselected the
PCG, i.e., the anatomical region that is considered to consist of
(part of) BA 4 and BA 6 (Brodmann, 1909).

PROBABILISTIC TRACTOGRAPHY
The purpose of probabilistic tractography is to characterize the
connectivity pattern of cortical structural elements, denoted by
seed voxels utilizing the orientation dependence of water within
fiber bundles (i.e., water is more likely to diffuse along fiber bun-
dles than across them). The 3D “random walk” method developed
by (Anwander et al., 2007) attempts to quantize the connectivity
pattern from a probabilistic point of view using diffusion ten-
sor images. The random walk method describes the path taken
by a particle starting from a given seed voxel and transitioning
through target voxels within the white matter volume based upon
local diffusivity measurements (i.e., local diffusivity measurements
determine the transition probability from voxels to neighboring
voxels). The probability of a particle moving to a neighboring
voxel is thus greater along fiber directions. The random walk of a
particle starting from the same seed voxel is repeated many times
such that relative frequencies at which particles transitioned to tar-
get voxels (i.e., connectivity scores) give an appropriate measure of
the probability of connectivity from particular seed voxels to target
voxels. Figure 1 illustrates the location of seed voxels at the cortical
boundary and their associated probabilistic tractograms. Let each
tractogram xi be a list of connectivity scores y(i) for all random
paths originating from a particular seed voxel to every other white
matter target voxel (i.e., target voxel) such that the i-th tractogram
is given by xi = (y1

(i), . . . , ya
(i), . . . , yη

(i)), a ∈Ω, where Ω denotes
the set of all target voxels and η denotes the number of target vox-
els. Note that, for the purpose of unsupervised cortex parcellation,
the set of imaging voxels compromises the whole white matter
volume.

INFORMATION-BASED SIMILARITY MEASURE
Given that a pair of tractograms, xi and xj, are similar with respect
to their connectivity,our intuition about similar tractograms arises
from the notion that one tractogram xi reveals information about
connectivity associated with another tractogram xj and vice versa.
From an information-theoretic point of view, an overlap in uncer-
tainty between tractograms xi and xj translates into a gain in
mutual information.
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FIGURE 1 | General methodology to obtain connectivity information of a

cortical area using probabilistic tractograms. (A) Seed voxels in the white
matter near the white–gray matter interface form the region of interest. (B) A
probabilistic tractogram is computed for each seed voxel.

Mutual information is one such quantity that provides a unique
measure of the interdependence between tractograms:

I
(
xi , xj

) = H (xi)−H
(
xi |xj

)
, (1)

where H (xi) is the entropy and a measure of uncertainty in
connectivity associated with tractogram xi. Correspondingly, the
conditional entropy H (xi|xj) measures the remaining uncertainty
in connectivity of tractogram xi after xj is observed. Mutual infor-
mation is thus intuitively defined as the amount of uncertainty
removed in xi after observing xj or equivalently the amount of
information tractogram xi provides about tractogram xj. Mutual
information is computed as follows:

I
(
xi , xj

) =∑
y(i)

∑
y(j)

p
(
y(i), y(j)

)
log

(
p
(
y(i), y(j)

)
p
(
y(i)
)

p
(
y(j)
)
)

. (2)

In order to compute the mutual information between two
tractograms xi and xj we have to assume that the distribu-
tion of random variables (i.e., connectivity scores) in both trac-
tograms are dependent upon each other. More precisely, we
have to consider pairs of random variables in order to calcu-
late the joint probability. We define a pair of random variables
as {ya

(i), ya
(j)}. Note that the pair of connectivity scores is defined

for the same target voxel a, thereby preserving spatial infor-
mation of tractograms. The joint occurrence of connectivity
scores, p(y(i),y(j)), is then simply defined as the probability of
obtaining a combination of connectivity scores in tractograms
xi and xj for any common target voxel. Computing p(y(i),y(j))
is equivalent to constructing the frequency table as shown in
Figure 2.

IDENTIFYING REPRESENTATIVE TRACTOGRAMS
A desirable outcome of clustering probabilistic tractograms is
characterizing each cortical subunit with a representative or

FIGURE 2 | Pairs of connectivity scores, y a
(i )

and y a
(j )

, in common target

voxels between two tractograms on the left hand side serve as

coordinates of the frequency table given on the right hand side.

Elements of the frequency table are incremented for each occurrence of a
combination of connectivity scores (y a

(i), y a
(j)).

exemplar connectivity pattern, signified as the tractographic pro-
totype of that region. Recall that mutual information measures the
dependence of tractogram xi to tractogram xj. Put differently, it
infers the degree to which tractogram xj is representative of trac-
togram xi. The principle behind affinity propagation (Frey and
Dueck, 2007) is to accumulate evidence among all pairs of trac-
tograms to identify which tractograms are most representative of
the entire cortical region of interest. The exemplar search method
used in this paper is a slight variation of the original affinity prop-
agation that softens the hard constraints inherent in the algorithm
while still allowing exemplar choices that fulfill a global optimiza-
tion principle. More precisely, SCAP (Leone et al., 2008) operates
by iteratively updating two different messages exchanged between
tractograms, denoted by “responsibility” and “availability,” which
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together reflect the accumulated affinity tractogram xi has for
choosing tractogram xq as its exemplar:

r
(
xi , xq

)← I
(
xi , xq

)−max
z �=q
{a (xi , xz )+ I (xi , xz )} ,∀x ∈ X ,

a
(
xi , xq

)← min

⎧⎨
⎩0,−ρ+

∑
z �=i,q

max(0, r (xi , xz )

⎫⎬
⎭ ,∀x ∈ X ,

(3)

where the penalty term ρ serves as a free parameter. Tractogram xq

infers its suitability for serving as an exemplar for tractogram xi by
comparing its similarity with tractogram xi and the maximum
of similarities between tractogram xi, corrected by availability
a(xi,xq) and all other tractograms. A positive responsibility reveals
that tractogram xi prefers tractogram xq as its exemplar. The
sum of accumulated positive incoming responsibility messages
computed by availability gathers further evidence as to whether
candidate exemplar xq is a favorable exemplar for a group of trac-
tograms. The goal of the message-passing procedure is to converge
upon a set of exemplars such that the maximum net similarity of
the data is attained. After convergence, the exemplar choice of xi is
extracted by selecting the candidate exemplar x̄q with which trac-
togram xi has maximum affinity (i.e., similarity corrected by the
availability):

xi → x̄q = arg maxxq
(
s
(
xi , xq

)+ a
(
xi , xq

))∀x ∈ X . (4)

The original formulation of affinity propagation (Frey and
Dueck, 2007) imposed the hard constraint that each chosen exem-
plar should also choose to be an exemplar for itself. SCAP relaxes
the hard constraints such that a weighted availability is conveyed
whenever the sum of positive responsibilities is below a penalty
term ρ as shown in Eq. 3. Consequently, chosen exemplars are
allowed to choose other tractograms as their exemplars (i.e., exem-
plars do not have to be self-exemplars) thereby forming a set of
connected components. Such connected components form loops
and are therefore extracted as global clusters that contain several
sub-clusters of tractograms. As mentioned previously, each global
cluster of tractograms contains several exemplars, which implic-
itly implies a nested hierarchical structure due to the association
of each cortical subunit with a particular exemplar. Figure 3 illus-
trates the usefulness of SCAP in revealing two levels of clustering
shown for synthetic data.

Note that the penalty term ρ influences the number of global
clusters K and therefore the number of exemplars. The following
section discusses a means to infer the number of global clusters and
therefore the optimal ρ independent of the clustering algorithm.

ESTIMATING THE NUMBER OF CLUSTERS
The method applied in this paper to assess an optimal clustering
solution (i.e., to yield an automatic estimation of the number of
clusters) was originally developed by Fischer and Buhmann (2003)
and concerns the reliability of clustering tractograms: Uncertainty
in the partitioning is quantified by clustering B bootstrap sam-
ples drawn from the original dataset. The empirical distribution
of cluster assignments p̂ (k|xi) learned from clustering B multiset

FIGURE 3 | Clustering of synthetic data to illustrate the capability of

soft-constraint affinity propagation (SCAP) in capturing two levels of

clustering. SCAP identifies 12 exemplars shown as circles and therefore 12
sub-clusters as well as their preferred grouping in three global clusters.
Arrows indicate the affinity between exemplars at the top-level of the
nested hierarchy, sub-clusters are color-coded.

replications quantifies the uncertainty in mapping tractogram xi

to cluster k for the same number of clusters across the bootstrap
samples. A problem related to estimating the empirical assignment
probability is to identify equivalent clusters across partitionings
of different datasets. A greedy approach is to search the partic-
ular permutation πb+ 1 of cluster labels cb+ 1 of dataset X b+ 1

that maximizes the sum over all cluster assignment probabilities
learned from the previous b mappings:

πb+1 = arg maxπ

{∑
i∈X b+1

p̂b
(
π
(

cb+1
) ∣∣∣xi

)}
. (5)

The Hungarian method (Kuhn, 1955) finds the permutation
πb+ 1 efficiently without having to search through K ! possible per-
mutations. More precisely, the problem is formulated in terms of
a weighted bipartite matching that contains two sets of nodes with
each set containing a permutation of cluster labels (Fischer and
Buhmann, 2003). Edges between nodes give the original assign-
ment of label k to the assignment of a label π(k) from a permuted
set. The weight of each edge is given by:

wkπ(k) =
∑(

i∈X b+1;cb+1
i =k

) p̂b (π(k)|xi) . (6)

Maximizing the sum over all possible weights using the Hun-
garian method with a running time of X(K 3) is equivalent to
solving Eq. 5:

πb+1 = arg maxπ

{∑
1≤k≤K

wkπ(k)

}
. (7)

Finding the optimal cluster relabeling in each of the boot-
strap sample allows one to quantify the reliability of cluster-
ing tractograms across different data replicates based upon their
maximum likelihood given by:

p̃ = 1

|X |
∑

i∈X
p̂
(
c∗i |xi

)
, (8)
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where c∗i = arg max
1≤k≤K

p̂(k|xi) defines the maximum likelihood

mapping. Fischer and Buhmann (2003) propose a stability crite-
rion that compares the reliability of the maximum likelihood map-
ping with the reliability of making random cluster assignments
relative to the risk of misclassification:

K ∗ = arg maxK

{
p̃(K )− p̃0(K )

1− p̃0(K )

}
, (9)

where p̃ and p̃0 are the mean of maximum and random probabil-
ity assignments, respectively. By validating the global partitioning
obtained by SCAP one yields a set of exemplars that give rise to
the most stable global partitioning. Such a set of exemplars proves
useful in identifying the finest level of detail of the hierarchy within
a bottom-up approach as introduced in a latter section.

ALLOWING FOR TRANSITIONAL BORDERS BETWEEN CORTICAL AREAS
As mentioned above, previous attempts at tractography-based par-
cellation have formed hard borders between cortical subunits.
However, from an anatomical point of view, it is unclear whether
borders between cortical structures should be distinct or have
a transitional property. A soft partitioning of the data should
therefore be made, in order to account for transitional regions.
Such a soft partitioning is induced by means of a stochastic
mapping, p(x̄q |xi) and p(x̄q), in order to map tractograms to
exemplars as opposed to making hard assignments. The most
straightforward approach is to convert dissimilarity measures (i.e.,
distortion measures) into stochastic mappings using the following
equations:

p
(
x̄q |xi

)t = p
(
x̄q
)t

A
exp

(
− 1

T
d(x̄q , xi)

)
∀x̄ ∈ X̄ ,

p
(
x̄q
)t+1 = 1

|X |
∑

i

p
(
x̄q |xi

)t ∀x̄ ∈ X̄ ,
(10)

where t denotes the iteration sequence and A serves as the normal-
ization constant. Bayes’ rule is used in Eq. 10 (top set) with a likeli-
hood function given by exp(− 1

T d(x̄q , xi). Note that the likelihood
function contains the distortion measure d(x̄q , xi) between trac-
tograms and exemplars together with the computational tempera-
ture T that sets the scale for converting dissimilarity measures into
probabilities. The marginal probability p(x̄q) in Eq. 10 (bottom)
is computed by summing over all conditional probabilities.

However we require that the conditional p(x̄|x) as well as mar-
ginal probabilities p(x̄) remain consistent (i.e., they do not change
with respect to one another). Within an information-based frame-
work the problem can be formulated in terms of rate distortion
theory where the conditional entropy and the expected distortion
determine the quality of the stochastic mapping (Tishby et al.,
1999):

H (X̄ |X) = − 1

|X |
∑

q

∑
i

p
(
x̄q |xi

)
log p

(
x̄q |xi

)
,

〈d(x̄ , x)〉p(x̄ ,x) = 1

|X |
∑

q

∑
i

p
(
x̄q |xi

)
d
(
x̄q , xi

)
.

(11)

Variation of information serves as the distortion measure,
d(x̄q |xi), between tractogram xi and the exemplar x̄q . Note
that conditional entropy characterizes the average information
required, in bits per tractogram, to invoke a mapping of a trac-
togram to an exemplar without confusion (Tishby et al., 1999).
Rate distortion theory characterizes the tradeoff between infor-
mation rate I (X̄ , X) = H (X) − H (X̄ |X) and expected distor-
tion, where the objective is to allot membership probabilities to
tractograms in order to maximize compression (i.e., equivalent
to minimizing information rate) under the expected distortion
constraint. Finding the rate distortion function is solved by intro-
ducing the Lagrange multiplier or inverse temperature, β= 1/T,
and minimizing the corresponding functional:

F
[
p (x̄|x)

] = I
(
X̄ , X

)+ β 〈d(x̄ , x)〉p(x̄ ,x) . (12)

Minimization of the functional yields the set of self-consistent
equations (Eq. 10) that are each iterated over convex sets of
normalized distributions given by Blahut (1978). More precisely,
Blahut (1978) proves that, for a given temperature, iterating over
the conditional and marginal probabilities in Eq. 10 yields the
global minimum of the functional F in Eq. 12. Note that both
conditional and marginal probabilities remain consistent at the
global minimum of F.

TESTING HIERARCHICAL ORGANIZATION OF CLUSTERS
As we introduced above, evidence suggests that clusters of anatom-
ical connectivity patterns are organized into a hierarchical struc-
ture; whereby bottom-level clusters reveal finer structures and
top-level clusters (i.e., coarser clusters reveal a collection of finer
structures) within the region of interest. The SCAP approach iden-
tified cortical subunits as well as inferred their preferred grouping
into a global partitioning. However, from an anatomical point of
view the nested structure (i.e., preferred grouping of cortical sub-
units) might exist at multiple levels thereby constituting a more
informative hierarchical structure.

The information that exemplars provide about all other trac-
tograms is given by I (X̄ , X). Forming a more informative nested
structure of clusters requires merging clusters, zk and zk ′ , in the
partitioning Zm to form a coarser partitioning Z m− 1. However,
forming Z m− 1 from Zm results in information loss about exem-
plars [i.e., I (X̄ , X) > I (X̄ , Zm−1)]. Intuitively, given the assump-
tion that cortical subunits retain a prototype characteristic, we
wish group clusters in such a way that maximal information
about exemplars I (X̄ , X), i.e. prototypes, is preserved. In order
for I (X̄ , Zm−1) to approximate I (X̄ , X) as much as possible, the
difference between the loss of information between merging oper-
ations should be minimal [i.e., min(I (X̄ , Zm−1) − I (X̄ , Zm)) so
that I (X̄ , Zm−1) ≈ I (X̄ , X)]. Slonim and Tishby (1999) demon-
strate that clusters, z∗k and z∗k ′ , achieve an optimal grouping, which
preserves as much information about exemplars as possible [i.e.,
I (X̄ , Zm−1) ≈ I (X̄ , X)], if the Jenson–Shannon distance between
their conditional distributions JS(p(X̄ |z∗k ), p(X̄ |z∗k ′)), corrected
for marginal probabilities, is minimal. More precisely, the clus-
ters that we have to merge is found by minimizing δI (zk , zk ′) :

δI (zk , zk ′) =
(
p (zk)+ p (zk ′)

) · JS (p (X̄ |zk
)

, p
(
X̄ |zk ′

))
,{

z∗k , z∗k ′
} = arg mink �=k ′ (δI (zk , zk ′)) ,

(13)
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where δI (zk , zk ′) = I (X̄ , Zm−1)− I (X̄ , Zm). Essentially, the merge
cost δIX̄ (zk , zk ′), is a product of the weight sum of clusters,
p(zk) + p(zk ′), and the distance between them with respect to
the exemplars measured by the Jenson–Shannon divergence.

This optimization strategy was formerly introduced as agglom-
erative information bottleneck method (Slonim and Tishby, 1999)
– Figure 4 illustrates our application.

After merging clusters, ẑ = {z∗k , z∗k ′ }, the marginal and condi-
tional probabilities for ẑ , p(ẑ), p(x̄|ẑ), and p(ẑ |x), are updated as
follows (Slonim and Tishby, 1999):

p
(
ẑ
)m−1 = p

(
z∗k
)m + p

(
z∗k ′
)m

,

p
(
x̄|ẑ)m−1 = 1

p (z ′)
(
p
(
x̄ , z∗k

)m + p
(
x̄ , z∗k ′

)m) ∀x̄ ∈ X̄ ,

p
(
ẑ |x)m−1 =

{
1 if x ∈ {z∗k , z∗k ′

}m

0 otherwise

}
∀x ∈ X ,

(14)

where m denotes the merging sequence. Note that the sub-clusters
obtained by SCAP are used as the initial hard partition between
cortical subunits ZM.

RESULTS
Assessment of clustering solutions in Figure 5 based upon the sta-
bility criterion (Eq. 9) suggests four global clusters consisting of 15
exemplars and thus 15 cortical subunits as the most stable solution
within the region of interest.

Figure 6A illustrates the preferred grouping of cortical subunits
in the region of interest in four global cortical structures: The PCG
is divided into two areas, a dorsal area (dPCG) and a ventral area
(vPCG), then a ventral transition into the posterior IFG resides at
the ventral tip of the PCG and pars opercularis of the IFG, pars
triangularis of the IFG and the deep frontal operculum together
form the forth group.

FIGURE 4 |The agglomerative information bottleneck method merges

clusters z ∗
k and z ∗

k′ in partitioning Z m to form a coarser partitioning

(zk , zk′ ). The resulting partitioning Z m−1 is such that there is minimal loss of
information – i.e., I(X̄ , Zm−1) ≈ I(X̄ , Zm) ≈ I(X̄ , X ).

Exemplars identify 15 areas in the posterior inferior frontal and
precentral cortex (cf. Figure 6B). The dorsal PCG is subdivided
into five areas: two superior–caudal and two inferior–rostral areas,
and one directly bordering ventral PCG at the bank of precentral
sulcus. The ventral PCG is subdivided into a superior–rostral and
an inferior–caudal area. For validation purposes a part of the (infe-
rior) postcentral gyrus was included in the region of interest; this
region is appropriately clustered as a separate area (orange field in
Figure 6B). Parcellation results suggest a transition region into the
posterior IFG at the ventral tip of the PCG: The pars opercularis
of the IFG, pars triangularis of the IFG, the depths of the inferior
frontal sulcus and frontal operculum. The hierarchical organiza-
tion of these clusters (Figure 7) constitutes a distinction of areas
in the dorsal PCG and those belonging to the posterior ventral
precentral cortex.

For the latter there is further modular organization showing
distinction between areas of ventral PCG and those of posterior
IFG. The parcellation results given alongside the hierarchical tree
in Figure 7 show the finest detail expressed by cortical structures.
Arrows in Figure 7 illustrate the preferred grouping of cortical
subunits into four global cortical structures shown in Figure 6A.
Notice that the same four global cortical structures emerge from
the agglomerative information bottleneck method.

DISCUSSION
We propose an unsupervised information-based clustering tech-
nique for connectivity-based cortex parcellation suitable for auto-
matic parcellation. The methodological framework used here to
reveal complex properties of cortical subunits such as transitional

FIGURE 5 | Assignment probabilities plotted against the number of

global clusters K. Dashed plot shows the mean assignment probability
based upon the maximum likelihood mapping. Dotted plot shows the
random cluster assignment probabilities. The stability index (Fischer and
Buhmann, 2003) used to select the number of clusters K * is the relative
difference between mean and random cluster assignment probabilities
(solid plot). The most stable partitioning K * is given by the preferred
grouping of 15 cortical subunits, characterized by 15 exemplars, into four
global cortical structures.
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FIGURE 6 | (A) Cortex parcellation of the IFG together with the PCG showing four global cortical structures on the gray matter surface. (B) Cortex parcellation
of the same ROI at finest level of detail expressed by a hierarchy indicates 15 cortical subunits.

borders as well as a modular hierarchical architecture is summa-
rized in Figure 8.

A proof of principle of the approach yields anatomically
sensible results.

ANATOMICAL INTERPRETATION
The parcellation results advocate that dorsal PCG fields can be
separated in agreement with the suggestion that this area consists
of two premotor areas (Schubotz et al., 2010), as well as primary
motor cortex (Geyer et al., 1996) and the frontal eye field at the ros-
tral bank of precentral sulcus and the ventral branch of posterior
superior frontal sulcus (Amiez and Petrides, 2009).

Concerning the convexity of PCG, the average Talairach z
coordinate of the border between ventral and dorsal areas was
49, consistent with other reports from functional imaging stud-
ies (Rizzolatti et al., 2002) and connectivity-based parcellation
(Tomassini et al., 2007; Schubotz et al., 2010). The delineation of
the sub-fields in the posterior ventral precentral cortex accurately
resembles results from cytoarchitectonic and multireceptor stud-
ies as those were recently reported by Amunts et al. (2010). This
includes previously unknown areas, such as the ventral precentral
transitional cortex 6r1, anterior and posterior areas 45a and 45p,
and areas in the frontal operculum op8 and op9.

Anatomically disjoint areas were distinguished (Figure 9), con-
sistent with Amunts et al. (2010), one being located in the depths
of the inferior frontal sulcus, the other immediately rostrally to
the ventral premotor area. Both areas were found at the junction
of the inferior frontal and the precentral sulcus and therefore may
correspond to the previously described inferior frontal junction

region (IFJ, Brass et al., 2005; Amunts and Von Cramon, 2006).
Strikingly, our results accurately reflect the delineation of areas
concerning the IFJ obtained by Derrfuss et al. (2009). Note that
the fMRI data used by Derrfuss et al. (2009) were taken from the
same subject (subject 2 in Derrfuss et al., 2009). Our results there-
fore suggest a specific connectivity underlying IFJ, rendering this
region as a distinct anatomical area.

The merging of the postcentral region (orange field in
Figure 6B) with the ventral PCG at a rather high hierarchical
level seems to be supported by findings in non-human primates,
implying dense bidirectional connections between the rostral por-
tion of the inferior parietal lobule and the adjacent opercular
area, i.e., ventral premotor area 6 (cf., e.g., Schmahmann and
Pandya, 2007). However, whether this suggestion is indeed evident
in tractography-based connectivity scores remains to be studied
in detail, and specifically with respect to limitations potentially
imposed by the choice of a particular tractography method and
the underlying diffusion model.

METHODOLOGICAL ISSUES
A well-known difficulty of most clustering algorithms is the choice
of an appropriate similarity measure, since this ultimately deter-
mines the cluster structure that can be inferred from the data –
i.e., elements within the same cluster share a common similarity
quantified by the respective measure. Intuitively, clustering of trac-
tograms should be based upon capturing the shape of probabilistic
tractograms. In other words, probabilistic tractograms should be
grouped together if they have similar shape. Such tractograms are
represented as volumes containing connectivity scores for each
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FIGURE 7 | Hierarchical tree of the nested hierarchical structure

constructed by the agglomerative information bottleneck method

(Slonim andTishby, 1999). The cardinality of the initial partition equals the
number of exemplars, M =15. The length of each branch gives the
normalized information loss I(X̄ , Zm)/I(X̄ , ZM ) due to merging operations.

Bottom left: Internal organization of representative tractograms within four
global cortical structures obtained by SCAP. Top left: Cortex parcellation
showing the finest level of detail. Black dots indicate the location of
exemplars while arrows show the preferred grouping of cortical subunits
obtained by SCAP.

target voxel. Defining their shape is therefore not straightforward.
We define two tractograms as having similar shape if their connec-
tivity scores in common (i.e., corresponding ) target voxels (not any
target voxel) are similar. The similarity measure should therefore
involve a pairwise comparison of connectivity scores with pairs
of connectivity scores given by {ya

(i), ya
(j)}, where a denotes the

particular target voxel common to both tractograms i and j.
In order to compute how probable it is that two tractograms

have similar shape we consider the joint occurrence of connec-
tivity scores p(y(i),y(j)) for any common target voxel; p(y(i),y(j)) is
computed by constructing the frequency table using the frequency
of occurrence of pairs of connectivity scores {ya

(i), ya
(j)} within all

common target voxels. Constructing the frequency table as shown
in Figure 2 already involves pairwise comparisons of connectivity
scores in common target voxels. If p(y(i),y(j)) is high for all con-
nectivity scores among common target voxels in tractograms i and
j it follows that tractograms i and j are likely to have similar shape.
Mutual information measures the dependency of one tractogram
on another tractogram. Since we are interested in capturing the
shape of tractograms, mutual information, as computed in Eq. 2,
measures how dependent the shape of one tractogram is on the
shape of another tractogram. Moreover, mutual information will
capture any type of dependency including linear and non-linear
dependencies between the shapes of tractograms.

An issue that draws less attention is the dependency of simi-
larity measures on the representation of the data – i.e., different
transformations of the data will produce different similarity quan-
tities. Given that, in our application, we have limited knowledge
about the structure of clusters or about which type of relation
should be considered, the similarity measure should be invariant
to data representation. Mutual information has the useful property
of being independent of representation of the data – i.e., different
invertible transformations on individual tractograms will yield the
same mutual information quantity.

Another difficulty of clustering algorithms is their associated
degree of freedom that influences the partitioning, mostly with
regard to the number of clusters. Typically used cluster validity
criteria are determined heuristically and favor compactness and
separability of clusters. The method proposed in this study to
infer the number of global clusters suggests an intuitive notion of
a sensible partitioning. That is, a stable clustering solution should
be resistant to noise in the data (Buhmann, 2010). More precisely,
uncertainty in the data gives rise to uncertainty in the cluster-
ing solution. A sensible global partitioning is one for which the
uncertainty in the data has minimum influence on the clustering
solution. Note that the stability criterion (cf. Eq. 12) is dependent
upon the ordering of the bootstrap samples, particularly if the
first sample leads to a poor clustering solution. To circumvent this

Frontiers in Neuroinformatics www.frontiersin.org September 2011 | Volume 5 | Article 18 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Gorbach et al. Unsupervised clustering for connectivity-based cortex parcellation

FIGURE 8 | Overview of the unsupervised framework used in this

study. SCAP together with clustering assessment using bootstrap
sampling is used to obtain exemplars that each characterizes individual
cortical subunits within a global and bottom-level partitioning. Thereafter,
rate distortion theory is used to map tractograms to exemplars. The
agglomerative information bottleneck method used information gained from
rate distortion theory [i.e., I(X̄ , X )] to construct a more informative nested
structure of cortical subunits. The sub-clusters obtained by SCAP define the
bottom-level partitioning of the hierarchy.

potential difficulty, we suggest computing the stability criterion
for different permutations of bootstrap sample orderings in order
to avoid the influence of initial poor solutions on the stability
criterion.

Essentially, our method rests upon the assumption that each
cortical subunit possesses a “prototype” characteristic: an exem-
plar tractogram sufficiently describes the connectivity pattern
of the entire cortical subunit and is thus representative of that
subunit. Among the previously used clustering algorithms for
connectivity-based parcellation, k-means clustering and Dirichlet
process mixture models (used together with a Gaussian likeli-
hood), have the advantage of searching for central tendencies (i.e.,
means) in data which are useful for identifying exemplar trac-
tograms. Such techniques, however, rely on random sampling that
allow for unlucky pruning decisions that cannot be recovered from
and consequently lead to poor solutions. Affinity propagation
(Frey and Dueck, 2007) used in this study is a recently devel-
oped algorithm that avoids random sampling by simultaneously
considering all tractograms as potential exemplars.

Our clustering approach is inherently different to previous
techniques since global clusters of tractograms define groups

FIGURE 9 | Parcellation of the sub-fields in the posterior ventral

precentral cortex indicate a striking resemblance with

cytoarchitectonic and multireceptor studies as those were recently

reported by Amunts et al. (2010) – cf. their Figure 9.

of cortical subunits whereas the sub-clusters form the cortical
subunits themselves. Given the prior assumption that a strictly
nested structure may exist, our approach associates the partition-
ing of cortical subunits reflecting the finest level of detail with
the partitioning that brings about the most stable grouping of
cortical subunits at a higher level of the hierarchy. The agglomer-
ative information bottleneck method (Slonim and Tishby, 1999)
provides more levels of clustering on the basis of preserving as
much information as possible about the partitioning with respect
to representative tractograms. In contrast to other traditional hier-
archical clustering methods we insist upon defining the finest level
of detail of the partitioning other than simply associating it with
the maximum number of clusters (i.e., every tractogram is its
own cluster). While, anatomically, very fine detailed hierarchical
organization of cortical subunits may exist, the level of detail that
probabilistic tractography is capable of revealing is, among other
things, limited by resolution offered by diffusion-weighted images.

The prototype-based characteristic of cortical subunits allows
for modeling the transition between cortical subunits as the uncer-
tainty in mapping tractograms to cortical subunits using rate
distortion theory. A simple parameter, namely the “temperature”
T, controls the sensitivity of the uncertainty in the aforementioned
mapping to the similarity between tractograms and representative
tractograms. Tuning T therefore determines the level of fuzziness
in the partitioning (see Figure 10).

Note that T influences the hierarchical structure obtained by
the agglomerative information bottleneck method since it deter-
mines the dependency of the data on the exemplars. Tuning the
temperature to infinity maximizes the uncertainty of mapping
tractograms to exemplars and causes conditional probabilities to
be insensitive to similarity between tractograms. The resulting
hierarchy is thus constructed at random. Conversely, decreasing
the temperature results in a hierarchy that is more governed by the
dependency of tractograms to exemplars. We propose to select the
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FIGURE 10 | Information rate I (X̄ ,X ) plotted against the inverse

temperature 1/T. Solid and dashed plots illustrate the relationship
between information rate and inverse temperature for 15 cortical

subunits and 4 global cortical structures, respectively. 1/T * gives the
temperature for which the information rate has only slight changes for
lower temperatures.

highest possible “temperature” for which the information rate has
minimal change for lower temperatures as shown in Figure 10.
Maximal amount of information is thus used to construct the
hierarchy while taking into account some uncertainty in mapping
tractograms to exemplars.

FUTURE WORK
A further step towards understanding the organization of cortical
subunits is to study the consistency or heterogeneity of hier-
archically modular cortical subunits across subjects. Individual
variability, however, is an important issue in anatomical studies,
because any given area (even a primary sensory area) can vary in
size by twofold or more (Filiminoff, 1932; Maunsell and Van Essen,
1987; Uylings et al., 2005) and because the consistency with which
each area is located with respect to topographic boundaries has
important implications for physiological and neuroimaging stud-
ies. In this respect, a meaningful parcellation should be assumed to
exist in all subjects with similar location, shape, and connectivity
pattern.

Note that it is unclear whether or not cortical subunits possess
the aforementioned “prototype” (i.e., exemplar) characteristic. A
clustering method that avoids defining cluster “prototypes” might
therefore prove more suitable for parcellating regions without
a priori knowledge (Slonim et al., 2005).

Furthermore, an obvious limitation of any model-based
approach to reveal structure in the data is that it already assumes
that there is structure in the data. In the context of hierarchically

modular cortical subunits, hierarchical clustering models are
already forced to find nested structures in the data. The question
of whether connectivity patterns, quantified by probabilistic trac-
tograms, prefer to be grouped in a nested structure or not should
be addressed and is formulated in terms of model validation.

Buhmann (2010) performs model validation based upon an
indispensible requirement that the solution should be generaliz-
able under the influence of noise. More precisely, a nested structure
of cortical subunits should be generalizable given noise in the
diffusion measurements, such as noise from the MR scan, phys-
iological noise, motion affects, etc. Assessing the generalizability
performance is given by a tradeoff between the informativeness
as well as the robustness against noise of the nested clustering
solution. Intuitively, a nested structure showing more branching
is more informative. The question is to be answered is therefore:
How informative can the nested structure of cortical subunits be
(i.e., how many branches if any should the dendrogram have)
without fitting the sampling noise?
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