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Cell assemblies, defined as groups of neurons exhibiting precise spike coordination,
were proposed as a model of network processing in the cortex. Fortunately, in recent
years considerable progress has been made in multi-electrode recordings, which enable
recording massively parallel spike trains of hundred(s) of neurons simultaneously.
However, due to the challenges inherent in multivariate approaches, most studies in
favor of cortical cell assemblies still resorted to analyzing pairwise interactions. However,
to recover the underlying correlation structures, higher-order correlations need to be
identified directly. Inspired by the Accretion method proposed by Gerstein et al. (1978)
we propose a new assembly detection method based on frequent item set mining (FIM).
In contrast to Accretion, FIM searches effectively and without redundancy for individual
spike patterns that exceed a given support threshold. We study different search methods,
with which the space of potential cell assemblies may be explored, as well as different
test statistics and subset conditions with which candidate assemblies may be assessed
and filtered. It turns out that a core challenge of cell assembly detection is the problem of
multiple testing, which causes a large number of false discoveries. Unfortunately, criteria
that address individual candidate assemblies and try to assess them with statistical tests
and/or subset conditions do not help much to tackle this problem. The core idea of our new
method is that in order to cope with the multiple testing problem one has to shift the focus
of statistical testing from specific assemblies (consisting of a specific set of neurons) to
spike patterns of a certain size (i.e., with a certain number of neurons). This significantly
reduces the number of necessary tests, thus alleviating the multiple testing problem.
We demonstrate that our method is able to reliably suppress false discoveries, while
it is still very sensitive in discovering synchronous activity. Since we exploit high-speed
computational techniques from FIM for the tests, our method is also computationally
efficient.

Keywords: massively parallel spike trains, cell assembly, synchronous spike patterns, higher-order correlation,

frequent item set mining, surrogate data, multi-variate significance testing

1. INTRODUCTION
The principles of neural information processing are still under
intense debate. Although changes in the firing rates of individual
neurons are observed in relation to stimuli and behavior, the role
of these changes in the joint information processing executed by
networks of neurons is not yet clear.

As a model of network processing, cell assemblies were pro-
posed (Hebb, 1949), which are characterized as groups of neurons
exhibiting precise spike coordination. Since it can be shown
theoretically that synchronous firing is most effective in generat-
ing output spikes of downstream neurons (Abeles, 1982; König
et al., 1996; Schultze-Kraft et al., 2013), the synfire chain was
proposed as a more specific model of cortical activity (Abeles,
1991). Experimental evidence from correlation analyses showed
that spike synchrony indeed occurs and in particular in relation
to behavior and learning (e.g., Freiwald et al., 1995; Vaadia et al.,
1995; Riehle et al., 1997; Kilavik et al., 2009). However, these

studies were limited to fairly small numbers of neurons recorded
simultaneously, and thus it was not possible to uncover the (full)
underlying correlation structure.

Fortunately, in recent years considerable progress has been
made in multi-electrode recordings (e.g., Nicolelis et al., 1997;
Buzsáki, 2004), which enable to record the activity of hundred(s)
of neurons simultaneously. However, due to the challenges inher-
ent in multivariate approaches (especially the combinatorial
explosion of the spike patterns that need to be checked), most
studies in favor of cortical cell assemblies still resorted to analyz-
ing pairwise interactions. Although in this way the existence and
functional relevance of pairwise interactions could be demon-
strated in various cortical systems and behavioral paradigms (e.g.,
Gerstein and Aertsen, 1985; Kohn and Smith, 2005; Fujisawa et al.,
2008; Feldt et al., 2009; Masud and Borisyuk, 2011), which can
also be used to discover correlated groups of neurons by subse-
quent clustering (e.g., Berger et al., 2007; Fujisawa et al., 2008),
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higher-order correlations need to be identified directly in order
to recover the (full) correlation structures.

Higher-order correlations can be addressed on different levels,
based on (correlation) statistics of recorded parallel spike trains
and corresponding statistical tests, which focus on the following
aspects: (1) test whether higher-order spike correlation is present,
possibly with a lower bound on the order, but without identi-
fying the participating neurons (e.g., Louis et al., 2010a; Staude
et al., 2010a,b); (2) test for individual neurons whether they par-
ticipate in synchronous spiking activity, but without identifying
the groups of correlated neurons (Berger et al., 2010); (3) test
for the presence of correlation as predicted by a specific correla-
tion model (synfire chain, Abeles, 1991), that is, spatio-temporal
spike patterns or propagation of synchronous spiking activity
(e.g., Abeles and Gerstein, 1988; Schrader et al., 2008; Gansel and
Singer, 2012; Gerstein et al., 2012); (4) actually identify the mem-
bers of cell assemblies that exhibit synchronous spiking activity
(e.g., Gerstein et al., 1978; Pipa et al., 2008; Feldt et al., 2009;
Shimazaki et al., 2012).

In this paper we focus on the last category and solve three
major challenges simultaneously: (1) detect and identify members
of an active cell assembly directly as significant spike synchrony
patterns (2) with an efficient and reliable statistical method that
(3) is applicable to massively parallel spike trains, i.e., in the order
of hundred(s) of spike trains or more.

In order to motivate and justify our new method, we study
different search methods, with which the space of potential cell
assemblies may be explored, and different test statistics and sub-
set conditions with which candidate assemblies may be assessed
and filtered. It turns out that a core challenge of cell assem-
bly detection is the problem of multiple testing, which causes a
large number of false discoveries. That is, many neuron groups are
reported as cell assemblies that actually are not. Unfortunately,
criteria that address individual candidate cell assemblies and try
to assess them with statistical tests and/or subset conditions do
not help much to tackle this problem.

Based on these results, we propose a new assembly detection
method. The core idea of this method is that in order to cope
with the multiple testing problem we shift the focus of statisti-
cal testing from specific assemblies (consisting of a specific set of
neurons) to assemblies of a certain size (that is, with a certain
number of neurons, thus pooling different sets of neurons). This
significantly reduces the number of necessary tests, thus allevi-
ating the multiple testing problem. Note, however, that only the
focus of the statistical testing is shifted—the assemblies reported
by our method are still specific sets. We demonstrate that our
method is able to reliably suppress most false discoveries, while
still being very sensitive in discovering synchronous activity. Since
we exploit high-speed computational techniques from frequent
item set mining (FIM) for the tests, our method is also computa-
tionally efficient, even if we are faced with hundred(s) of parallel
spike trains.

The remainder of this paper is structured as follows: in
Section 2 we introduce some notation and preliminaries on time-
bin discretization and spike synchrony. In section 3 we briefly
review the Accretion methodology (Gerstein et al., 1978), which
forms the starting point of our investigation. In section 4 we

briefly introduce FIM (Goethals, 2010; Borgelt, 2012), a data
mining technique closely related to Accretion, which has a con-
ceptually similar objective. In section 5 we compare Accretion
and FIM, reveal the redundancy in Accretion’s search scheme, and
show how ideas from FIM can be used to eliminate it. Section 6
introduces several assembly detection criteria and how they can
be incorporated into FIM approaches. In section 7 these criteria
are evaluated on artificially generated data, comparing FIM and
Accretion and demonstrating that the detection quality suffers
severely from false discoveries brought about by multiple testing.
Building on the insights gained we then introduce our novel
methodology in section 8. Finally, we conclude the paper with
a discussion of the merits of our method over the previously
investigated approaches.

2. NOTIONS AND NOTATION
Throughout this paper we work with a finite set N of neurons.
Our raw data is a collection of N (simulated) spike trains of total
duration T, each consisting of a list of spike times in (0, T].

In order to characterize and quantify synchrony among simul-
taneous spike trains even in the presence of temporal imprecision
(regardless of whether it stems from the recording equipment or
is a feature of the recorded process) we work on discretized spike
data (e.g., Grün et al., 2002, “exclusive binning”). That is, we par-
tition the time interval (0, T] under consideration into time bins
of equal length. Spikes (or, more precisely, spike times) corre-
sponding to distinct neurons in N—say, to a subset A ⊆ N—are
considered synchronous (i.e., a synchronous event for A, or sim-
ply A-event) if they lie in the same time bin. The amount of
synchrony of a group of neurons A ⊆ N (i.e., the amount of syn-
chrony observed in the corresponding collection of spike trains) is
simply the number of time bins that contain at least one A-event
(that is, we “clip” bin entries to 1 if more than one spike of one
neuron falls into a time bin).

3. ACCRETION
The starting point of our investigation is a statistical technique
proposed in Gerstein et al. (1978), which aims at identifying neu-
ral assemblies (called functional groups in Gerstein et al. (1978)
and intuitively understood as groups of neurons that tend to
show significant synchronous spiking) in parallel spike trains.
This method is accretional in nature, and therefore generally
referred to as Accretion in the following: sequences of neurons are
formed and extended by an iterative application of a statistical
independence test between a new neuron and an already accreted
sequence of neurons, based on the number of joint spiking events.

Accretion relies on Pearson’s χ2 independence test to assess
whether paired observations of two sets A and B of neurons, as
expressed in a contingency table (see Table 1), are independent of
each other. The counts in Table 1 range over the number of time
bins: for example, n11 is the number of time bins that contain
both an A-event and a B-event.1 Formally, Pearson’s χ2 statistic is

1Recall that an A-event occurs only if every neuron in A has a spike in the time
bin. That is, “not A” means that not all neurons in A have a spike in the time
bin and not that no neuron in A has a spike in the time bin.

Frontiers in Neuroinformatics www.frontiersin.org May 2013 | Volume 7 | Article 9 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Picado-Muiño et al. Finding neural assemblies with FIM

defined as follows, with the counts from Table 1, for disjoint sets
of neurons A, B ⊆ N:

χ2(A, B) = n∗∗
(n1∗n∗1 − n∗∗n11)

2

n1∗n0∗n∗1n∗0
.

Accretion considers two sets A and B as showing significant syn-
chronous spiking activity according to Pearson’s χ2 test if the null
hypothesis of independence can be rejected with a significance
level of α = 0.01 = 1%, that is, if χ2(A, B) ≥ χ2

1,1−α ≈ 6.635,

where χ2
1,1−α is the 1 − α = 99% quantile of the χ2 distribution

with one degree of freedom. Equivalently, but often more con-
veniently, we may compute the p-value of the χ2 test, which is
defined by the relation χ2

1,1−p = χ2(A, B). In this case the test
result is significant if p ≤ α.

Note, however, that Accretion considers this test result only if
n11n∗∗ > n1∗n∗1, that is, if there are more synchronous spiking
events than are to be expected under independence. Otherwise
the two (sets of) neurons are regarded as not correlated. The dif-
ference to relying entirely on the test result is marginal, though,
because of the asymmetry of the distribution.

In its first step, Accretion tests all pairs formed by single-
tons A, B ⊂ N (that is, |A| = |B| = 1) and selects all two-element
sequences that show significant synchronous spiking (according
to the test criterion described above). Subsequent steps (try to)
expand accreted sequences in all possible ways by adding another
neuron. That is, in the nth step, n < |N|, sequences formed in
the (n − 1)th step (that is, sequences of neurons in sets A ⊂ N
with |A| = n) are expanded by all singletons B ⊂ N \ A (that is,
|B| = 1) and tested for independence. Those that show signifi-
cant synchrony (w.r.t. Pearson’s χ2 test and a chosen significance
level α) are selected and possibly expanded further in later steps.
Significant sequences that cannot be expanded anymore (because
no additional neuron passes a test for significant synchrony with
them) are finally reported as (candidates for) neural assemblies.

Note that the original Accretion limits significant expansions
to two. That is, the branching factor of the search is two: any sig-
nificant sequence gives rise to at most two expanded sequences.
Although it is tempting to ascribe this constraint to limitations of
the computer hardware at the time (1978) and thus to omit it, it
is actually still needed today due to the redundant search scheme
of Accretion (see below for details). Nevertheless we ignore this
branching restriction for the following considerations in order to
avoid some technical, but largely irrelevant complications. That is,
we assume for now that any additional neuron that passes a syn-
chrony test with an accreted sequence gives rise to an expanded
sequence.

Without a branching restriction, we can formalize the implicit
characterization of a neural assembly underlying Accretion in

Table 1 | A 2 × 2 contingency table for binary events A and B.

0 (not B) 1 (B) Sum

0 (not A) n00 n01 n0∗
1 (A) n10 n11 n1∗
sum n∗0 n∗1 n∗∗

terms of subset conditions. We say that A ⊆ N constitutes a syn-
chronous group if it satisfies the following:

• If |A| = 2 then the two singleton subsets of A must show sig-
nificant synchrony (as evaluated by Pearson’s χ2 independence
test w.r.t. a significance level α, see above).

• If |A| > 2 then there has to exist a subset B ⊂ A with |B| =
|A| − 1 that is a synchronous group and that shows significant
synchrony with the remaining neuron in A, that is, with A \ B
(again as evaluated by Pearson’s χ2 test). (Note the recursive
structure of this definition.)

Accretion reports as neural assemblies only significant sequences
that cannot be expanded anymore. That is, it never reports proper
prefixes (and thus subsets) of a detected assembly. Hence we
may say that Accretion regards as neural assemblies maximal syn-
chronous groups. Here “maximal” expresses that there does not
exist a superset that is also a synchronous group.

As an example, Figure 1A shows an extremely simple binned
parallel spike train for four neurons a, b, c, and d (that is, N =
{a, b, c, d}) and 10 time bins. For each time bin the neurons hav-
ing a spike in it are marked. Figure 1B shows how this data is
processed by Accretion in three steps, using a significance level
α = 0.2. (Clearly, due to the very low number of time bins, no
significant results could be obtained for α = 0.01.) As a result,
Accretion reports the four sequences abcd, bacd, cd and dc, which
are the maximal synchronous groups.

A

B

C

FIGURE 1 | Accretion example: (A) Spikes of four neurons N = {a, b, c, d}
in 10 time bins. A gray square indicates the presence of a spike in an time
bin. (B) Accretion for the data shown in (A) for a significance level α = 0.2.
Column s states the actual, column E(s) the expected number of joint
spiking events under independence. The p-values shown in green are
significant. (C) Graphical representation of the process shown in (B) in the
search space. Selected paths are marked in green.
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As a further illustration Figure 1C shows the complete search
space of the Accretion method for this example, that is, all
sequences that are potentially explored. The green nodes cor-
respond to significant test results (with the empty sequence—
root node—and the singletons being considered significant by
default). Gray nodes are visited, but do not yield significant
test results. White nodes are not visited. Accretion reports the
sequences corresponding to the deepest green nodes, listing all
neurons on the path from the root to these nodes.

4. FREQUENT ITEM SET MINING
FIM was originally motivated by the desire to find regularities in
the shopping behavior of customers (of supermarkets, mail-order
companies, on-line shops etc.) by identifying sets of products that
are frequently bought together [market basket analysis, see the
seminal paper (Agrawal et al., 1993) and the surveys (Goethals,
2010; Borgelt, 2012)]. Conceptually, this task is obviously the
same as finding sets of neurons that (frequently) fire together in
parallel spike trains, which establishes the relevance of FIM for
detecting neural assemblies in parallel spike trains.

Formally, we consider an item base I = {i1, . . . , in}, n ∈ N,
and a database T = {t1, . . . , tm} of transactions, m ∈ N, where tk

(the k th transaction) is a pair 〈k, Jk〉 consisting of a unique iden-
tifier k and a subset of items Jk ⊆ I. In our context the item base I
is the set N of neurons and the transactions are determined by
the time bins into which we partition the recording time interval
(0, T]: the set of neurons with spike times lying in the k th time
bin constitutes Jk in the k th transaction tk = 〈k, Jk〉 ∈ T . Table 2
summarizes the correspondences.

Table 2 | Meaning of basic notions of frequent item set mining.

Mathematics Market basket analysis Spike train analysis

Item Product Neuron
Item base Set of products Set of neurons
Transaction id Customer Time bin
Transaction Set of products bought Set of neurons firing

by a customer in a time bin
Frequent Set of products frequently Set of neurons frequently
item set bought together firing together

A transaction t = 〈k, Jk〉 ∈ T is said to support a subset J ⊆ I
if J ⊆ Jk. The number of transactions in T that support J is called
the support of J in T and is denoted by sT (J) (or simply by s(J)
whenever T is clear from the context). Frequent item sets are
defined based on some user-specified threshold smin: J is called
frequent in T if sT (J) ≥ smin.

The FIM problem consists in finding all subsets of I that are
frequent (in our context: all sets of neurons A ⊆ N that show
frequent synchronous emission of spikes, that is, a number of
spike-time coincidences at least smin). The search for all such item
sets exploits that the support operator s is anti-monotone : for
J1, J2 ⊆ I and J1 ⊆ J2 we have s(J2) ≤ s(J1). As a consequence, if
s(J1) < smin we also know s(J2) < smin. In words: no superset of an
infrequent item set can be frequent. This statement is also known
as the Apriori property.

The search space is P(I), the power set of I (that is, the collec-
tion of all subsets of I). P(I) together with the subset relations
between its elements is a partially ordered set, which is con-
veniently represented as a Hasse diagram (see Figure 2A). The
search through P(I) is made irredundant by assigning a unique
parent to each item set, which turns the search space into a tree
(see Figures 2B,C for two variants). In such a search tree every
item set can be reached on exactly one path and therefore it is vis-
ited at most once in the search. Details about efficient algorithms
and data structures to actually carry out the search can be found,
for example, in Goethals (2010) and Borgelt (2012).

As an illustration, Figure 3 shows three data sets with distinct
neural assemblies. Figure 4 shows, in the search space structured
as a tree according to Figure 2B, the frequent item sets that can
be found in these data sets for smin = 3 (blue and red nodes). If,
in analogy to Accretion, only the maximal frequent item sets are
reported (i.e., no superset is frequent), FIM yields the sets in the
nodes marked in red. Note that the search can be pruned with the
Apriori property (that is, no supersets of infrequent item sets are
explored) without affecting the result: all frequent item sets can
still be reached from the root.

5. AVOIDING REDUNDANT SEARCH
As explained above, Accretion derives sequences of neuron ids
composing spike patterns rather than sets, which we are actu-
ally interested in. As a consequence, it suffers from considerable

A B C

FIGURE 2 | The search space for five neurons N = {a, b, c, d, e}.
(A) Hasse diagram: a graph in which each possible set is a node and
any two sets I, J ⊆ N with I ⊂ J are connected by an edge if and only if
� ∃K : I ⊂ K ⊂ J. (B) A selection of edges from the Hasse diagram that
reduces it to a search tree. Parents are assigned based on the

alphabetical order of the neuron identifiers according to
parent(I) = I \ {max(I)}. (C) An alternative selection of edges from the
Hasse diagram that also reduces it to a search tree. Parents are
assigned based on the alphabetical order of the neuron identifiers
according to parent(I) = I \ {min(I)}.
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redundancy. This is demonstrated in Figure 5A, which shows the
search carried out for a data set with four neurons if all tests yield
significant results. The same set of all four neurons is considered
4! = 24 times (since the search tree has 24 leaves). Even worse, the
same statistical test is executed multiple times: leaves having the
same color correspond to the same test (the leaf neuron is tested
against the set of neurons on the path leading to it).

Clearly, this redundancy stems from the fact that the Accretion
test ignores the order of the already accreted neurons for the test.
Note that it is the main reason why Accretion still needs a branch-
ing restriction even with modern computer hardware: without
it, an assembly with n neurons is considered n! times, which
becomes infeasible already for moderately large n.

However, even if we ensure that each test is executed only once,
the same set of n neurons is still considered n times (four times
in Figure 5A, corresponding to the four colors). Although the
tests differ, it would suffice to consider each set only once (exe-
cuting n tests on it if desired). In contrast to this, FIM works on
sets and with the search space structured as a tree (see Figure 2B
or Figure 2C), it guarantees that each set is visited at most once
(no redundancy). The potential improvements are illustrated in
Figure 5B, which show the search space of Accretion for four neu-
rons. Marked in red is the part that is (potentially) explored by
FIM (cf. also Figure 2B).

6. CRITERIA FOR ASSEMBLY DETECTION
FIM prunes the search and selects results based only on the sup-
port of item sets. As a consequence, it may produce results that

FIGURE 3 | Parallel spike trains with five neurons a, b, c, d, e and

10 time bins containing different neural assemblies.

are not considered by Accretion. For example, a set of neurons
may be frequent simply because the member neurons have many
spikes and thus are likely to exhibit (non-significant) synchronous
spiking. The statistical tests in Accretion eliminate such cases.
However, various forms of statistical testing can fairly easily be
added to FIM as a further evaluation criterion, because the sup-
port values of different item sets are all that is needed to compute
the test statistics.

In addition, Accretion requires a path of significant test results,
which we described above in terms of subset conditions. However,
such subset conditions may also be added to FIM and we study
several variants below.

6.1. STATISTICAL TESTING
Accretion’s sequence-based scheme fixes the test to be carried
out: the neuron added last is tested against the set of already
accreted neurons. In FIM, since each set is considered at most
once, we have a choice of n tests, where n is the number of neu-
rons in the set: each neuron may be tested against the n − 1
other neurons. Note that Accretion carries out these tests in
different branches of the search tree. Note also that in FIM’s
search tree (cf. Figure 2B or Figure 2C) there is also a neuron
added last, but this neuron depends on an essentially arbitrary
global order of the neurons and thus should not determine
the test.

Most naturally, we should use an aggregate of the results
of the n tests to evaluate a set of n neurons. Following the

A

B

FIGURE 5 | Redundancy in Accretion. (A) Unconstrained search for an
assembly of four neurons. In nodes with the same color the same
statistical test (leaf against path) is carried out. (B) Accretion search (whole
tree) vs. FIM search (red). The red part corresponds to Figure 2B, the red
and gray part together to Figure 2A (all possible paths to the set {a, b, c, d}
in the Hasse diagram are spelled out in this tree).

FIGURE 4 | The search for the data sets shown in Figure 3 illustrated with search trees. Assemblies are shown in red, all subsets of the assemblies are
shown in blue, demonstrating that there always exists a path that only visits frequent subsets.
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general principle of statistics to consider the worst case, it is most
appropriate to use the maximum of the p-values of the n tests.
That is, a set of n neurons is judged to exhibit significant syn-
chrony if the largest p-value of the n tests does not exceed the
chosen significance level α. In other words, the “most indepen-
dent” neuron determines the evaluation of the set. Note that
Accretion effectively evaluates a set rather by the “least inde-
pendent” neuron, because a set of neurons is already reported
if one of the search tree paths leading to it yields a significant
test result. That is, Accretion uses the minimum of the p-values,
thus considering, in a certain sense, the best case. Note also
that Fisher’s method of combining p-values bearing on the same
overall hypothesis (Fisher, 1925) is an alternative to taking the
maximum.

Apart from this adapted test procedure, we may ask whether
Pearson’s χ2 independence test is the most appropriate choice.
This test assumes that the (discrete) probability of observed fre-
quencies (in the contingency table) can be approximated by the
(continuous) χ2 distribution. Due to the approximation, some
error is introduced, which may lead to incorrect test decisions.
The approximation error is generally the larger, the lower the
number of degrees of freedom, which is only one for our case
of a 2 × 2 contingency table. In addition, for such a table an
acceptable approximation requires that all expected counts are at
least 5. This renders the test not very well suited for rare events
like spike coincidences. As a consequence, it is worthwhile to look
for alternatives, which include:

• Yates’s correction for continuity (or Yates’s χ2 test).
Replace the χ2 value of Pearson’s test with

χ2
Yates(A, B) = n∗∗

(|n1∗n∗1 − n∗∗n11| − 0.5n∗∗)2

n1∗n0∗n∗1n∗0
.

This correction increases the p-value and thus prevents an over-
estimation of significance, especially if the contingency table
has a cell with an expected count less than 5.

• G-statistic (or G-test).
A likelihood-ratio based statistical significance test that
replaces the χ2 value of Pearson’s test with

G(A, B) = 2n∗∗
1∑

i = 0

1∑

j = 0

ln
nij

ni∗n∗j
.

The G-statistic achieves a better approximation to the theoret-
ical χ2 distribution, especially if n11n∗∗ > 2n1∗n∗1.

• Fisher’s exact test.
Compute the p-value by summing over the (exact) probabilities
of contingency tables with the same marginals that are at least
as extreme as the actual table. Although there are alternatives,
we rely on the most common choice that “at least as extreme as”
means “at most as probable as.” This test avoids approximation,
but is costly to compute.

Note that for both Yates’s test and the G-test the test decision
is made (as for Pearson’s test) with a χ2 distribution with one

degree of freedom. That is, the p-value is defined by the relations
χ2

1,1−p = χ2
Yates(A, B) and χ2

1,1−p = G(A, B), respectively.

6.2. SUBSET CONDITIONS
Since support is anti-monotone (and thus the Apriori property
holds), FIM guarantees that all sets of neurons exhibiting at least
smin spike coincidences are explored. Accretion’s search, however,
is guided by statistical test results (or the underlying p-values),
which do not have this property: if a set of neurons does not
exhibit significant synchronous spiking, we have no guarantee
that there are no supersets that are significant. The p-value of an
independence test on a superset may be higher or lower than the
p-value of a test on the set (that is, p-values are neither monotone
nor anti-monotone). Nevertheless, Accretion does not explore
any such supersets, which can reduce the results. Above (in sec-
tion 3), we formalized this behavior by subset conditions that a set
of neurons has to satisfy in order to be regarded a synchronous
group.

Since the FIM search does not impose any such subset condi-
tions, we are free to explore alternatives:

• No subset conditions. A set A ⊆ N of neurons is a syn-
chronous group if all subsets B ⊂ A with |B| = |A| − 1 show
significant synchrony with the remaining neuron in A, that is,
with A \ B. In other words, A passes the statistical test described
above (and, of course, s(A) ≥ smin).

• Weak subset conditions. A set A ⊆ N of neurons is a syn-
chronous group if it satisfies the condition of the first point
and, for a user-specified minimum set size r, satisfies either
|A| ≤ r or, if |A| > r, that at least one subset B ⊂ A of cardi-
nality |B| = |A| − 1 is a synchronous group.

• Strong subset conditions. A set A ⊆ N of neurons is a syn-
chronous group if it satisfies the condition of the first point
and, for a user-specified minimum set size r, satisfies either
|A| ≤ r or, if |A| > r, that all subsets B ⊂ A of cardinality |B| =
|A| − 1 are synchronous groups.

Figures 6A,B illustrate weak subset conditions in the FIM search
space for the set {a, c, d, e} (in red) for r = 2 and r = 3, respec-
tively. In Figure 6A we have a path from {a, c, d, e} down to the
pair {c, d} (dark blue) and, in Figure 6B, down to the triplet
{a, c, d} (dark blue). Weak subset conditions mean that there exist
such paths containing only synchronous groups.

Figures 6C,D illustrate strong subset conditions in the FIM
search space for the set {a, c, d, e} (in red) for r = 2 and r = 3,
respectively. In Figure 6C we have paths from the set {a, c, d, e}
down to all pairs contained in it (dark blue) and, in Figure 6D,
down to all triplets contained in it (dark blue). Strong subset con-
ditions mean that all such paths contain only synchronous groups
(whereas weak only asks for at least one path).

Note that weak subset conditions, for r = 2, are in fact
very similar to Accretion’s subset conditions, because Accretion
explores a certain sequence only if all of its prefixes produced sig-
nificant test results. These prefixes form the path required by weak
subset conditions. The difference is, of course, that Accretion only
requires the one test with the last added neuron to be significant,
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A B C D

FIGURE 6 | Illustration of different types of subset conditions (cf. Figure 4A). (A) Weak subset conditions down to pairs; (B) Weak subset conditions down
to triplets; (C) Strong subset conditions down to pairs; (D) Strong subset conditions down to triplets.

while we require of a synchronous group that all tests of single
neurons against all others are significant.

6.3. MAXIMAL AND CLOSED SYNCHRONOUS GROUPS
Following Accretion, we may report as (candidate) neural assem-
blies the maximal synchronous groups, that is, those synchronous
groups for which no superset is a synchronous group. However,
such a choice may lose valuable information: if the data contains
a significant number of synchronous spiking events of a neural
assembly A, it is not unlikely that by chance a neuron a /∈ A pro-
duces a spike at a few of these events. This may render the set
A ∪ {a} a synchronous group (if the number of accidentally syn-
chronous spikes is large enough, for which 2 or 3 spikes may
already suffice—see experiments below). In such a case, the sub-
set A exhibits (many) more synchronous spiking events, which
are not considered if only A ∪ {a} is reported as the maximal
synchronous group.

This problem can be addressed by drawing on a notion that is
well known in FIM, namely so-called closed frequent item sets. A
frequent item set is called closed if no superset has the same sup-
port (while it is maximal if no superset is frequent). Since it is
unlikely that accidentally synchronous spikes of a neuron a /∈ A
occur together with all synchronous spiking events of an assem-
bly A, a restriction to closed sets still reports the actual assembly A.
Therefore, we may report closed synchronous groups, which are
synchronous groups no superset of which is a synchronous group
with the same support. Note that we do not lose anything in this
way, because all maximal synchronous groups are obviously closed.

Note also that closed synchronous groups avoid certain unin-
tuitive effects of changing the minimum support smin: while
increasing the minimum support may render certain sets max-
imal which were not maximal before (as supersets may be
suppressed), it only eliminates closed sets with a lower support.

7. EXPERIMENTAL RESULTS
We report results for our assembly detection methods on two
types of data: independent parallel spike trains (to check for
false positives) and parallel spike trains with correlated subsets of
neurons (to check for false negatives):

• Independent spike trains. 1000 trials, each with 100 paral-
lel spike trains (|N| = 100), were generated independently as
Poisson processes with a constant rate of 20 Hz. The duration
of all trials was 3 s and the length of the time bins was 3 ms
(1000 time bins).

• Correlated spike trains. Trials that contain potential assemblies
were generated by injecting synchronous spikes for a subset of
the neurons into 100 parallel spike trains, which were inde-
pendently generated as Poisson processes with a constant rate
of 20 Hz for the neurons outside the subset and a constant
rate of 20 Hz minus the rate of the synchronous spikes for
the neurons in the selected subset. The size z of the neuron
subset was varied from 2 to 9, the number c of injected syn-
chronous spiking events also from 2 to 9, and thus a total
of 64 pairs 〈z, c〉 were tested. For each pair 1000 trials were
generated (3 s duration, 3 ms time bin length, i.e., 1000 time
bins), resulting in a total of 64,000 data sets with injected
assemblies.

On these data sets we compared Accretion and different FIM-
based approaches, namely with no subset conditions as well as
weak and strong subset conditions down to pairs (that is, r = 2).
For each approach we tried all of the statistical tests considered
above: Pearson’s χ2-test, Yates’s test, G-test and Fisher’s exact test.
In addition, we executed FIM without any statistical test (and thus
without any subset conditions). That is, the minimum support
smin was the only selection criterion, for which smin = 2 was gen-
erally chosen (including the methods with subset conditions and
statistical tests).

Figure 7 shows the results on independent spike trains in the
form of pattern spectra [like those used for spatio-temporal spike
patterns in Gerstein et al. (2012)]. Each bar chart refers to a detec-
tion method (Accretion or FIM with different subset conditions;
row of the chart grid) and a test statistic (column) and shows the
decimal logarithm of the average number of detected patterns (in
the sense of maximal synchronous groups) subdivided according to
the size z of the group of neurons underlying the pattern (num-
ber of contained neurons) and the number c of coincident spiking
events (number of time bins with a spike from all neurons in the
group). For comparisons, a further bar chart at the bottom shows
the result of applying FIM without any subset conditions nor sta-
tistical testing (that is, simply an average count of all maximal
frequent item sets).

Since the data was generated as independent Poisson processes,
all detected patterns are clearly false discoveries or false positives.
The number of such false discoveries is fairly high (note that due
to the logarithmic scale, 1, 2, and 3 on the vertical axis stand
for 10, 100, and 1000 patterns, respectively, per trial). Even fairly
pronounced cases like three neurons with five coincident spik-
ing events or five neurons with three coincident spiking events
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FIGURE 7 | Independent spike trains: decimal logarithm of the average
number of (significant) patterns found in 1000 trials (white squares: zero
patterns, gray bars: higher than chart). Each row of the chart grid corresponds
to a detection method (diagram titles, top line; “None”, “Weak 2” and

“Strong 2” refer to subset conditions used with FIM, r = 2), each column to
a statistical test (diagram titles, bottom line). The diagram at the left bottom
shows the result of pure FIM (no subset conditions, no statistical test,
smin = 2).

occur in several of the trials. The alternative test statistics (Yates,
G-test and Fisher instead of Pearson’s χ2) reduce the number
of false discoveries (as expected, because they are less prone to
overestimating significance), but are far from solving the prob-
lem, especially, since they are effective mainly for small patterns
with few coincidences. Subset conditions have a similar effect:

weak subset conditions achieve essentially the same result as orig-
inal Accretion (as expected, see above) and thus suppress some of
the false discoveries made without them. However, only strong
subset conditions are able to bring the false discoveries down
to an acceptable level (assuming that pair patterns are generally
ignored).
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Unfortunately, strong subset conditions are no solution either,
because they almost prevent discoveries altogether, even correct
ones. This can be seen in Figure 8, which shows the results on
correlated spike trains as the rate (computed over 1000 trials)
of false negatives for all detection methods, again subdivided

according to the group size z and the number c of (injected)
coincidences. (Note that the actual number of coincidences in
the data may be higher, because the injected coincidences may
be supplemented by accidental coincidences, but also lower, due
to “clipping” caused by the time binning.) An injected pattern

FIGURE 8 | Correlated spike trains: false negative rates over 1000 trials,
each with a specific injected pattern, characterized by an assembly size z and
a number c of injected coincidences. Rows and columns of the chart grid as in
Figure 7. An injected neural pattern is counted as not detected (false negative)

if it is not contained in any of the maximal synchronous groups produced by
the used detection method. Pure FIM (see diagram on the left) necessarily
always detects all injected patterns perfectly, unless they are reduced to less
than two coincidences by “clipping” caused by the time binning.
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is counted as a false negative if it is not contained in any of the
maximal synchronous groups reported by a method. That is, it is
counted as detected even if it is not exactly among the reported
patterns, but only a superset (with additional neurons) has been
discovered.

Despite this somewhat lax criterion, FIM with strong subset
conditions is hardly able to detect the injected patterns, unless a
not too large assembly (fairly few neurons) exhibits a fairly large
number of coincidences. Even clear cases like eight neurons fir-
ing together seven times are not detected. The reason, however, is
obvious: with strong subset conditions and r = 2, all pairs con-
tained in a group of neurons have to test positive in order for the
group to qualify as a pattern. The more neurons there are in a
group, the more pairs there are and thus the more likely it is that
one of them is, by accident, not significant, unless the number of
(injected) coincidences is fairly large. The situation is improved
with r = 3, but the detection rate still suffers for larger assemblies
(see Figure 9A), and the more so if we consider larger time bins
(Figure 9B). Furthermore, higher firing rates worsen the situation
as well (Figure 9C).

Accretion and FIM with weak subset conditions exhibit better
detection capabilities, but are far from impressive either. Only if
we abandon subset conditions, the detection rate is significantly
improved (few false negatives). Note that FIM without subset
conditions and relying only on minimum support (no statistical
tests) necessarily detects all injected patterns, unless the coinci-
dent spiking events are reduced to less than two by “clipping” due
to the time binning.

In general, the tougher the subset conditions of the assem-
bly detection method (including a lower value of r) the lower
the number of false positives, but the higher the rates of false
negatives. Alternative statistical tests have a similar effect: Yates’s
test, G-test and Fisher’s exact test reduce the number of false
positives, but at the price of higher rates of false negatives. The
same holds for the significance level (not shown, but obvious):
the lower α, the fewer false discoveries are made, but at the price
of fewer correct discoveries (more false negatives). If we take
into account what false positives are suppressed (by whatever
approach), namely mainly small patterns with few coincidences
(back corners of the bar charts), while larger patterns with more
coincidences are essentially unaffected, one may wonder whether
statistical tests and subset conditions are actually worth the effort
(because both increase the computation time considerably com-
pared to a pure FIM approach).

Generally we can say that the core problem of a reliable detec-
tion of neural assemblies is the large number of false positives,
which the discussed methods cannot reduce without severely
harming the detection sensitivity of the method. This number of
false discoveries may appear to be surprising at first sight, because
we used a significance level of α = 1%. However, this applies only
to an individual test, whereas we are executing a huge number
of tests in the search. That is, we face the problem of multiple
testing, due to which we lose an effective control over the signif-
icance level. In simple terms: if we execute 1000 (independent)
tests with α = 1%, we should expect about 1000 · 1% = 10 pos-
itive test results, simply as chance events, signifying nothing. In

A B C

D E F

FIGURE 9 | Selected other false positive and false negative

results, demonstrating the effect of the parameter r (that is, the
lower size limit for the subset conditions), the effect of the time
bin width and the firing rate in combination with strong subset

conditions down to triplets, and the effect of using closed instead
of maximal sets or synchronous groups. Note the logarithmic
scale (decimal logarithm) of the vertical axis of the false positive
bar charts.
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our search, however, we even execute millions of tests. For exam-
ple, 100 recorded neurons allow for

(100
3

) = 161, 700 triplets and(100
4

) = 3, 921, 225 quadruplets. As a consequence, even though
it is very unlikely that, say, four specific neurons fire together three
times if they are independent (such an event has a p-value of less
than 10−6 in our experimental setup with the testing method-
ology described above), it is fairly likely that we observe some
set of four neurons firing together three times. Indeed, in our
experiments we see, on average, more than one such pattern
per trial.

Unfortunately, because of the excessive number of tests exe-
cuted in the search, standard methods to handle the multiple
testing problem (the like Bonferroni correction (Bonferroni, 1935;
Abdi, 2007), the Holm-Bonferroni method (Holm, 1979), or the
Benjamini-Hochberg procedure Benjamini and Hochberg (1995);
see Dudoit and van der Laan (2008) for an overview) require
p-values so low that they are extremely unlikely to be obtained
from actual data, and also lead to a very high rate of false
negatives: effectively we cannot expect to make any discover-
ies anymore. As a consequence, we have to change the testing
methodology in order to obtain a suitable method (see the next
section).

Finally, the diagrams in Figure 7 show that a detection based
on maximal synchronous groups causes strange effects: while pure
FIM reports no pairs with 9 coincidences and only few with 8,
all other methods detect several such pairs (or at least more than
pure FIM). The reason is that these patterns are, of course, present
in the data, but they are not maximal frequent item sets. These pat-
terns rather have supersets with three or four neurons (exhibiting
fewer coincidences), which are reported by pure FIM and thus
eliminate the pairs. These supersets are suppressed, though, by
the statistical tests or the subset conditions of the other detection
methods, rendering the pairs maximal. Note that these patterns
are found with pure FIM if we report the closed synchronous
groups (closed frequent item sets) as demonstrated in Figure 9E
as compared to Figure 9D (which repeats the bottom left bar
chart of Figure 7). Note that the pattern counts are affected the
less (by reporting closed patterns instead of maximal) the larger
the patterns, even if a statistical test is used (see Figure 9F for an
example).

8. ASSEMBLY DETECTION WITH FIM
Based on the insights gained in the previous section, we pro-
pose now an assembly detection method based on (pure) FIM
that reduces the problem of multiple testing considerably. In this
method we no longer look at specific neuron groups, which is the
main reason for the huge number of tests. Rather we rely on the
rationale that a pattern of a certain size z and exhibiting a certain
number c of coincident spiking events cannot reliably identify an
assembly if a counterpart—that is, a neuron group with the same
size z (but possibly different composition) and the same num-
ber c of coincidences—occurs in properly generated surrogate
data (rendering the neurons independent). The reason is that the
occurrence of a counterpart in surrogate data demonstrates that
the pattern could be a chance event and thus that it is not signif-
icant. To be more specific, our assembly detection method works
as follows:

• FIM on Original Data. We apply FIM to our original (binned)
data and report all closed frequent sets of neurons together with
their support, where a neuron set is called closed if all of its
supersets have a lower support. We prefer closed over maximal
sets due to the reasons pointed out above, especially the loss of
support information incurred by reporting only maximal sets.
We recommend smin = 2, but higher values may also be used.

• FIM on Surrogate Data. In order to determine which closed
frequent neuron sets found in the original data may be due
to chance events, we generate surrogate data sets. That is, we
create modifications of the original data that are intended to
keep all of their essential features except spike synchrony—
the feature we are testing for. [For a survey and analysis of
the methodology to generate surrogate data from parallel spike
trains, see, for example, (Grün, 2009; Louis et al., 2010b,c)].
To each surrogate data set we apply FIM and collect the closed
frequent sets together with their support. More specifically,
we collect the signatures 〈z, c〉 (size z and coincidences c) of
found patterns. Afterward we eliminate from the closed fre-
quent neuron sets found in the original data all sets for which
a counterpart (that is, same size z and same number c of coin-
cidences, but possibly different composition, that is, different
underlying set of neurons) was found in a surrogate data set,
since such sets could be chance events (see below for a more
detailed justification and discussion of this procedure).

Note that this procedure still suffers from a certain amount of
multiple testing: every pair 〈z, c〉 that is found by FIM in the orig-
inal data gives rise to one test. However, the pairs 〈z, c〉 are much
fewer than the specific neuron sets that are considered in all meth-
ods discussed above. As a consequence, simple approaches like
Bonferroni correction (Bonferroni, 1935; Abdi, 2007) become fea-
sible. That is, we divide the desired overall significance level α by
the number n of tests to obtain the significance level α′ = α/n for
each individual test. Since in practice we can expect to find only a
few dozen pairs 〈z, c〉 in the data to analyze, we obtain significance
levels α′ that leave us good chances of making detections. The
number n of tests (that is, 〈z, c〉 pairs) may even be reduced fur-
ther by the insight that patterns with signatures like 〈2, 2〉, 〈3, 2〉,
〈2, 3〉 etc. are certainly discovered in the data, but we do not con-
sider these patterns as candidates for assemblies right from the
start. Only pairs 〈z, c〉 with sufficiently large z and/or c need to be
counted, for which we are actually willing to accept the underlying
neuron sets as assemblies.

Technically, the significance level α enters the testing proce-
dure as the number of surrogate data sets to be generated. For
example, if we choose α = 1% and there are n = 30 pairs 〈z, c〉
in the original data which we actually want to submit to a test,
we have to generate k = n/α = 3000 surrogate data sets. The rea-
son is that of the results on the original data we keep only such
neuron sets for which we do not see a counterpart in any of the
surrogate data sets. That is, if we do not observe any occurrence of
a specific pair 〈z, c〉 in k = 3000 surrogate data sets, then we can
estimate the probability of this pair 〈z, c〉 occurring by accident as
less than p = 1/k = 1/3000. This is the p-value of the test and
since it is p ≤ α′ = α/n = 0.01/30 = 1/3000, any pattern with
the signature 〈z, c〉 is significant.
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Note that the resulting procedure is computationally feasi-
ble due to the sophisticated high-speed implementations that are
available for closed FIM.2 Even running FIM on thousands of sur-
rogate data sets takes only a few minutes on modern computer
hardware. In addition, this process can easily be parallelized, since
the surrogate data sets can be processed independently, while col-
lecting the 〈z, c〉 pairs from all surrogate data sets takes negligible
time.

As an example of detecting assemblies with this procedure,
we consider a trial with 100 parallel spike trains with an
injected assembly of seven neurons (labeled {1, 2, 3, 4, 5, 6, 7})
and 7 coincidences, generated as described in section 7 for
correlated data (20 Hz firing rate, duration 3 s, time bin length
3 ms, that is, 1000 time bins). We generate 10,000 surrogate data
sets by means of spike-time randomization (see, e.g., Louis et al.,
2010c; this simple approach is acceptable here due to the station-
ary process). The average number of closed patterns found with
FIM in these surrogate data sets, subdivided by their size z and
number c of coincidences (support) is shown in Figure 10A. After
removing from the result on the original data all closed sets with
signatures 〈z, c〉 that occur in surrogate data, we obtain the sets
shown in Table 3.

This is a fairly typical result (although it was specifically
selected to cover all relevant effects): the injected assembly is
detected, but also some other sets, which, however, are all related
to the injected assembly. Due to chance coincidences of neurons

2See, for example, fimi.ua.ac.be/src or www.borgelt.net/fpm.

outside of the assembly (here: neurons 35, 81, 85, 93) with some
of the coincident spiking events of the assembly, we see a few
supersets of the assembly, with lower support. Due to chance
coincidences (resulting from background spikes) of some of the
assembly neurons, we also see subsets of size 3 and 4, with a sup-
port exceeding the injected coincidences by 1 or 2. Finally, we see
a set overlapping the assembly ({2, 3, 4, 35}), which results from
neuron 35 firing together with four coincident spiking events of
the assembly and the one additional coincident spiking event of
the neurons {2, 3, 4} (which is caused by background spikes).
Note that there are no sets that are unrelated to the injected
assembly. How this result set can be reduced to the (most likely)
assembly will be the topic of a subsequent paper (see Torre et al.,
in preparation).

However, compared to, say, Accretion, this result is already a
huge improvement: running Accretion with a branching restric-
tion of 2 on the same data yields (after removing duplicates—
recall the redundancy of Accretion’s search scheme) 66 sets, only
7 of which are related to the injected assembly (3 are supersets,
4 are overlapping patterns), while the assembly itself is not in
the output. The unrelated patterns have sizes ranging from 2 to
5 neurons and exhibit between 2 and 9 coincidences. Without a
branching restriction, Accretion yields even 105 sets, 30 of which
are related to the injected assembly (5 supersets, 25 overlapping
patterns).

In order to illustrate the detection capabilities of our method,
Figure 10 collects various results for data sets with injected assem-
blies with different sizes z and coincidences c. Figure 10B shows

A B C D

E F G H

FIGURE 10 | Assembly detection with surrogate data filtering based

on size/coincidence signatures 〈z, c〉. (A) decimal logarithm of the
average number of patterns found in 10,000 surrogate data sets;
(B and C) average numbers of patterns detected in 1000 data sets
with injected assemblies with 〈z, c〉 = 〈7, 7〉 and 〈z, c〉 = 〈6, 6〉,
respectively (gray squares indicate signatures that occur in the
surrogates and are therefore eliminated); (D) false negatives for

injected assemblies with different 〈z, c〉 combinations; (E–H) decimal
logarithm of the average number of patterns with different relations to
the injected assembly: (E) proper supersets of the injected assembly,
(F) proper subsets of the injected assembly, (G) patterns with at least
two neurons from the injected assembly and at least one other
neuron, (H) patterns having none or at most one neuron in common
with the injected assembly.
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Table 3 | Closed frequent neuron sets found in data with an injected

assembly with seven neurons and seven coincidences, after filtering

with surrogate data; support/coincidences after the colon.

{1, 2, 3, 4, 5, 6, 7,81, 85} : 2 {2, 3, 5, 6} : 8 {2, 3, 7} : 8

{1, 2, 3, 4, 5, 6, 7,35} : 4 {2, 3, 4, 35} : 5 {2, 5, 7} : 8

{1, 2, 3, 4, 5, 6, 7,93} : 3 {2, 3, 6} : 9 {3, 4, 7} : 8

{1, 2, 3, 4, 5, 6, 7} : 7 {2, 3, 4} : 8

the average number of patterns that are detected in data sets with
an injected assembly with seven neurons and seven coincidences
(averages over 1000 runs). Figure 10C shows analogous results for
six neurons and six coincidences. Figure 10D shows the false neg-
ative rate (fraction of runs in which neither the assembly itself nor
a superset is in the result set) for individual injected assemblies,
covering all possible 〈z, c〉 combinations in {2, . . . , 9}2 (averages
over 1000 runs). Note that false negatives occur basically only for
〈z, c〉 combinations that occur in surrogate data (see Figure 10A).
Clearly, this is unavoidable.

The few false negatives represented by the blue squares are
due to “clipping” caused by the time binning, which reduces the
injected number of coincidences and thus creates a 〈z, c〉 pair that
occurs in surrogate data. Note that for some signatures that occur
in the surrogate data (e.g., 〈z, c〉 = 〈8, 2〉 and 〈z, c〉 = 〈3, 7〉) the
injected assembly is sometimes detected, even though these signa-
tures occur in surrogate data. The reason are chance coincidences,
either of the whole set (for small z) or of an additional neuron
with all coincident spiking events (for small c), which creates
a pattern with a signature that is not eliminated by surrogate
filtering.

Figures 10E–H give an idea of what and how many patterns are
to be expected in the result for data with a single injected assem-
bly, subdivided according to the size z and the coincidences c
of the assembly. Not surprisingly, supersets become more fre-
quent with an increasing number c of coincident spiking events,
subsets more frequent with an increasing size z of the injected
assembly. Overlapping patterns are much fewer (note the loga-
rithmic scale!) and their number grows with both the size z and
the coincidences c. A clear benefit of our method is that it almost
never produces patterns unrelated to the injected assembly (see
Figure 10H): in the total of 64,000 data sets that the bar charts
represent (1000 data sets per bar), only five patterns were detected
that were not related to the assembly.

9. DISCUSSION
We started this paper by reviewing and analyzing the so-called
Accretion method (Gerstein et al., 1978) for identifying neu-
ral assemblies from (discretized) parallel spike trains. Inspired
by Accretion, we presented alternative assembly detection meth-
ods built on modifications and/or refinements of the two main
constituents of Accretion: the statistical test to determine signifi-
cance of the neuronal patterns built in the process and the subset
conditions that a set of neurons needs to satisfy in order to be con-
sidered a neural assembly. Subset conditions alternative to those
of Accretion were implemented with the help of FIM. By working
on sets instead of sequences in a tree-like search space, FIM over-
comes Accretion’s redundancies and proves to be more efficient:

it yields shorter execution times even though the search is actually
exhaustive, because no branching restriction is employed.

The results of our tests on trials with both independent spike
trains (generated as independent Poisson processes) and corre-
lated spike trains (generated as independent Poisson process with
injected spike coincidences) showed high rates of false positives
and false negatives for Accretion. Some of the FIM-based models
that were built on alternative subset conditions and/or statistical
tests performed better in terms of false positives but, generally,
any such improvement was paid for by an increase in the num-
ber of false negatives. FIM alone, with no subset conditions and
no statistical test, is not significantly worse than the other mod-
els since, although it yields the largest amount of false positives, it
produces essentially no false negatives. Overall, the significance
criteria employed by all of these models do not properly take
into account the multiple testing problem, since they focus on
tests of individual patterns. As a consequence, a high rate of false
discoveries (false positives) and/or false negatives is always to be
expected.

In the view of such results we proposed an alternative assembly
detection method, based solely on FIM, which addresses the mul-
tiple testing problem properly. It is based on analyzing (with FIM)
surrogate data that is generated from the original spike trains. The
(closed) neurons sets that are found (with FIM) in the original
data are then filtered by removing all patterns for which a coun-
terpart occurs in surrogate data, that is, for which a pattern with
the same size z and the same number c of coincidences (support)
was found in some surrogate data set. The rationale underlying
this approach is that a pattern with a counterpart in surrogate
data could be a chance event and thus should not be considered
significant.

Since we employ sophisticated and high-speed implementa-
tions of FIM algorithms to find the closed neuron sets, our
method is efficient even though it requires to generate and analyze
a substantial number of surrogate data sets. For example, gen-
erating and analyzing the 10,000 surrogate data sets underlying
Figure 10A takes about 2 minutes on standard modern computer
hardware, even without parallelization. This enables us to apply
the method in a sliding window fashion in order to follow the
dynamics of assembly activity.

This paper presented the basic approach of FIM and relevant
statistics to detect and identify spike synchrony patterns in mas-
sively parallel spike data. In a subsequent paper (in preparation)
we will report about further studies of dependencies on various
analysis parameters (e.g., time bin size) and on features of the data
[e.g., level of firing rates, various non-stationarities, deviations
from Poisson processes etc. (Grün, 2009)]. However, our previous
studies in other contexts (e.g., Louis et al., 2010b,c) and prelim-
inary studies of our FIM-based method make us confident that
we can account for such aspects by using surrogates that incor-
porate such features, e.g., local spike dithering or shift-surrogates
(Gerstein, 2004; Pipa et al., 2008; Louis et al., 2010b).

Maximum-entropy models recently found application in the
context of identification of the correlation structure in par-
allel spike trains. A general difference of methods based on
maximum-entropy models in comparison to our approach
is, that they evaluate if correlation structures exist at all by
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comparing to non-existent correlations, whereas our approach
aims to detect specific correlation structures. Although
(Schneidman et al., 2006) claims that spike correlations found
in experimental data are fully explained by pairwise correla-
tions only Shlens et al. (2006), discusses in its study that existent
higher-order correlations may be missed since they contribute
only to a small percentage in the explanatory power. Roudi et al.
(2009) showed in an extensive study that the estimates of the
correlation structure estimated by maximum entropy models
strongly depends on the existent parameters, in particular the
size of the data set, and thus may lead to wrong conclusions
on the correlation structure with a bias toward pairwise corre-
lations. Thus we do not expect that maximum-entropy models
would be able to extract assemblies of such small size of neu-
rons and small number of occurrences of correlated spiking
within a large number of neurons as it is possible with our
approach.

In Feldt et al. (2009) a modification of Accretion was sug-
gested as a way to improve its performance. The idea is to use
the p-value of an independence test (e.g., Pearson’s χ2) as the
distance between two neurons (or sets of neurons) in a hierarchi-
cal agglomerative clustering algorithm. In general, such clustering
starts with each of the given objects (here: neurons) in its own
cluster. In each subsequent step it greedily merges the two clus-
ters with the smallest distance, provided this distance is no greater
than a user-specified maximum distance. For the Accretion vari-
ant, distances are measured by the p-value of an independence
test and thus this maximum distance is simply the chosen sig-
nificance level α. Once no neuron groups can be merged any
more, the method returns all clusters with more than one neu-
ron. This method could be referred to as a “matrix version” of
Accretion, because hierarchical agglomerative clustering is usu-
ally implemented as operating on a distance matrix, from which
the rows (and corresponding columns) of the two clusters (here:
sets of neurons) to be merged are removed and replaced by a row
(and a column) representing the new cluster that resulted from
the merger.

The matrix version of Accretion has the clear advantage
that there is no branching. It executes at most n − 1 steps for
n neurons (after which all neurons would be merged into a sin-
gle cluster) and cannot produce more than �n/2� clusters (unless
singletons are counted as well). It may also be argued that it some-
times carries out more meaningful statistical tests, because it may
merge two clusters both of which already contain two or more
neurons, while Accretion always tests an already accreted group
of neurons against a single new neuron.

However, these advantages are more than equalized by sev-
eral disadvantages. Although the matrix version generally yields
fewer results due to its greedy search scheme, it may still produce
many false positives, because the problem of false positives lies
mainly in the potential number of tests (i.e., the size of the search
space) and the nature of the statistical tests and not in the actual
number of tests that are executed. In addition, since the matrix
variant also reports maximal sets, one almost never obtains an
injected assembly exactly, but rather a superset (like in stan-
dard Accretion). Finally, as a hierarchical agglomerative clustering
approach, it necessarily yields disjoint sets of neurons as (candi-
dates of) assemblies. This leads to an unavoidable loss of results in
case of overlapping assemblies, but may also rip an assembly apart
if a bad merger is chosen due to the data characteristics, which is
particularly likely when merging neurons into pairs.

The faster execution of the matrix version of Accretion is
certainly attractive, but with the sophisticated, high-speed FIM
implementations that are available, which make our method fairly
efficient, there is no need to accept any of its drawbacks.

The only feature currently missing from our FIM-based
approach is a way to reduce the found pattern set to the (most
likely) assembly or assemblies. While a human can easily spot the
actual assembly (or assemblies) by looking at the (usually rea-
sonably small) output (see, for example, Table 3), an automatic
method is desirable. We are currently working on a paper (Torre
et al., in preparation) that presents and compares several sugges-
tions of such pattern set reduction methods, which proved to be
highly promising in preliminary experiments.
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SOFTWARE AND ADDITIONAL MATERIAL
The FIM library underlying the Python scripts with which we car-
ried out our experiments is available at http://www.borgelt.net/
pyfim.html

The actual Python and shell scripts as well as more extensive
result diagrams are available at http://www.borgelt.net/accfim.

html
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