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Arterial spin labeling (ASL) is a magnetic resonance imaging technique that provides a
non-invasive and quantitative measure of cerebral blood flow (CBF). After more than a
decade of active research, ASL is now emerging as a robust and reliable CBF measurement
technique with increased availability and ease of use.There is a growing number of research
and clinical sites using ASL for neuroscience research and clinical care. In this paper, we
present an online CBF Database and Analysis Pipeline, collectively called the Cerebral
Blood Flow Biomedical Informatics Research Network (CBFBIRN) that allows researchers
to upload and share ASL and clinical data. In addition to serving the role as a central data
repository, the CBFBIRN provides a streamlined data processing infrastructure for CBF
quantification and group analysis, which has the potential to accelerate the discovery of
new scientific and clinical knowledge. All capabilities and features built into the CBFBIRN
are accessed online using a web browser through a secure login. In this work, we begin
with a general description of the CBFBIRN system data model and its architecture, then
devote the remainder of the paper to the CBFBIRN capabilities. The latter part of our
work is divided into two processing modules: (1) Data Upload and CBF Quantification
Module; (2) Group Analysis Module that supports three types of analysis commonly used
in neuroscience research. To date, the CBFBIRN hosts CBF maps and associated clinical
data from more than 1,300 individual subjects. The data have been contributed by more
than 20 different research studies, investigating the effect of various conditions on CBF
including Alzheimer’s, schizophrenia, bipolar disorder, depression, traumatic brain injury,
HIV, caffeine usage, and methamphetamine abuse. Several example results, generated by
the CBFBIRN processing modules, are presented. We conclude with the lessons learned
during implementation and deployment of the CBFBIRN and our experience in promoting
data sharing.
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INTRODUCTION
Arterial spin labeling (ASL) is a magnetic resonance imaging
(MRI) technique (Detre et al., 1992) that provides a quantitative
measure of cerebral blood flow (CBF). Over the past decade, ASL
has emerged as a robust and non-invasive method for acquiring a
regional CBF map with whole-brain coverage in less than 5 min-
utes on commercial MRI scanners. A growing number of research
and clinical sites (Deibler et al., 2008; Pollock et al., 2009) are now
using ASL as part of their imaging protocols, and are collectively
creating a rich and diverse set of CBF data. The availability of
these existing data combined with an increasing number of new
data sets underscore the potential benefits of having a central CBF
database that enables investigators to upload, analyze, explore, and
share ASL data.

There has been an increased awareness for data sharing in
the neuroimaging community and the practice of sharing is
growing (Van Horn and Toga, 2009; Poline et al., 2012). The

Functional Biomedical Research Network (FBIRN) provides an
example of successful data sharing through careful coordination
on the part of the participating institutions, leading to advances
in our understanding of schizophrenia (Potkin and Ford, 2009;
Potkin et al., 2009; Glover et al., 2012; Shin et al., 2013). The
efficient sharing of neuroimaging and clinical data collected at
each institution was possible through the development of a fed-
erated database system and software tools (Keator et al., 2009;
Ozyurt et al., 2010).

In this paper, we present a central CBF database and associ-
ated data analysis workflows, collectively called the Cerebral Blood
Flow Biomedical Informatics Research Network (CBFBIRN). The
overall goal of the CBFBIRN is to support the interaction of the
CBF database with the neuroimaging community, to facilitate data
sharing, and to promote collaborative research environment for
the study of CBF measures. The CBFBIRN database architecture is
based on the Human Imaging Database (HID) framework (Ozyurt
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et al., 2010), initially developed and used under the FBIRN as a fed-
erated database system. The CBFBIRN serves not only as a central
data repository for ASL data and associated clinical assessments,
but it also provides streamlined processing workflows that allow
users to perform CBF processing on the raw data and group anal-
ysis on the derived data through a web browser1. Additionally,
the CBFBIRN hosts a dedicated pulse sequence distribution sys-
tem (PSDS), through which pulsed arterial spin labeling (PASL)
and pseudocontinuous arterial spin labeling (PCASL) protocols
are provided to the neuroimaging community. The PASL proto-
col distributed via the PSDS uses a standardized flow-sensitive
alternating inversion recovery (FAIR) sequence with QUIPPSS II
post-inversion saturation pulses (Kim and Tsekos, 1997; Wong
et al., 1998) and it is the same protocol that was used in previous
multisite FBIRN studies (East Coast Traveling Study, West Coast
Traveling Study, Phase III schizophrenic vs. healthy control study;
Liu et al., 2008; Ford et al., 2009; Rasmussen et al., 2010). The ASL
data generated by these FBIRN studies, as well as associated clini-
cal assessments, have been aggregated, archived, and processed by
the CBFBIRN.

Within the ASL community, data sharing through a central CBF
database is beneficial for several reasons. One main hindrance to a
wider adoption of ASL by the neuroimaging community is a lack of
standardized data acquisition and processing methods. Pooling of
ASL data across different sites into a central repository facilitates
a careful evaluation of different acquisition and post processing
methods, resulting in (1) improved understanding of how dif-
ferent methods affect the accuracy and reliability of quantified
CBF measures; (2) formulation of a standard ASL protocol and a
common CBF quantification method that can minimize inter-site
differences and promote a faster adoption of ASL. Additionally, a
large volume of data allows efficient testing of new processing algo-
rithms and their comparison with preexisting ones. Perhaps more
importantly, a central CBF database can greatly facilitate efforts to
characterize the dependence of CBF on disease, age, gender, and
medical treatment using statistical analysis on the archived CBF
data and associated clinical assessments. A large volume of pooled
data provides greater statistical power to detect subtle effects that
may otherwise be impossible to discern with a limited sample size.

The objectives of this paper are to describe the currently avail-
able features and capabilities of the CBFBIRN and to show example
results processed from the ASL data that have been contributed by
CBFBIRN users. While the CBFBIRN is built for storing, pro-
cessing, and sharing of ASL data, the system framework can be
extended to handle virtually all types of scientific data and thus
can be a useful resource for the neuroinformatics community.
We provide the implementation details with access to the source
code underlying the CBFBIRN system as well as some discussion
regarding the lessons learned during the system deployment and
our experience in promoting data sharing.

MATERIALS AND METHODS
SYSTEM DATA MODEL
The HID framework (Ozyurt et al., 2010) on which the CBF-
BIRN is built uses an Entity–Attribute–Value (EAV) style database

1https://cbfbirn.ucsd.edu

design (Nadkarni et al., 1999; Anhoj, 2003; Marenco et al., 2003)
allowing system extension without database schema changes. Sys-
tem extension is achieved by storing both data and metadata
in the same schema. In traditional databases, a new concept is
added to the database schema using one or more tables. How-
ever, the challenge of managing scientific data comes from its
complex and constantly changing structure. By identifying the
stationary concepts which are common in neuroscientific exper-
iments and separating the abstract concept and its multiple
realizations, the HID schema is able to stay stable while accom-
modating all types of data stored, processed, and generated by
the CBFBIRN, i.e., experiment/study attributes, subject demo-
graphics, clinical assessments, provenance and raw/derived data.
For the CBFBIRN, relatively small extensions to the database
schema are needed, i.e., to enable post processing workflow
management, raw data upload capability, job status and data
summary reporting, provenance data management, security and
quality assurance functionality. In this paper, only the addi-
tional changes from the HID framework are described. The core
data model is described in the original publication (Ozyurt et al.,
2010).

Cerebral blood flow processing and group analysis workflows
with their corresponding provenance data are modeled as shown
in Figure 1. The state relevant for a workflow instance is stored in
a Job table. Each CBF processing job instance is associated with a
corresponding imaging visit (VisitJob). Unlike a CBF processing
job, a group analysis workflow instance can be associated with one
or more imaging visits, which may come from multiple experi-
ments/projects. Each workflow instance (job) in turn is associated
with a JobProvenance mainly acting as a grouping mechanism for
a set of JobProvenanceParam records encoding provenance data of
the corresponding workflow instance. The JobProvenance record
also points to the local file path on the database where all the
derived data from a corresponding CBF processing or a group
analysis jobs are kept.

The provenance data model used in the CBFBIRN is simpli-
fied over the HID framework’s EAV style provenance data model
that was used in the FBIRN. For the CBFBIRN, the processing is
centralized and under the control of the system with a predefined
set of customizable processing options exposed to the end user.
The provenance model is designed to capture user selected pro-
cessing options and quality assessments of the processed CBF data
(details are in Section “Processing Module 1: Data Upload and
CBF Quantification”).

The privilege based security data model for the CBFBIRN
is shown in Figure 2. Each user of the CBFBIRN web inter-
face (WebUser) can have non-project specific (WebUserPrivi-
lege) and/or project-specific privileges (WebUserProjPrivilege),
regulated by the system administrator. The type of privileges
available to the system is stored in the Privilege table. New
privilege types can be easily added as new records to the Priv-
ilege table. Each WebUserPrivilege and WebUserProjPrivilege
record has a single Privilege type. Ability to create new users
and/or projects are two examples of non-project specific privi-
leges to enable independent research groups to manage their own
set of projects, giving different access privileges to their group
members.
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FIGURE 1 | Entity relationship (ER) diagram of CBFBIRN processing workflow data model. The relationships between the entities (database tables)
including cardinality information are further explained in the text.

FIGURE 2 | Entity relationship (ER) diagram of CBFBIRN privilege-based security data model. The relationships between the entities (database tables)
including cardinality information are further explained in the text.

ARCHITECTURE
The HID framework is a three tier Java 2 Platform Enter-
prise Edition (J2EE) system originally designed by the FBIRN
to support federated clinical and imaging data manage-
ment across multiple institutions. For the CBFBIRN, the
HID architecture was adapted to accommodate the additional
requirements of the project. First, unlike the FBIRN HID,

the CBFBIRN database is a centralized system where the raw
and derived data are maintained in one centralized location,
which simplifies the system resource maintenance and data cura-
tion. Second, the CBFBIRN requires processing capabilities
(CBF quantification processing and group analysis) in addi-
tion to the data management capability of the original HID
system.
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FIGURE 3 | Summary of CBFBIRN architecture.

The overall architecture of the CBFBIRN system is depicted
in Figure 3. Same as in Section “System Data Model,” only the
added features specific to the CBFBIRN are discussed here. All user
interactions, including data uploads to the system, are managed
through a web browser and internet connection.

Workflow engine
The workflow engine manages (Figure 3) various workflows from
two main processing modules: (1) a CBF Quantification Mod-
ule that provides multiple user defined processing options; (2) a
Group/Statistical Analysis Module that runs on a set of processed
CBF maps derived from the first module. The workflow engine
service consists of a job scheduler, a user interface (UI) to submit
CBF/group analysis processing requests, and a monitoring system
for the processing workflows. The job scheduler manages a job
queue where all the incoming job submission requests are kept. It
runs only a certain number of the job requests at a time to avoid
overloading the system. It supports both one-at-a-time job sub-
missions and batch job submissions. Since some CBF processing
jobs may last more than several hours and may involve human
interaction (depending on the processing options set by the user),
the job scheduler provides an email notification service for impor-
tant life cycle events of the workflows. The job scheduler is also
programed to recover incomplete jobs in the event that the sys-
tem needs to be restarted for server updates or a power outage
occurs.

The job scheduler is agnostic to the workflow types it is man-
aging, i.e., various processing paths built into both the CBF
processing and group analysis modules are all easily managed

by the same job scheduler. The workflow engine delegates the
actual data processing needs to a stand-alone software package
written in MATLAB that communicates with the job scheduler.
For CBF processing, the MATLAB package also calls various AFNI
and FMRIB Software Library (FSL) functions (Cox, 1996; Smith
et al., 2004).

The Unified Modeling Language (UML) class diagram for
the job scheduler component is shown in Figure 4. The
JobScheduler class implements the workflow engine. It main-
tains a priority queue of Job interface implementations. Each
job, implements the IJob interface. The IJob interface pro-
vides the execute() method for the core workflow functionality.
In addition, it provides lifecycle methods such as cancel(),
shutdown(), and cleanup() and introspection/metadata meth-
ods such as getNumberOfStages(), getContextAsJSON(), getJob-
Factory().

The cancel() lifecycle method needs to be implemented for
a cancelable job. This method sets a flag. The logic in execute()
method needs to check this flag before starting any time consuming
substep for timely job cancelation. The cleanup() method allows
the job to clean up after. It is called by the job scheduler at the end
of the job. The shutdown() method is called before permanent
removal of the job from job queue.

A job can have a human intervention step, such as CBF job
with manual ventricular annotation. The job scheduler queries
the IJob interface via the getNumberOfStages() method for the
number of stages of the particular job. After each stage, the job
scheduler waits until the job is resumed. The user interacts with the
workflows through the job management panel of the web interface

Frontiers in Neuroinformatics www.frontiersin.org October 2013 | Volume 7 | Article 21 | 4

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


“fninf-07-00021” — 2013/10/17 — 19:07 — page 5 — #5

Shin et al. CBF database and integrated processing pipeline

FIGURE 4 | Unified Modeling Language class diagram for CBFBIRN job scheduler.

from which running jobs can be canceled or waiting jobs can be
resumed.

If a context is attached to the job (used for user-interaction
and/or persistent jobs surviving server restart) getContextAsJ-
SON() method returns it as string in Javascript Object Notation
(JSON) representation. Jobs that require human intervention can
survive server startups. These kinds of jobs can remain idle in the
system sometimes for weeks until the job owner attends them.
The job scheduler persists the job context for each job in the
database and, uses it to revive any jobs that are still waiting
for human intervention after a server maintenance incident. To
accomplish this, it calls the getJobFactory() method on IJob inter-
face, which then creates a new job instance using the passed in
job context information. This method is called by the job sched-
uler for each revival eligible job interrupted during the server
shutdown.

The job scheduler receives status updates from the jobs it
manages using an event driven mechanism. It implements the
IJobEventListener interface. Each job type that is interested in pro-
viding status information sends a JobEvent to IJobEventListener
registered with the managed job by the job scheduler.

Security service
Like in the original HID, the CBFBIRN security service pro-
vides authentication and authorization services. However, the
CBFBIRN security service provides finer granular (project level)
privilege-based authorization services allowing the end users their
own private set of projects. Within this private set of projects, a
set of users with different level access privileges can be assigned.
At the highest level, there is a project administrator who has
full privileges to all available data. The administrator user can
assign a local administrator (usually a principal investigator, PI)
to the private set of projects to create and manage users for that
PI’s data. Different projects for a given PI can be assigned to

different users who can only see their own project. This way,
multiple independent projects from multiple PIs can be sup-
ported. If the PI decides to share his/her data later, this can be
easily done by the CBFBIRN project administrator by adjust-
ing the access privileges of the other users on that particular
project. This way, the CBFBIRN supports both private and shared
data.

Reporting service
In line with the main design goal of the CBFBIRN being an end user
tool, the results of CBF and group analysis workflows are accessed
from a unified dynamic interface. The user can view, download
results from this interface and provide data quality information
on the processed data. This interface is powered by the reporting
service which aggregates imaging and provenance data and pro-
vides them in a unified structure to various viewing components
of the CBFBIRN.

Unified search service
The main disadvantage of the EAV style data model is that the
queries for the data retrieval are more complex than the tra-
ditional one table per concept model (Anhoj, 2003). The main
goal of the CBFBIRN search service is to provide a simple, uni-
fied, and dynamic interface for data set retrieval needs of the
project. The unified search service consists of a generic web
client component that the user interacts with to build a search
query and a generic server side search mechanism. The user
can search on two main types of the CBFBIRN metadata, i.e.,
clinical assessments and a host of provenance data created dur-
ing different workflows. Upon user input, the web client search
component builds an intermediate representation for the con-
ditions and sends it to the server. The query integrator on the
server side splits the conditions into the main queryable types
(clinical assessment, provenance, quality measures), rewrites the
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queries and sends them to their corresponding query processor
components. Each query processor converts the conditions into
corresponding database queries for the relevant database tables
and returns the results back to the query aggregator. Each query
processor runs asynchronously. The query aggregator combines
results coming from the individual query processors, ensuring
that all the boolean conditions are satisfied before returning the
combined result set to the user. This is accomplished by a sec-
ond pass of filtering on the query processor returned data sets.
All this processing is hidden from the end user who interacts
with the system using a simple search interface via the CBFBIRN
web.

Upload client
Raw CBF and supplementary image data are uploaded to the
CBFBIRN database from the user’s local machine by two main
mechanisms: (1) a Java WebStart application and (2) a web browser
connected to the CBFBIRN web UI. While either of the two upload
methods can be used, the latter method is preferred as it does not
require a Java browser plugin, resulting in increased security and
user convenience. The Java WebStart based upload client will be
deprecated in the near future.

During the data upload process, the image header is
anonymized and the data integrity check is performed. The data
integrity check is important for the healthy maintenance of the
database and for the minimization of unexpected post process-
ing errors as it ensures that the corrupt and unnecessary data are
excluded from the upload. During the upload process, a mini-
mal set of demographics (age, gender, diagnosis) is also collected
for each subject. Internally, the upload client communicates with
the CBFBIRN system using the Representational State Transfer
(REST) protocol.

OVERVIEW OF THE CBFBIRN FUNCTIONALITY
The CBFBIRN consists of a central data repository, a PSDS, and
two post processing modules. The system runs on a dedicated
server (Dell Power Edge R710) located at the University of Cal-
ifornia San Diego (UCSD) Center for Functional MRI and a
fully mirrored backup server located at the UCSD Supercomputer
Center.

A general overview of the CBFBIRN functionality is presented
in Figure 5. All aspects of user interaction with the system are
achieved via a web browser (orange bar) using a secure internet
connection (HTTPS). Through the PSDS, users can download a
MRI pulse sequence, ASL imaging protocols, and a reconstruction
program as one downloadable unit, which can be used to acquire
raw ASL data from GE MRI scanners (GE Healthcare Waukesha,
WI). The raw data acquired from these protocols can then be
uploaded to the CBFBIRN data repository using the upload mech-
anisms as described in the previous section. Three ASL protocols
currently supported are (1) FAIR with QUIPSS II; (2) conventional
PCASL; (3) multiphase pseudocontinuous ASL (MPPCASL; Jung
et al., 2010).

The CBFBIRN consists of two data processing modules: (1)
CBF Quantification and (2) Group Analysis Modules. The former
and latter are referred to as Processing Module 1 and Module 2 in
this paper.

The source code underlying the CBFBIRN database and work-
flows management system is available on the Neuroimaging
Informatics Tools and Resource Clearinghouse (NITRC) site2

under the project name CBFDAP. The software is released under
the Biomedical Informatics Research Network (BIRN) license and
the project source files can be checked out from NITRC Sub-
version repository3. Included with the release are four separate
documents, i.e., Tutorial, Developer’s Guide, Design Document,
and Application Programming Interface Documentation.

We also have registered the CBFBIRN that hosts user con-
tributed ASL and clinical data as a resource on NITRC4. This
resource includes the project-maintained version of CBFDAP and
PSDS.

In this paper, only a general description of the CBFBIRN func-
tionality is provided. For end users, there is a detailed user manual,
which is available on the project website5. This online documen-
tation covers all aspects of using the CBFBIRN including (1) how
to get access to the database; (2) how to upload and process data;
(3) how to review and retrieve processed results. Additionally,
there are several online video tutorials that guide users through
important features of the CBFBIRN6. It should be noted that the
CBFBIRN is an open-access platform, i.e., all resources and tools
are open for anyone to use.

PROCESSING MODULE 1: DATA UPLOAD AND CBF QUANTIFICATION
Module 1 of the CBFBIRN encompasses the upload of raw image
data and CBF quantification processing pipeline.

Data upload
Data upload is handled either by a generic web browser or a Java
Web Start application (Figure 5). For the latter, the application is
downloaded from the project website and executed on user’s local
machine. Written in Java, the program is OS-independent, thus
able to run on Mac, PC, and Linux platforms.

The upload process guides the user to browse, select, and
upload raw ASL image data in DICOM, AFNI, and GE P-file (raw
K-space data) formats. If present in the path, the upload pro-
cess also detects and uploads supplementary image data, which
can be incorporated into the CBF quantification step. For exam-
ple, (1) high resolution T1 anatomical images can be uploaded
and used to create partial volume gray matter, white matter, and
cerebrospinal fluid (CSF) masks using the FSL FAST program
(Zhang et al., 2001), and (2) field maps can be used to cor-
rect distortions and signal dropouts in the ASL images due to
magnetic field inhomogeneities (Funai et al., 2008) as an addi-
tional preprocessing step prior to CBF quantification. Users have
full control over how the uploaded data are processed (see CBF
Quantification).

During the upload process, the application performs data
integrity checks, anonymization of DICOM headers, and
automatic classification of ASL types (e.g., PCASL vs. FAIR).

2http://www.nitrc.org/projects/cbfdap
3http://www.nitrc.org/scm/?group_id=741
4http://www.nitrc.org/projects/cbfbirn
5https://cbfbirn.ucsd.edu/site/get_started.action
6https://cbfbirn.ucsd.edu/site/videos.action
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FIGURE 5 | Broad overview of CBFBIRN functionality available to end

users via the web interface. Users acquire raw ASL and supplementary
image data (red box) from MR scanners using an ASL protocol downloaded
from the PSDS. Data are directly uploaded to the database via the web
interface. Users push these data to the CBF quantification pipeline (Module 1)
to generate CBF maps, whole-brain mean gray matter CBF and additional
derived data, all of which all can be downloaded (blue box) to a local

computer. The database captures provenance data (yellow box), e.g., the
processing options used for CBF quantification and the quality of individual
CBF maps. Users contribute clinical assessments and demographics data
(green box). Processed CBF maps, clinical assessments, and provenance
data are fed into the group analysis pipeline (Module 2) for statistical analysis.
Users can download group analysis results for further analysis and for
publications.

Supplementary data are also classified by parsing through the
image header. Additionally, the subject age for a given upload
is automatically determined based on the birthdate associated
with the subject and the scan date extracted from the uploaded
data.

CBF quantification
A CBF quantification job is initiated via the web interface by select-
ing one of the successfully uploaded subjects. Multiple jobs can
also be started simultaneously if batch processing is desired.

Figure 6 shows a screenshot of the CBF Job Submission page
that users see to select the dataset(s) and processing options for
CBF quantification job(s).

The CBFBIRN automatically parses through the uploaded data,
then presents the user with post processing options pertinent to
the set based on availability of the supplementary image data and
the acquisition type of the ASL data.

The system provides a host of CBF processing options (e.g.,
field map correction, partial volume correction, spatial smoothing,
skull stripping, etc.), and two standard calibration methods
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FIGURE 6 | Cerebral blood flow Job Submission page with the list of processing options.

for estimating the equilibrium magnetization of arterial blood
(M0A), which is necessary for conversion of the perfusion sig-
nal into physiological units (ml/100g-min). The first method
calculates M0A using the ventricular CSF signal from a sep-
arately acquired proton density (PD) image (referred here as
CSF Method in Figure 6; Chalela et al., 2000) while the second
method (defined as Local Tissue Method in Figure 6) creates
a voxel-wise M0A map using λ, the partition coefficient, in
combination with the reference PD image (Detre et al., 1992;
Alsop and Detre, 1996).

After jobs are sent to the processing pipeline, the web interface
provides real-time feedback on the status of each job, and sends
an email notification to the user when a job is completed or if user
intervention is necessary.

The CBFBIRN allows a given dataset to be processed multi-
ple times, each time with a unique set of processing options.
The multiple processing feature is particularly useful for com-
paring the effects of different options on the CBF quantification
process and allows users to find the best parameter sets for their

particular data. Using the provenance data stored in the CBFBIRN
for each job, the system tries to minimize unnecessary repetition
of long running tasks such as field map processing by using exist-
ing field map results in subsequent runs where field map analysis
is required. Since field map correction is the most time consum-
ing step of the CBF processing (up to 90% of the processing time
for field map correction of MRI data acquired with non-Cartesian
trajectories), this optimization greatly decreases the processing
time of subsequent runs on the same data set. For a given
dataset that has been processed multiple times, the final results
are aggregated and presented in the Processing Summary Page
(see Figure 10).

Via the Processing Summary Page, users can also review the CBF
maps and detailed process logs, as well as download the processed
results to a local storage unit (see also Figure 9). Additionally,
the user can assign a qualitative rating score to each of the pro-
cessed CBF maps. The rating entered is stored in the database as
provenance data, which is used as a filter criterion in selecting a
subset of processed jobs for a group analysis. For example, users
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can exclude a set of CBF maps that do not meet a quality standard
(e.g., those labeled as“Marginal”and/or“Unusable”) from a group
analysis.

PROCESSING MODULE 2: GROUP ANALYSIS
Three types of group analysis are supported by the CBFBIRN.
Figure 7 shows a schematic of the workflows associated with the
CBFBIRN group analysis. The workflows can be broadly broken
into five steps, i.e., (1) Choosing a subset of CBF processed maps
using a built-in query builder; (2) Selecting factors and associ-
ated factor levels for each factor; (3) Choosing one of the three
group analysis paths; (4) Reviewing of group analysis results in
the form of statistical analysis tables and plots; (5) Downloading
of processed data for storage and for further analysis offline.

Data filtering for group analysis
The group analysis begins with a selection of the processed CBF
maps. The built-in query builder uses several search attributes
including data provenance (e.g., CBF quantification options used,
quality of the CBF maps), and subject demographics/clinical
assessments. This is schematically shown in Figure 5 with the three
arrows feeding the Processing Module 2: Group Analysis Pipelines
box. Based on a given search, the system locates the CBF maps
and associated demographics/clinical assessments and presents the
user with factors and factor levels associated with the selection.
Gender and diagnosis are examples of factors and their corre-
sponding factor levels are male/female and controls/schizophrenic
patients, respectively. Figure 8 shows a screenshot of the Group
Analysis page from a representative study where factor and factor
level selections are made.

Group analysis processing paths
Three types of group analysis are supported by the CBFBIRN, Path
1: whole-brain mean gray matter analysis; Path 2: regional analysis
for each of the user defined region of interests (ROIs); and Path 3:
voxel-wise standard space analysis (Figure 7).

As the name implies, Path 1 performs a statistical analysis for a
group of user-selected CBF maps using the whole-brain mean gray
matter CBF value calculated from each subject as the dependent
variable.

For Path 2 ROI-based analysis, users upload subject-specific
ROI files and associate each file with a specific subject in the
database via the web interface. The project website provides a

stand-alone wrapper script written in MATLAB7 that users can
download to generate the subject-specific ROI files from individ-
ual anatomical images on their local computer. The script calls
the FreeSurfer ASEG program, which performs automatic corti-
cal and subcortical segmentation (Fischl et al., 2002). The script
generates a ROI file for each subject in AFNI BRIK format, con-
taining cortical and subcortical regions labeled by unique integer
numbers.

Using the filtered CBF maps and the associated ROI files, the
Path 2 group analysis pipeline performs an appropriate statistical
test for each and every region individually as identified by the ROI
files.

For Path 3, the system first warps individual CBF maps to the
standard space using the anatomical data as the base template and
then performs an appropriate statistical test on a per-voxel basis.

For all of the processing paths, the CBFBIRN generates an
intermediate comma-separated value (CSV) file containing CBF
measures and other associated assessments/demographics, and a
statistical test is performed using this file.

The type of statistical test invoked for a specific group analysis
job is automatically determined by the CBFBIRN based on the
factor/factor levels and the type of group analysis path selected
(Figure 8). The system also determines whether a requested job
has a repeated measures design by analyzing the structure of the
input data set, in which case either a paired t-test or a repeated
measures analysis of variance (ANOVA) is performed depending
on the number of factors selected.

RESULTS
PROCESSING MODULE 1: DATA UPLOAD AND CBF QUANTIFICATION
Reviewing of processed CBF data
Figure 9A shows a screenshot of the CBF Processing Summary
Page from a representative project. The page contains a table where
each CBF job processed is shown as a separate row. The quantified
CBF map in the physiological units (ml/100g-min), histogram of
gray matter CBF values, and motion parameter plots are accessible
by clicking on the corresponding cell in the table (Figures 9B,C).
When a pop-up window containing the CBF map is presented, the
user can assign a quality rating, which is stored as the provenance
data. The user can also download the processed results by clicking

7https://cbfbirn.ucsd.edu/site/faq8

FIGURE 7 | Schematic of the group analysis workflows, consisting of

(1) Filtering of CBF maps from the database (Query Builder in yellow);

(2) Selecting the number of factor(s) and corresponding factor levels

(Processing Options in yellow); (3) Choosing one of the three types of

group analysis supported (Paths 1, 2, and 3 in cyan); (4) Reviewing of

group analysis results (n-way ANOVA/t -test in cyan), (5) Reviewing

and downloading processed results (Results Display/Download

in pink).
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FIGURE 8 | Cerebral blood flow Group Analysis Job – Factor Selection page from an example group analysis job. Nine factors and corresponding factor
levels are shown based on the user-selected CBF maps, in which two factors are selected, i.e., Diagnosis and Gender.

FIGURE 9 | Cerebral blood flow Processing Summary Page that

presents a table (A) containing the complete list of successfully

processed jobs down the rows. For each job, the table provides useful
details such as the subject ID, scan date, experimental condition, ASL

protocol, and whole-brain mean gray matter CBF value. A CBF map (B), a
histogram of gray matter CBF values (C), and detailed processing logs (D)

are shown from a representative job, all of which are accessible directly
from the table.
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the Download link available directly from the table. Addition-
ally, the table lists the project name, CBFBIRN assigned subject
ID, scan date, experimental condition, the type of ASL protocol
used, and the mean gray matter CBF value. By clicking on the ASL
protocol name (Tag column), the user can view detailed prove-
nance information for each job, including input parameters for
the CBF processing, as well as processing date, time, and duration
(Figure 9D).

Multiple processing support
In the event that the same CBF data set is processed multiple
times with different input parameters, additional information is
presented in the processing logs (Figure 9D), specifically, a table
listing provenance data for each processing run for easy input
parameter difference comparisons (Figure 10). Each run on the

same data set is uniquely labeled, e.g., original, derived, derived.1,
derived.2, etc.

PROCESSING MODULE 2: GROUP ANALYSIS
Group analysis jobs processed by the CBFBIRN are grouped into
three categories (Baseline, ROI, and Standard Space) as shown in
Figure 11A. Adopting the same presentation style implemented
to display CBF processing jobs (previous section), all group anal-
ysis jobs are listed in the Group Analysis Results Summary table
(Figure 11B). Each row contains useful attributes for each job,
including the CBFBIRN-generated Job ID, processing date, the
type of group analysis performed, and a detailed report that con-
tains the summary of the statistical analysis results. The figure also
shows the Download link that allows users to download statistical
graphs in Portable Network Graphics (png) file format and a CSV

FIGURE 10 | A processing log for an example data set for which the CBF processing was done six times, each with a unique set of CBF processing

options. The table at the bottom lists all jobs and processing options used for each, allowing the user to easily compare differences between them.
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FIGURE 11 | (A) Group Analysis Report Builder page used to define the
type(s) of processed jobs to be displayed on the Group Analysis Results
Summary table. (B) The table provides a quick access to the relevant

attributes of processed jobs including the Job ID, processing date, the
type of group analysis performed, and a pop-up window containing a
summary of the statistical analysis tables and graphs.

file containing the summary data used to perform the relevant
statistical tests.

Group analysis Path 1: whole-brain mean gray matter CBF analysis
Figure 12A shows an example group analysis result processed by
the whole-brain gray matter CBF analysis path and as presented in
the Group Analysis Results Summary table. The report shows the
user selected factor (Diagnosis), the corresponding factor levels
(Control, HIV, Meth, HIV/Meth), and the statistical test invoked
by the CBFBIRN (one-way ANOVA). Additionally, the report con-
tains the ANOVA table as well as the box plot summarizing the
range and mean of gray matter CBF values for each factor level
(Figure 12B).

Figures 13A,B show the CBFBIRN-generated graphs from
another group analysis. The results came from a study looking
at the effect of caffeine consumption on whole-brain gray matter
CBF involving 10 healthy volunteers. Shown are significant reduc-
tions in gray matter CBF both in eyes-open (EO; Figure 13A)
and eyes-closed (EC; Figure 13B) conditions. The system invoked

a paired t-test after automatically detecting that the study had a
repeated measures design.

Group analysis Path 2: regional CBF analysis
Figure 14A shows a section of the group analysis report generated
by the regional CBF analysis pipeline. The result shows a decrease
in CBF for all regions shown with caffeine consumption. Note that
results from Figures 13 and 14 came from the same study, but were
processed in two different group analysis paths. Figure 14B shows
a section of the downloadable CSV file displayed in the same group
analysis report.

Group analysis Path 3: voxel-wise standard space analysis
An example result from the voxel-wise group analysis path is
shown in Figure 15. The figure shows regional differences in
baseline CBF between healthy (n = 112) vs. schizophrenic sub-
jects (n = 122). The result identified 13 significant clusters
(p < 0.01, corrected) including bilateral inferior frontal gyrus
extending to anterior insula, medical frontal gyrus extending
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FIGURE 12 | (A) The system-generated group analysis report from an
example study, looking at the effect of HIV and methamphetamine use on
whole-brain gray matter CBF. Also shown in the report is a box plot (B)

summarizing the range and mean of gray matter CBF values across factor
levels.

to anterior cingulate gyrus, superior frontal gyrus extended to
cingulate gyrus, parahippocampal gyrus as well as left superior
temporal gyrus extending to posterior insula. In the color-
bar, orange denotes higher CBF in control subjects and blue
denotes higher CBF in schizophrenic patients. The raw ASL
data and clinical assessments were contributed from the multi-
site FBIRN Phase 3 study (Ford et al., 2009; Potkin and Ford,
2009; Potkin et al., 2009; Shin et al., 2013) and processed by the
CBFBIRN.

FIGURE 13 | (A,B) Plots from a study looking at the whole-brain gray
matter CBF measures before and after caffeine consumption involving 10
healthy volunteers under EO and EC conditions.

DISCUSSION
The CBFBIRN capabilities described in this paper support many
aspects of conducting an ASL study, including (1) acquisition
of raw data using the ASL protocols provided by the PSDS; (2)
uploading of raw data to the CBFBIRN database; (3) post pro-
cessing that produces quantified CBF maps; and (4) performing
statistical analysis through the CBFBIRN group analysis pipeline.
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FIGURE 14 | (A) A section of the group analysis report from a caffeine study
processed using Group Analysis Path 2. The graph at the bottom shows a
widespread reduction in CBF for all regions after caffeine consumption.
(B) A section of the system-generated CSV file, summarizing CBF changes
in each brain region and associated paired t -test result/p-value.

With public release of the source code of the CBFBIRN system
framework via NITRC, neuroinformatics researchers can not only
replicate the system we have implemented, but they can also adapt
and extend it for many applications where a web-based database
with data management and processing capabilities are desirable.
While we used the system to promote storing, processing and
sharing of ASL data, the system can be extended to handle virtually
all types of scientific data. Given that there is a growing trend
and effort for data sharing across many disciplines of scientific

FIGURE 15 | Significant clusters (p < 0. 01, corrected) based on

baseline CBF difference between schizophrenic and healthy subjects

using Path 3 Voxel-wise Standard Space Analysis. Bilateral clusters in
the inferior frontal gyrus and parahippocampal gyrus are shown in the axial
slice (hypoperfusion with Schizophrenia). The coronal slice shows
hypoperfusion in the inferior frontal gyrus and hyperperfusion in the right
putamen. The sagittal slice shows hypoperfusion in the anterior and
posterior insula.

research, the system infrastructure presented here may be a useful
resource.

Aside from data sharing, the CBFBIRN promotes standard-
ization of data acquisition and processing, which is particularly
timely for the ASL community. Recently, the ISMRM Perfusion
Study Group issued the first white paper with recommended
data acquisition and processing guidelines for clinical applica-
tions, citing that the “overabundance of choices is an impediment
to the acceptance of ASL by the clinical community, complicat-
ing the implementation of ASL in standard care, comparisons
between sites and the establishment of meaningful clinical trials.”
The CBFBIRN data sharing and processing capabilities dove-
tail well with this concerted effort toward standardization. The
efforts of the Perfusion Study Group, as well as our own, can
help accelerate the rate of adoption of ASL by researchers and
clinicians.

The CBFBIRN provides a broad range of CBF processing
options including two widely used calibration methods for conver-
sion of the perfusion signal into physiological units (ml/100g-min;
Detre et al., 1992; Alsop and Detre, 1996; Chalela et al., 2000).
These processing options provide users flexibility and choices over
how their data are analyzed. With the multiple processing capa-
bility (Figure 10), the CBFBIRN allows efficient comparison of
CBF maps processed with different set of options. Given these
features, the CBFBIRN can be used as a testbed for evaluating a
new processing method on existing data in the database, prior
to its integration into the CBFBIRN processing pipeline for gen-
eral use. Additionally, the overhead associated with managing
and processing a large number of data sets is minimized by tak-
ing advantage of the batch processing capability of the CBFBIRN
(Figure 6).

Aside from the task of acquiring and processing the collected
data, researchers often devote a large amount of time and resources
toward archiving both raw and processed data, compiling them
into a format suitable for statistical analysis, and running the actual
statistical analysis itself. Additionally, different types of statistical
analysis oftentimes require a new round of data formatting and
programing scripts. The preprocessing steps and statistical anal-
ysis are handled and executed by the CBFBIRN and abstracted
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from the user, reducing the user task to initiation of the group
analysis job and receiving of an email notification at the job com-
pletion. In the event that an additional analysis is needed, users can
pursue that offline with the system-generated CSV file optimally
formatted for importing into commercial statistical packages.

Current users have reported that the CBFBIRN greatly reduces
the time it takes from data acquisition to reporting of study find-
ings. Since its introduction to the research community in 2011,
several investigators have published studies that have used the
CBFBIRN as a primary tool for data storage and processing (Ho
et al., 2012, 2013; Wierenga et al., 2012; Shin et al., 2013).

One crucial component that makes group analysis possible on
the CBFBIRN workflow is the advanced query builder that pro-
vides flexibility in formulating hypotheses for statistical testing.
The query builder aggregates all forms of data available in the
database, including provenance data (e.g., quality assessment of
CBF maps, set of processing methods invoked) and clinical assess-
ments (e.g., Caffeine vs. Placebo, Schizophrenia vs. Control, Old
vs. Young, Men vs. Women) and employs them as search cri-
teria, allowing users to create a set of CBF maps for testing a
specific hypothesis. For example, it is straightforward to search and
select data corresponding to male schizophrenic patients aged 30
or above and from gender/age matched healthy controls with the
additional constraint of excluding CBF maps rated as “unusable”
to investigate CBF differences between these two groups.

While the post processing workflows described in this paper are
tailored for raw data acquired from the scan protocols provided
by the CBFBIRN PSDS, the CBFBIRN workflows can be extended
to accommodate additional data formats that are supported by
other ASL research groups. Integration of these data allows other
groups to benefit from the CBFBIRN system infrastructure and
capabilities. Hundreds of ASL scans from the previous FBIRN
studies have already been integrated into the CBFBIRN with minor
adjustment to the processing program, including those acquired
from another MRI vendor having a different data format.

To date, the CBFBIRN hosts more than 1,300 data sets from
22 different projects and the storage capacity can accommodate
several times the current data size. Some of the experimental con-
ditions under which the ASL were collected include Alzheimer’s
disease, schizophrenia, bipolar disorder, depression, traumatic
brain injury, HIV, caffeine usage, and methamphetamine abuse.

All data currently stored in our database have been contributed
by research studies reviewed and approved by the institutional
review board (IRB) at their institutions. Since the primary role
of this project is in building and providing a platform for data
sharing, our general policy is that it is the responsibility of users to
ensure that the data they contribute on the CBFBIRN are collected
according to the IRB standards. However, platform providers can
play an important role in promoting IRB compliance by requiring
all users to submit a copy of the IRB form for review before they
can use their system resources. Our project has this requirement
in place for new users.

DATA SHARING ISSUES
The timing and quantity of the data shared for public access is at
the discretion of each project’s PI, though we do stipulate that all
data is to be shared one year after the project end date. Currently,

most users rely on the CBFBIRN for storing and processing new
data for ongoing studies. These data are visible only to the PI
and designated users, and only the PI has the full authority to
make the data public. Once public access is granted by the PI,
the modification of access privileges is made at the CBFBIRN
administrative level (Figure 2). The publically accessible data from
previous FBIRN studies allow new users with the opportunity to
test-drive the CBFBIRN. As the project progresses and the PIs
from ongoing studies complete data collection, analysis, and pub-
lications, we expect more data to be available for public access in
the future.

We have seen a moderate adoption of the CBFBIRN by the
research community since its introduction in 2011, particularly
with availability of the ASL protocols via the CBFBIRN PSDS.
However, adoption of the CBFBIRN by clinicians has been slow.
Based on our experience, the primary concerns for data sharing
revolve around maintaining the privacy of subject/patient infor-
mation as well as misgivings about sharing valuable data in a
public data repository prior to a group’s publication although
we anonymize subject information during data upload and never
share data publicly without the explicit permission and consent
of the PI. Ultimately, the viewpoint of the scientific community
in regards to data sharing must be fundamentally changed. The
success of this cultural shift will be heavily determined by the
efforts of federal funding agencies such as the NIH and research
consortiums like the ASL Study Group.

LESSONS LEARNED
Building a large-scale database requires clear identification of all
the features that will be available to end users and the selection of
the system model and architecture that will support them. Plan-
ning with an end in sight is crucial in order to avoid wasted time
and resources. In the case of the CBFBIRN, for example, the ability
to accommodate an unlimited number of clinical assessments and
associating them to subject-specific raw ASL data was an impor-
tant requirement in order to offer end users the ability to perform
statistical analysis. Clinical assessment scores exist in different data
types (string, integer, real number, etc.) and each assessment may
contain multiple sublevels and score items. In order to accommo-
date this, we chose an EVA style database design, which allowed
system extension without database schema changes, i.e., system
extension was achieved by storing raw data and metadata in the
same schema.

Another aspect of implementing a large scale data management
platform that requires a careful initial planning is UI design. While
an intuitive and easy to use UI is critical for its success, this task
becomes exceedingly difficult as the number of capabilities avail-
able to users increases. From our experience, a careful design of the
UI at an early phase of the system implementation helped avoid
major modifications that can be time consuming later on. For
the CBFBIRN, all user interactions take place via a web browser
through a UI that accommodates all functionality, including data
upload, addition and association of clinical assessments to existing
data, CBF processing, group analysis, and the ability to download
and share data.

Also important for the long-term viability of an online database
is implementation of an automated and stringent data inspection
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mechanism during data upload. For the CBFBIRN, the system fil-
ter reviews all files that users attempt to upload and allows only
those relevant for the system, eliminating the accumulation of
unnecessary data in the database. For the relevant files, the filter
also checks for data integrity to minimize potential errors on the
processing workflows.

In conclusion, the CBFBIRN is an open-access online plat-
form that supports data storage, processing, and sharing of image
data. While it is designed to support the needs of the ASL com-
munity for CBF quantification processing, group analysis, and
data sharing, the system architecture can be extended to include
additional types of data, such as resting-state functional magnetic
resonance imaging (fMRI) data. We have demonstrated its utility,
ease of use, data security, respect for intellectual property, and

compliance to HIPAA requirements. Ultimately, the full poten-
tial of the CBFBIRN will be realized by the active participation of
the neuroimaging community in the process of contributing and
sharing their data.

ACKNOWLEDGMENTS
This work was supported by a grant from the National Insti-
tutes of Health (R01MH084796). The authors thank Peter Wong,
Eman Ghobrial, and Valur Olafsson at the UCSD Center for Func-
tional MRI and Jerod Rasmussen at the University of California
Irvine for their assistance to this project. The authors also would
like to acknowledge the FBIRN collaborators (U24-PR021992)
for their generous contribution of clinical and ASL data to the
CBFBIRN.

REFERENCES
Alsop, D. C., and Detre, J. A.

(1996). Reduced transit-time sen-
sitivity in noninvasive magnetic
resonance imaging of human cere-
bral blood flow. J. Cereb. Blood
Flow Metab. 16, 1236–1249. doi:
10.1097/00004647-199611000-00019

Anhoj, J. (2003). Generic design
of web-based clinical databases. J.
Med. Internet Res. 5, e27. doi:
10.2196/jmir.5.4.e27

Chalela, J. A., Alsop, D. C., Gonzalez-
Atavales, J. B., Maldjian, J. A.,
Kasner, S. E., and Detre, J. A.
(2000). Magnetic resonance per-
fusion imaging in acute ischemic
stroke using continuous arterial spin
labeling. Stroke 31, 680–687. doi:
10.1161/01.STR.31.3.680

Cox, R. W. (1996). AFNI: soft-
ware for analysis and visualization
of functional magnetic resonance
neuroimages. Comput. Biomed.
Res. 29, 162–173. doi: 10.1006/
cbmr.1996.0014

Deibler, A. R., Pollock, J. M., Kraft,
R. A., Tan, H., Burdette, J. H., and
Maldjian, J. A. (2008). Arterial spin-
labeling in routine clinical practice,
part 1: technique and artifacts. Am.
J. Neuroradiol. 29, 1228–1234. doi:
10.3174/ajnr.A1030

Detre, J. A., Leigh, J. S., Williams, D. S.,
and Koretsky, A. P. (1992). Perfusion
imaging. Magn. Reson. Med. 23, 37–
45. doi: 10.1002/mrm.1910230106

Fischl, B., Salat, D. H., Busa, E.,
Albert, M., Dieterich, M., Hasel-
grove, C., et al. (2002). Whole brain
segmentation: automated labeling of
neuroanatomical structures in the
human brain. Neuron 33, 341–
355. doi: 10.1016/S0896-6273(02)00
569-X

Ford, J. M., Roach, B. J., Jorgensen,
K. W., Turner, J. A., Brown, G. G.,
Notestine, R., et al. (2009). Tuning
in to the voices: a multisite FMRI
study of auditory hallucinations.

Schizophr. Bull. 35, 58–66. doi:
10.1093/schbul/sbn140

Funai, A. K., Fessler, J. A., Yeo, D.
T., Olafsson, V. T., and Noll, D.
C. (2008). Regularized field map
estimation in MRI. IEEE Trans.
Med. Imaging 27, 1484–1494. doi:
10.1109/TMI.2008.923956

Glover, G. H., Mueller, B. A., Turner, J.
A., Van Erp, T. G., Liu, T. T., Greve, D.
N., et al. (2012). Function biomed-
ical informatics research network
recommendations for prospective
multicenter functional MRI studies.
J. Magn. Reson. Imaging 36, 39–54.
doi: 10.1002/jmri.23572

Ho, T. C., Wu, J., Shin, D. D.,
Liu, T. T., Tapert, S. F., Yang, G.,
et al. (2013). Altered cerebral per-
fusion in executive, affective, and
motor networks during adolescent
depression. J. Am. Acad. Child Ado-
lesc. Psychiatry 52, 1076–1091. doi:
10.1016/j.jaac.2013.07.008

Ho, T. C., Wu, J., Shin, D. D.,
Yang, G., Chan, M., Hoang, N.,
et al. (2012). “Amygdala hypoper-
fusion in depressed adolescents: an
optimized pseudo-continuous arte-
rial spin labeling study,” in Pro-
ceedings of the American Academy of
Child and Adolescent Psychiatry 59th
Annual Meeting, San Francisco, CA.

Jung, Y., Wong, E. C., and Liu,
T. T. (2010). Multiphase pseu-
docontinuous arterial spin labeling
(MP-PCASL) for robust quantifica-
tion of cerebral blood flow. Magn.
Reson. Med. 64, 799–810. doi:
10.1002/mrm.22465

Keator, D. B., Wei, D., Gadde, S., Bock-
holt, J., Grethe, J. S., Marcus, D.,
et al. (2009). Derived data storage
and exchange workflow for large-
scale neuroimaging analyses on the
BIRN grid. Front. Neuroinform. 3:30.
doi: 10.3389/neuro.11.030.2009

Kim, S. G., and Tsekos, N. V.
(1997). Perfusion imaging by a
flow-sensitive alternating inversion

recovery (FAIR) technique: appli-
cation to functional brain imaging.
Magn. Reson. Med. 37, 425–435. doi:
10.1002/mrm.1910370321

Liu, T. T., Wierenga, C. E., Mueller,
B. A., Wang, J. J., Glover, G. H.,
Voyvodic, J. T., et al. (2008). “Reliabil-
ity and reproducibility of arterial spin
labeling perfusion measures with a
multi-center study,” in Proceedings of
the International Society for Magnetic
Resonance in Medicine 16th Annual
Meeting, Toronto, ON.

Marenco, L., Tosches, N., Crasto,
C., Shepherd, G., Miller, P.
L., and Nadkarni, P. M. (2003).
Achieving evolvable web-database
bioscience applications using the
EAV/CR framework: recent advances.
J. Am. Med. Inform. Assoc. 10, 444–
453. doi: 10.1197/jamia.M1303

Nadkarni, P. M., Marenco, L., Chen,
R., Skoufos, E., Shepherd, G., and
Miller, P. (1999). Organization of
heterogeneous scientific data using
the EAV/CR representation. J. Am.
Med. Inform. Assoc. 6, 478–493. doi:
10.1136/jamia.1999.0060478

Ozyurt, I. B., Keator, D. B., Wei, D.,
Fennema-Notestine, C., Pease, K.
R., Bockholt, J., et al. (2010). Fed-
erated web-accessible clinical data
management within an extensi-
ble neuroimaging database. Neu-
roinformatics 8, 231–249. doi:
10.1007/s12021-010-9078-6

Poline, J. B., Breeze, J. L., Ghosh,
S., Gorgolewski, K., Halchenko, Y.
O., Hanke, M., et al. (2012). Data
sharing in neuroimaging research.
Front. Neuroinform. 6:9. doi:
10.3389/fninf.2012.00009

Pollock, J. M., Tan, H., Kraft, R.
A., Whitlow, C. T., Burdette, J.
H., and Maldjian, J. A. (2009).
Arterial spin-labeled MR perfusion
imaging: clinical applications. Magn.
Reson. Imaging Clin. N. Am. 17,
315–338. doi: 10.1016/j.mric.2009.
01.008

Potkin, S. G., and Ford, J. M.
(2009). Widespread cortical dysfunc-
tion in schizophrenia: the FBIRN
imaging consortium. Schizophr. Bull.
35, 15–18. doi: 10.1093/schbul/
sbn159

Potkin, S. G., Turner, J. A., Brown,
G. G., Mccarthy, G., Greve, D. N.,
Glover, G. H., et al. (2009). Work-
ing memory and DLPFC inefficiency
in schizophrenia: the FBIRN study.
Schizophr. Bull. 35, 19–31. doi:
10.1093/schbul/sbn162

Rasmussen, J. M., Liu, T. T., Mueller,
B. A., Brown, G., Wierenga, C.,
and Glover, G. H. (2010). “Mea-
surement stability in arterial spin
labeling investigated using multiple
sites,” in Proceedings of the Interna-
tional Society for Magnetic Resonance
in Medicine 19th Annual Meeting,
Stockholm.

Shin, D. D., Rasmussen, J. M., Ozyurt, I.
B., Bustillo, J., Van Erp, T. G., Vaidya,
J., et al. (2013). “CBF differences
between healthy and schizophrenic
brains – FBIRN phase 3 multisite
study at 3T using CBFBIRN database
and analysis pipelines,” in Proceed-
ings of the International Society for
Magnetic Resonance in Medicine 21st
Annual Meeting, Salt Lake City,
UT.

Smith, S. M., Jenkinson, M., Wool-
rich, M. W., Beckmann, C. F.,
Behrens, T. E., Johansen-Berg, H.,
et al. (2004). Advances in functional
and structural MR image analysis
and implementation as FSL. Neu-
roimage 23(Suppl. 1), S208–S219.
doi: 10.1016/j.neuroimage.2004.07.
051

Van Horn, J. D., and Toga, A. W. (2009).
Is it time to re-prioritize neuroimag-
ing databases and digital reposito-
ries? Neuroimage 47, 1720–1734.
doi: 10.1016/j.neuroimage.2009.03.
086

Wierenga, C. E., Dev, S. I., Shin,
D. D., Clark, L. R., Bangen, K.

Frontiers in Neuroinformatics www.frontiersin.org October 2013 | Volume 7 | Article 21 | 16

http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive


“fninf-07-00021” — 2013/10/17 — 19:07 — page 17 — #17

Shin et al. CBF database and integrated processing pipeline

J., Jak, A. J., et al. (2012). Effect
of mild cognitive impairment and
APOE genotype on resting cerebral
blood flow and its association with
cognition. J. Cereb. Blood Flow Metab.
32, 1589–1599. doi: 10.1038/jcbfm.
2012.58

Wong, E. C., Buxton, R. B., and
Frank, L. R. (1998). Quantita-
tive imaging of perfusion using
a single subtraction (QUIPSS and
QUIPSS II). Magn. Reson. Med. 39,
702–708. doi: 10.1002/mrm.1910390
506

Zhang, Y., Brady, M., and Smith,
S. (2001). Segmentation of brain
MR images through a hidden
Markov random field model and
the expectation-maximization algo-
rithm. IEEE Trans. Med. Imaging 20,
45–57. doi: 10.1109/42.906424

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 31 May 2013; paper pending
published: 31 July 2013; accepted: 26
September 2013; published online: 18
October 2013.
Citation: Shin DD, Ozyurt IB and
Liu TT (2013) The Cerebral Blood
Flow Biomedical Informatics Research
Network (CBFBIRN) database and
analysis pipeline for arterial spin label-
ing MRI data. Front. Neuroin-
form. 7:21. doi:10.3389/fninf.2013.
00021
This article was submitted to the journal
Frontiers in Neuroinformatics.

Copyright © 2013 Shin, Ozyurt and
Liu. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is per-
mitted, provided the original author(s)
or licensor are credited and that the
original publication in this journal
is cited, in accordance with accepted
academic practice. No use, distri-
bution or reproduction is permitted
which does not comply with these
terms.

Frontiers in Neuroinformatics www.frontiersin.org October 2013 | Volume 7 | Article 21 | 17

http://dx.doi.org/10.3389/fninf.2013.00021
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroinformatics/archive

	The cerebral blood flow biomedical informatics research network (cbfbirn) database and analysis pipeline for arterial spin labeling mri data
	Introduction
	Materials and methods
	System data model
	Architecture
	Workflow engine
	Security service
	Reporting service
	Unified search service
	Upload client

	Overview of the cbfbirn functionality
	Processing module 1: data upload and cbf quantification
	Data upload
	Cbf quantification

	Processing module 2: group analysis
	Data filtering for group analysis
	Group analysis processing paths


	Results
	Processing module 1: data upload and cbf quantification
	Reviewing of processed cbf data
	Multiple processing support

	Processing module 2: group analysis
	Group analysis path 1: whole-brain mean gray matter cbf analysis
	Group analysis path 2: regional cbf analysis
	Group analysis path 3: voxel-wise standard space analysis


	Discussion
	Data sharing issues
	Lessons learned

	Acknowledgments
	References


