
METHODS ARTICLE
published: 28 January 2014

doi: 10.3389/fninf.2013.00047

morphforge: a toolbox for simulating small networks of
biologically detailed neurons in Python
Michael J. Hull* and David J. Willshaw

Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, UK

Edited by:

Marc-Oliver Gewaltig, Ecole
Polytechnique Federale de
Lausanne, Switzerland

Reviewed by:

Henrik Lindén, University of
Copenhagen, Denmark
Werner Van Geit, Ecole
Polytechnique Federale de
Lausanne, Switzerland

*Correspondence:

Michael J. Hull, Institute for
Adaptive and Neural Computation,
School of Informatics, University of
Edinburgh, Edinburgh EH8 9AB, UK
e-mail: mikehulluk@gmail.com

The broad structure of a modeling study can often be explained over a cup of coffee,
but converting this high-level conceptual idea into graphs of the final simulation results
may require many weeks of sitting at a computer. Although models themselves can be
complex, often many mental resources are wasted working around complexities of the
software ecosystem such as fighting to manage files, interfacing between tools and data
formats, finding mistakes in code or working out the units of variables. morphforge is a
high-level, Python toolbox for building and managing simulations of small populations of
multicompartmental biophysical model neurons. An entire in silico experiment, including
the definition of neuronal morphologies, channel descriptions, stimuli, visualization and
analysis of results can be written within a single short Python script using high-level
objects. Multiple independent simulations can be created and run from a single script,
allowing parameter spaces to be investigated. Consideration has been given to the reuse
of both algorithmic and parameterizable components to allow both specific and stochastic
parameter variations. Some other features of the toolbox include: the automatic generation
of human-readable documentation (e.g., PDF files) about a simulation; the transparent
handling of different biophysical units; a novel mechanism for plotting simulation results
based on a system of tags; and an architecture that supports both the use of established
formats for defining channels and synapses (e.g., MODL files), and the possibility to
support other libraries and standards easily. We hope that this toolbox will allow scientists
to quickly build simulations of multicompartmental model neurons for research and serve
as a platform for further tool development.

Keywords: multicompartmental modeling, biophysical modeling, small neuronal network, code-generation,

Python, toolbox

1. INTRODUCTION
1.1. WHY BUILD BIOPHYSICAL MODELS?
Numbers are central to science and the scope of testable predic-
tions generated from quantitative theories is much broader than
from qualitative ones. The building of computational models of
simple nervous system preparations in conjunction with exper-
imental work has a history of uncovering principles which are
germane across all of neuroscience, for example: action potential
initiation and propagation (Hodgkin and Huxley, 1952; Moore
et al., 1983; Faisal and Laughlin, 2007); the effect of ion channels
types and distributions on the excitability of neurons (Dodge and
Cooley, 1973; Hurwitz et al., 2008; Hudson and Prinz, 2010); the
neuronal basis of sensory pathway integration (Baxter et al., 1999;
Cataldo et al., 2005); and the intrinsic maintenance of rhythmic
activity by central pattern generators (Perkel and Mulloney, 1974;
Getting, 1983; Calin-Jageman et al., 2007; Roberts et al., 2010;
Doloc-Mihu and Calabrese, 2011).

Unfortunately at the level of individual neurons and synapses,
in general it has been difficult to experimentally reverse engi-
neer neuronal networks and recreate realistic behavior reliably
in computer simulations. The functions of these systems do not
seem to partition neatly into modules, often contain redun-
dancy, and in many cases it is impossible to perform the ideal

experiments. Biological systems contain many complex interac-
tions, are highly non-linear, and are governed by large numbers of
parameters, many of which are difficult to determine experimen-
tally. Although modeling can lead to conceptual insights (Hillis,
1993), arguably what is useful in modeling studies is not a single,
final, polished model, but instead the results that emerge during
its construction. The process of modelling can highlight ambi-
guities in experimental data and the robustness of a particular
phenomenon in a model can also give insight into how tightly
tuned the parameters of a system need to be (Marder et al., 2007).
Moreover, modeling allows investigation of phenomena that can-
not be explained by existing hypotheses and in silico experiments
provide a way to ask questions that cannot be addressed in vivo to
test new hypotheses.

One way to test how well a computational model reflects real-
ity is to perform many experiments in vivo and in silico and
compare their results. One well documented approach to this
is to construct databases containing the results of high dimen-
sional parameter sweeps, which allows regions of parameter
space to be investigated (Prinz et al., 2003; Doloc-Mihu and
Calabrese, 2011). Another approach is the use of optimization
algorithms in conjunction with simulators to automate the search
for parameters underlying model neurons whose behaviors match

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 47 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2013.00047/abstract
http://www.frontiersin.org/people/u/115356
http://www.frontiersin.org/people/u/2405
mailto:mikehulluk@gmail.com
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hull and Willshaw morphforge: multicompartmental simulation in Python

those observed experimentally (Geit et al., 2008). In other situa-
tions, a more interactive workflow may be more appropriate. The
parameter spaces might be simply too large or the simulations
too computationally intensive to allow the space to be mapped
out by brute force. The modeler may also want to adjust param-
eters manually, either to get an intuition about the robustness of
a set of parameters or to perform specific in silico experiments
on individual components. For networks that have been well
characterized electrophysiologically, the number of experiments
that could be replicated may be quite large. One such example
is the neuronal network that drives swimming in the hatchling
tadpole [reviewed in Roberts et al. 2010]. The pattern of motor-
neuron activity in the animal during fictive swimming is well
defined and is therefore one constraint on any simulated model
network, but the effects of other experimental protocols such as
the responses of isolated synaptic and channel currents to voltage
clamps, the responses of individual neurons to step current injec-
tions, the coupling coefficients and frequency responses of paired
recordings of electrically coupled neurons, the effects of chemical
synapse and gap junction agonists and antagonists on neuronal
and network behavior, and the effects of hemisection and other
lesioning experiments are experimentally characterized and can
be replicated in modeling.

1.2. EXISTING NEURONAL SIMULATORS
Efficient simulators already exist for simulating populations of
multicompartmental neurons, for example NEURON (Carnevale
and Hines, 2006), GENESIS (Bower and Beeman, 1998) and
MOOSE (Ray et al., 2008). These simulators are highly optimized
for solving neuronal models and allow the behaviors of a wide
range of networks to be investigated. Simulation of complex neu-
ronal networks is computationally intensive because it requires
solving large numbers of differential equations. For simulation
speed, these equations should be written in a language that can
be compiled to efficient machine code, and therefore many sim-
ulators split the definition of a simulation into two parts: an
interpreted language for defining the overall simulation setup and
compilable language for defining the equations governing neu-
ron and synapse models. [e.g., NEURON: HOC/MODL; NEST:
PyNest, C++; PCSIM (Carnevale and Hines, 2006; Eppler et al.,
2008; Hines et al., 2009; Pecevski et al., 2009)]. This approach
lets modelers quickly build simulations in high-level languages
while allowing the simulator kernel to solve equations efficiently.
Unfortunately this also fragments model definitions into differ-
ent files and languages which can also make simulations harder to
maintain (Figure 1).

1.3. MANAGING COMPLEXITY
The issues raised in managing a large collection of similar sim-
ulations go beyond solving sets of equations. These systems are
complex and contain large numbers of both parameters and per-
mutations of possible scenarios. To address scientific questions by
developing and testing computational models, what is needed are
tools that make it simple to build and manage components and
simulations that can be quickly adapted to perform specific exper-
iments. The time it takes for simulations to execute is an obvious
bottleneck on a modeler’s productivity, but other important

surrounding issues can also drain their time, for example: track-
ing the providence and further development of models, sharing
models with colleagues, connecting simulation tools together,
managing intermediate data and files and being able to reliably
and quickly reproduce results. Moreover, in the modeling use-
cases outlined above, the same, or similar components are used in
many simulations, meaning the definitions of these components
must either be replicated, or shared between simulations. When
these issues are taken together, managing the data dependencies
between large numbers files can quickly become overwhelming
(Hudson et al., 2011). It is important to acknowledge these softer
issues and overcome them in order to allow effective, sustain-
able model development. An experimentalist requires suitable
instruments to effectively address scientific questions - similarly
a modeler requires suitable tools to effectively build and man-
age biologically realistic models and variations. Specifically, we
need to remove user intervention from mundane activities, and
develop tools and toolchains to manage simulations and data
which support reproducible workflows and encourage the reuse
of model components and algorithms.

The need to remove unnecessary complexity to keep the
scientific questions the focus of attention (Brette, 2012) has
been recognized by the neuroinformatics community. Different
approaches are used to simplify the interfaces to existing simu-
lators which offer different trade-offs in the ease of reusability
of components, the complexity of the surrounding toolchains,
and in the expressiveness and readability of the model specifi-
cations. One approach has been to design high-level, declarative
languages for expressing the mathematical behaviors of neurons
and synapses, for example MODL (Carnevale and Hines, 2006),
NDF (Bower and Beeman, 1998), NeuroML/LEMS (Goddard
et al., 2001; Gleeson et al., 2010) and NineML (Raikov et al.,
2011). These languages are either read natively by the simulator,
or intermediate code-generation tools can be used to trans-
late these descriptions to run on existing simulators. Another
approach has been to develop high-level programmable interfaces
to existing tools. One example is PyNN (Davison et al., 2008),
a Python object-model which allows simulations of networks of
single-compartment neurons to be defined and run on multiple
simulators (e.g., NEURON, NEST, MOOSE). A more interactive
approach was taken by neuroConstruct (Gleeson et al., 2007),
which allows simulations of networks of both single and mul-
ticompartmental neurons to be defined from using a graphical
interface tool written in Java and can generate appropriate scripts
to run on simulators including NEURON, GENESIS, MOOSE
and PSICS (Cannon et al., 2010).

1.4. THE GOALS OF MORPHFORGE
morphforge is a high-level Python library for building simula-
tions of small populations of multicompartmental neurons, in
which membrane voltage is calculated from the sum of individ-
ual ionic currents flowing across a membrane. The focus of the
library is to make it easy to construct and maintain simulations
of small populations of neurons and synaptic connections, with
particular focus on: (a) allowing simulation specification, with
visualisation and analysis in a minimal, clean, human readable
language; (b) reducing complex simulation toolchains to a single

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 47 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hull and Willshaw morphforge: multicompartmental simulation in Python

FIGURE 1 | Multiple steps using a variety of libraries, tools and

languages are often required from the conception to the evaluation of a

modeling hypothesis. During model definition, the computational model
must be defined for a specific simulator (e.g., NEURON), which can involve
writing several interdependent files in different, domain specific languages,

and possibly compilation of these files for simulation efficiency. Next, the
simulator is invoked, which may write results to files on a disk. These results
are then further analyzed, for example by plotting of comparison traces
against physiological records, constructing of databases or automatically
fitting model parameters.

Python script; (c) promoting reproducible research through auto-
matic documentation generation from models; (d) facilitating
parameter sweeps by allowing multiple independent simulations
to run in a single script; (e) encouraging the reuse of components
such as morphologies, neurons and channels so that specific
and stochastic variation in parameters is simple; (f) transparent
handling of different units; (g) allowing the use of established
formats, (e.g., MODL files), but also simplifying the definition
and sharing of new channel types, including the possibility of
supporting existing libraries and standards easily. morphforge is
simulator-independent in the sense that the abstract concepts are
well separated from the NEURON implementation in the code-
base, which would make it simple to create backends for other
simulators (e.g., GENESIS), generate compilable C-code, or to
map simulations to more esoteric hardware platforms such as
GPGPUs or SpinNaker (Painkras et al., 2012).

morphforge is not a simulator itself; it is a high-level inter-
face to simulators (currently NEURON) and provides a set of
high-level primitives for specifying morphologies, channel dis-
tributions and network connections in Python. morphforge is
not designed for large-scale simulations and a design choice was
taken to prioritise the interface to the modeler over simula-
tion speed. morphforge provides a single interface for building
models of multicompartmental neurons: an entire in silico experi-
ment, including the definition of neuronal morphologies, channel
descriptions, stimuli and plotting of results can be written in
a single short Python script. Reusability and explicit compo-
nent variation was a central concern and consideration has been
given to the reuse of both algorithmic and parameterizable com-
ponents. The design of the object-model allows models to be
written in a declarative style, and because a Python object-model
is exposed, tools can be built on top of morphforge. Existing sim-
ulators support a wide range of features and morphforge does not
try to incorporate them all into its own interface. However, care
has been taken to ensure that these features are still accessible, for

example it is possible to insert custom HOC commands or MODL
files directly when using NEURON as a backend. Instructions
for installing morphforge can be found at http://morphforge.
readthedocs.org.

2. EXAMPLE: CURRENT INJECTION INTO A PASSIVE CELL
A simple morphforge script is shown in Listing 1 which sim-
ulates the injection of step current into a single compartment
neuron with leak channels. When this script is run, it generates
the graphs shown in Figure 2. First, it is specified that NEURON
will be used as a backend, and a Simulation object is created
which will last for 200 ms. Next, a Cell object is created. The
morphology is defined using a built-in helper function which
produces a single Section (discussed below) of 1000µm2,
although this morphology could also come from another source
such as an SWC file or built programmatically in Python. A
leak Channel object is defined with a conductance and rever-
sal potential (line 13). This leak channel is applied to the surface
of the neuron, and the capacitance of the neuron is also set. A
step current-clamp is created and inserted into the neuron at
the soma. It is specified that the membrane voltage, the current-
density of the leak channel at the soma, and the current injected
by the current-clamp should be recorded. At this point (line 28),
an object model of the simulation has been created in mem-
ory. When run is called, since the NEURON backend is being
used, morphforge carries out a series of actions behind the scenes.
A HOC file for the simulation is created and a new process
is launched. The relevant MODL files for the leak channel are
generated, compiled and registered with the new process, and
NEURON runs. The relevant data is saved during the simulation,
and is returned to the calling process as numpy 1 arrays within
a SimulationResults object (i.e., results). Finally, all

1http://www.numpy.org.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 47 | 3

http://morphforge.readthedocs.org
http://morphforge.readthedocs.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hull and Willshaw morphforge: multicompartmental simulation in Python

1 # (Runs with morphforge .3)
2 from morphforge.stdimports import *
3 from morphforge.units import *
4 from morphforgecontrib.stdimports import *

6 # Create the environment & simulation
7 env=NEURONEnvironment()
8

10 # Create a cell:
11 cell=sim.create_cell(name=”Cell1”

13 # Define a leak channel, and apply it to the cell
14 lk_chl=sim.environment.Channel(StdChlLeak, name=”LkChl”
15 cell.apply_channel(lk_chl)

17 # Set the capacitance:
18

20 # Create the stimulus
21 cc=sim.create_currentclamp(name=”Stim1”

23 # Define what to record:
24 sim.record(cell, what=StandardTags.Voltage, name=”SomaVoltage”, cell_location=cell.soma)
25 sim.record(lk_chl, what=StandardTags.CurrentDensity, cell_location=cell.soma)
26 sim.record(cc, what=StandardTags.Current)

28 # Run the simulation & display the results:
29 results=sim.run()
30 TagViewer(results, figtitle=”The response of a neuron to step current injection” ’figsize’:(6, 2.65)})

Listing 1 | An example of a simple simulation in morphforge. A single compartment neuron with leak channels is created and a step current injected into
it. The membrane voltage, current density and conductance density are recorded. The resulting graphs generated by this example are shown in Figure 2.

FIGURE 2 | The figure produced by the code in Listing 1. The three recorded variables are automatically plotted on separate axes with corresponding units.

plotting is performed automatically by the TagViewer class.
This class inspects the SimulationResults objects and, by
default, plots different Traces on different axes depending on
their type (discussed below), including appropriate units.

3. THE MORPHFORGE PACKAGE
3.1. ARCHITECTURE OVERVIEW
Modern simulators such as NEURON support a range of
features, from modeling the internal diffusion of ions within

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 47 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hull and Willshaw morphforge: multicompartmental simulation in Python

a multicompartmental neuron to the calculation of extracellu-
lar potentials. It would require a huge number of resources to
implement a new interface that was the superset of these fea-
tures. Rather than try to define a single monolithic system, the
approach taken in morphforge is to provide a collection of classes
and interfaces which form the core infrastructure, and then use
a system of plugins which can be written to implement par-
ticular features. For example, morphforge is agnostic to how a
synapse model is defined. The core of morphforge defines a min-
imal interface, and then plugins can be written, which allow a
synapse specified in Python or MODL for example to be used
with NEURON. This means morphforge naturally splits into two
parts, morphforge-core, which contains the core infrastructure,
and morphforge-contrib, which contains for example the plugins
that define how a synapse model specified in a particular format
is mapped to a particular simulator backend.

morphforge is split into four layers each defining a set of classes
that work together as an object-model (Table 1). The higher lay-
ers depend on the lower levels, but lower levels do not need the
higher ones, for example, Morphology objects are used by the
simulation-layer, but can also be used without it, for example
for anatomical reconstructions. The core-layer provides a sin-
gle point of access to control random number seeding (for the
script and simulations), simulation settings and locations on the
filesystem access as well as the plugin infrastructure and utility
functions. The morphology-layer provides classes that represent
neuronal morphologies as a tree of cylinders and functions for
their creation, import, export, rendering, traversal and manip-
ulation. The simulation-layer defines a high-level object-model
on top of the morphology objects for defining multicompart-
mental neurons with complex channel distributions. Primitives
for defining network connectivity and an interface for record-
ing values during a simulation are also provided. It provides a
set of component libraries to allow objects, such as morpholo-
gies, channels and synapses, to be defined once and reused with
different parameters as well as an extensible high-level object-
model for representing analog signals with units. Finally, the
simulationanalysis-layer provides functions for analysing the out-
put of simulations such as spike detection, a visualization system
for easily viewing the outputs of simulations and infrastructure
for automatically generating summaries of simulations including
the details of components such as channels and synapses.

The object-model underlying morphforge is designed to be
flexible and extensible, but for conciseness, default param-
eters and syntactic sugar methods have been introduced
for common scenarios. For example, morphforge uses a
flexible model for defining stimuli and morphforge-contrib
defines different current- and voltage-clamp protocols, including
step, ramp and sinusoidal current injections. These current-
clamps are all created in morphforge by calling the method
Simulation.create_currentclamp(). By default, this
method will create a step current-clamp, but other, possibly
user-defined, protocols can be specified instead by supplying an
appropriate protocol argument, as shown in Listing 2.

In the next sections we describe some features of morphforge
which simplify the building and management of simulations by
making intentions more explicit, facilitating reuse of components

Table 1 | An overview of morphforge’s architecture.

mf-core mf-contrib

Simulation
analysis

Plotting library
Summary generation
infrastructure

Trace analysis functions
(e.g., spike counting)

Simulation Classes for defining
simulations (e.g., Cell,
Synapse, GapJunction,
Channel) and results (e.g.,
Trace, Event)
NEURON backend support

Mapping of synapse and
channel descriptions to
simulators, e.g.,
NEUROML → NEURON

Morphology Classes for defining
neuronal morphologies
(e.g., Morphology,
Segment, Region,
MorphLocation)

Import/export of
morphologies (e.g.,
SWC)
Visualization

Core Random number seeding
and generation
File IO

morphforge is divided into two packages: core and contrib, and also into four

layers: core, morphology, simulation and simulationanalysis. In general, the core

package contains the infrastructure for the object model, while the specific func-

tionality such loading from particular file formats or specific analysis functions are

implemented in the contrib-package.

create_currentclamp(protocol=CurrentClampSinwave,

Listing 2 | Specifying a sinsusoidal current-clamp in morphforge.

and removing mundane code from scripts. Specifically, these
include: the reuse of model components using component
libraries; the explicit use of units in parameters and results; a sim-
ple system for selecting results traces and a high-level plotting
interface; generation of summary PDF documents of compo-
nents and simulations; and a high-level notation for defining
distributions of channels over the surface of neurons. Finally, the
testing infrastructure for morphforge is briefly discussed and it
is demonstrated how the object-model can be used as a basis to
build more complex tools.

3.2. INTERESTING TECHNIQUES USED
3.2.1. Component libraries
In order to produce maintainable software, information should
be specified only once, so that any future changes only need
to be made in a single place (McConnell, 2004). Similarly in
modeling it is important to keep as few copies of a model as
possible, so that if experimental work generates a revised esti-
mate for a parameter, the model only needs to be changed
in a single place. However, for modeling to be valuable, we
often need to be able to produce variations on a basic model
component in order to investigate the effects of parame-
ters and simulate specific experiments. morphforge supports

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 47 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hull and Willshaw morphforge: multicompartmental simulation in Python

the reuse and variation of model components by providing
four libraries: MorphologyLibrary, ChannelLibrary,
PostSynapticReceptorLibrary and CellLibrary.
An example is shown in Listing 3.

When morphforge is initially imported into a script, these
component libraries are empty. The modeler writes a func-
tion that builds a particular component (e.g., create_dIN
(line 2)), and registers this builder-function with morphforge
(line 9), including a reference to the model_src and the type.
Next, in the simulation setup part of the script, it is then possible
to explicitly build model components (line 12). The component
libraries automatically forward additional keyword-arguments
to the builder-functions which allows components to be easily
parameterized, for example, Listing 3 shows how the optional
parameter include_sodium could be used to instantiate vari-
ants of the neuron without sodium channels, without needing to
copy-and-paste the entire builder-function.

Typically, the builder-function definition and registration is
performed in a separate Python module written by the user,
to allow the same component (or variations such as removing
the sodium channels to simulate the effects of TTX as shown
in Listing 3) to be referenced by name and used in multiple
simulation scripts. Using explicit string references can make the
intention of the simulation clearer. Component libraries also sim-
plify the tracking of components that are in used and it is possible
to iterate over all the registered components in a library (synapses,
channels, morphologies) which can be summarized to a PDF
or HTML file by calling summary_table(). Model databases
such as ModelDB (Hines et al., 2004) and Channelpedia (Ranjan
et al., 2011) are important resources for the modeling community,
making it easier to reproduce and reuse simulations and com-
ponents. Component libraries in morphforge provide a platform
for individual modelers to organize subcomponents as isolated

1 # Define once in a user module:
2 def create_dIN(env, include_sodium=True):
3

4 cell=env.Cell(morphology=m)
5 if include_sodium:
6 na_chl=# ... create the sodium channel
7 cell.apply(na_chl)
8 return cell
9 CellLibrary.register(create_dIN,

10 model_src=”Hull13”, cell_type=”dIN”)

12 # Use components from a library in a simulation script:
13 din=CellLibrary.instantiate(
14 model_src=”Hull13”, cell_type=”dIN”)
15 din_ttx=CellLibrary.instantiate(
16 model_src=”Hull13”, cell_type=”dIN”, include_sodium=False)

Listing 3 | An example of component libraries in morphforge. First a
function to create a particular cell type is defined (lines 2–8), and registered
with the CellLibrary (lines 9,10). (Typically, this would be written once in
an imported module). Next, cells can be created by referring to the
model_src and cell_type in simulation scripts (lines 12–16). Since any
arguments passed to instantiate are forwarded to the user-functions,
this make it possible to produce variations of a Cell. An example is shown
for the parameter include_sodium, to produce a model of a cell in the
presence of Tetrodotoxin (TTX) (line 15-16).

components in distributable Python packages which opens up
further possibilities for component sharing in the community.

3.2.2. Embedded units
Quantities in neuroscience are expressed in a variety of units;
for example conductance densities can be specified in pS/µm2,
mS/cm2 or even indirectly: “a neuron with surface area of
1200 µm2 with an input resistance of 300 M�.” Although the con-
versions between these quantities are not complex, mistakes can
be made when making these tedious conversions by hand. mor-
phforge uses the quantities 2 package to handle these con-
versions transparently. All input parameters and output Trace
objects in a simulation have associated units, for example see
Listing 1 and Figure 2. Moreover, morphforge provides high-
level plotting primitives that transparently take care of plotting
units on graphs (described below).

3.2.3. Channel and synapse definitions
Several specialist file formats already exist for defining membrane
channel and synaptic dynamics in simulators, for example MODL
(Carnevale and Hines, 2006), NeuroML (Gleeson et al., 2010),
NineML (Raikov et al., 2011), and in some cases it is impor-
tant to be able to define channels and synapses in code directly
(e.g., see graphical tool below). Rather than choosing a single
format for specifying the dynamics of components, morphforge
leverages Python’s dynamic typing to support a flexible model
for membrane channels and synapses which is agnostic about the
underlying format.

In the case of membrane channels, it is assumed that an
abstract channel has a set of parameters, which may vary
in different areas of the membrane, and there is a default
value for each of these parameters. To integrate with the mor-
phforge framework, Channel objects are expected to provide
a particular interface, some methods of which are general and
some of which are simulator-backend specific. All Channel
objects must implement the methods get_variables() and
get_defaults() which return the list of associated parame-
ter names, (for example: [“gbar”,“erev”]) and their default
values respectively. These are used by the channel-distribution
infrastructure in morphforge when calculating the parameter val-
ues which should be applied to each compartment of a Cell
(described below). Additionally, when the NEURON backend
is used, Channel objects must also implement the methods
create_modfile() and build_hoc_section(), which
build the MODL code and insert the relevant code into the HOC
file. A similar approach is taken for synapse models.

One advantage of this abstraction is that it allows channels
specified in different formats, for example NeuroML and MODL,
to be used within a single simulation, as shown in Listing 4. This
provides an incremental pathway for the translation of models
from one format to another.

3.2.4. Channel distribution notation
In many neurons it is known that the distribution density of
a particular type of channel over the membrane is not uni-
form. morphforge allows us to specify that specific types of

2http://packages.python.org/quantities.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 47 | 6

http://packages.python.org/quantities
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hull and Willshaw morphforge: multicompartmental simulation in Python

1 env=NEURONEnvironment()
2 chl1=env.Channel(MODLChl, filename=’mymodfile.mod’)
3 chl2=env.Channel(NeuroMLChl, filename=’myneuromlfile.xml’)
4 chl3=env.Channel(StdLeakChl,
5

6 # [[... create cell called ’my_cell’ ...]]
7 my_cell.apply_channel(chl1)
8 my_cell.apply_channel(chl2)
9 my_cell.apply_channel(chl3)

Listing 4 | Using different types of channel within a single simulation.

MODLChl, NeuroMLChl, StdLeakChl are Channel classes, defined in
morphforge-contrib. which allow components specified in MODL, NeuroML
and as explicit parameters, to be used with the NEURON backend.

Channels are distributed with different parameters over specific
neuronal regions. For example, the conductance density of potas-
sium channels might be 30 mS/cm2, except in the apical dendrites
where it is 50 mS/cm2. Existing models have used even more com-
plex channel distribution schemes, for example where the density
of sodium channels on the initial segment of the axon varies as the
function of distance from the soma (Schmidt-Hieber et al., 2008).

morphforge uses similar terminology to NEURON in ref-
erence to morphologies: briefly a Section is an unbranched
region of membrane approximated as a conical frustrum that
can be further divided into segments to increase simulation
accuracy (Carnevale and Hines 2006; segmentation in mor-
phforge is described in the documentation). morphforge uses
a high-level notation to allow complex specifications of chan-
nel densities over neurons. This is achieved by passing a triplet
of objects: (Channel, Applicator, Targeter), to the
apply_channel method of Cell objects. The Targeter
object defines which Sections in the Cell this triplet applies
to (i.e., a predicate object). The Applicator object defines
how the parameters of the Channel should vary over the spec-
ified Sections. Listing 5 shows an example in which twice
the density of potassium channels are applied in the “den-
drites” as in the rest of the neuron. In this example, we use two
Targeters: TargetEverywhere and TargetRegion,
and one Applicator: ApplyUniform. A Channel object
has an associated set of default parameters (e.g., gbar),
which are used by default by ApplyUniform (e.g., line 4),
although they can be overridden or scaled (e.g., line 9). The
apply_channel method can be called many times for the
same Channel on the same Cell, with different Targeters
and Applicators. However, in the simulation, a particular
Channel will only be applied once to any given Section.
When multiple Targeters affect the same Section, mor-
phforge uses a system of priorities to determine which triplet
to use. By default, triplets containing Targeters which are
more area specific have a higher priority. Therefore in Listing 4,
the triplet containing TargetRegion overrides that containing
TargetEverywhere. This scheme will also allow a chan-
nel to be distributed with a continuously varying parameter
across a neuronal membrane (i.e., different for each segment of
a Section), for example, in order to distribute a type of sodium
channel along the initial part of the axon in which the channel

1 # Use potassium channel in the cell ...
2 cell.apply_channel(k_chl,
3 TargetEverywhere(),
4 ApplyUniform())

6 # ... but use twice the density in the dendrites:
7 cell.apply_channel(k_chl,
8 TargetRegion(’dendrites’),
9 ApplyUniform(multiply_parameters={’gbar’

Listing 5 | Defining distributions of channels over neuronal

morphologies. First, it is specified that k_chl-Channels should be
applied uniformly over all the neuron (line 2), then it is specified that they
should also be applied to the dendrites with twice the default value of
gbar. Since TargetRegion has a higher priority than
TargetEverywhere, the second triplet is used to determine the value of
gbar in the dendrites.

density is specified as a function of distance from the soma,
although this has not yet been implemented.

This notation offers advantages over manually defining the
densities for each Section, traditionally achieved using for
loops and if statements. Firstly, this means that a channel can
be switched off by editing a single line. Secondly, when summary
documents of simulations are created (below), this notation is
simpler to interpret compared to explicit lists of parameter values
per Section, which may be very long.

3.2.5. Trace selection using a system of “tags”
In a simulation of a small network, the modeler may want
to visualize the internal states of many neurons and synapses–
how do we effectively specify which values to plot or use in
other forms of analysis? In many simulators, the variables that
should be recorded are specified during the simulation setup
phase and the results can then be retrieved after the simula-
tion has run for further processing. This approach is also taken
in morphforge. During simulation setup, the modeler specifies
which values to record(), and this will cause the corre-
sponding time-varying analog waveforms, which are encapsu-
lated in Trace objects, to be returned after the simulation has
run. morphforge introduces a system of tag-selection strings
in order to quickly find particular Trace objects that were
recorded during a simulation. To facilitate this, each Trace
object contains a set of strings called tags, which contains con-
textual information about it. These tags can be specified explic-
itly by the user in the call to Simulation.record(), and
morphforge will also add certain tags automatically, for exam-
ple the tags Voltage or CurrentDensity will be added if the
Trace object represents a voltage or current density record-
ing. After the simulation has run, tag-selection strings can
be used to select specific sets of Trace objects. The tag-
selection string uses a simple language with the keywords: ALL,
ANY, AND, OR and NOT. The terms ALL{A,B,..,C} and
ANY{X,Y,...,Z} are matching predicates which take argu-
ments separated by commas. ALL{A,B,..,C} returns whether
a particular Trace contains all the tags specified (i.e., A, B and
C) and ANY{X,Y,...,Z} returns whether a Trace contains
any of the tags specified (i.e., X, Y or Z). These match predicates

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 47 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hull and Willshaw morphforge: multicompartmental simulation in Python

can be joined with the AND, OR and NOT operators as
well as brackets to allow more complex queries. For exam-
ple, ALL{Voltage} will return all the voltages recorded in
the simulation and ALL{CONDUCTANCE,SYNAPTIC,PRE:

1 # [[... create the simulation ...]]
2 results=sim.run()
3 TagViewer(results, plotspecs=[
4 PlotSpec(”Voltage”
5 PlotSpec(”ALL{ Voltage,cell47} ”, ylabel=’Neuron−47 Voltage’)
6])

Listing 6 | Using TagViewer to define plots. This listing will cause two
axes to be displayed: the first will contain all Traces containing the tag
Voltage, and the second will contain all Traces which have both Voltage
and cell47 as tags. PlotSpec objects can also be used to set other y-axis
properties such as the range and label.

cell1,POST:cell 2} AND ANY{NMDA,AMPA} can be
used to retrieve all Trace objects representing conductances in
AMPAR and NMDAR synapses from cell1 to cell2. This system of
tagging, and the use of conventions (such as voltage traces always
have a Voltage tag) allows looser coupling between different parts
of the code and allows scripts to be more concise.

3.2.6. Automatic plotting of results
The Trace objects contain methods which can return numpy
arrays of their times and data for analysis and plotting using
other scientific Python libraries. morphforge also provides a class,
TagViewer, which makes plotting a selection of Trace objects
from a simulation more succinct. The output of the TagViewer
is a single figure, containing a series of axes each with the same
time base. An example is given in Listing 6. The details of each
axis, such as which Traces should be plotted, the y-label, the
appropriate display range and unit are specified by PlotSpec
objects (see Listing 7). Rather than explicitly specifying which

1 # (Runs with morphforge .3)
2 from morphforge.stdimports import *
3 from morphforgecontrib.stdimports import *

5 env=NEURONEnvironment()
6 sim=env.Simulation(name=”SynapseExamples”)

8 # Create two cells, using a library:
9 ”Cell1”)

10 ”Cell2”)

12 # Create a SynapticTemplate, and instatiate 2 instances:
13 exp2template=env.PostSynapticMechTemplate(postsynaptictypes.Exp2SynTemplateType,
14

16 syn1=sim.create_synapse(name=’Synapse1’,
17

18 postsynaptic_mech=exp2template.instantiate(cell_location=cell1.soma))

20 syn2=sim.create_synapse(name=’Synapse2’,
21 trigger=env.SynapticTrigger(SynapticTriggerByVoltageThreshold,
22

23 postsynaptic_mech=exp2template.instantiate(cell_location=cell2.soma))

25 # Define what to record:
26 sim.record(what=StandardTags.Voltage, cell_location=cell1.soma)
27 sim.record(what=StandardTags.Voltage, cell_location=cell2.soma, user_tags=[’MyTag’])
28 sim.record(syn1, what=StandardTags.Current, description=’syn1.i’)
29 sim.record(syn2, what=StandardTags.Current, description=’syn2.i’, user_tags=[’MyOtherTag’])

31 # run the simulation, create a summary pdf and plot the results:
32 results=sim.run()
33 SimulationMRedoc.build(results).to_pdf(’my sim.pdf’)
34 ’figsize’:(8.3/2.54, 3.) },
35 plots=[DefaultPlotSpecs.Voltage,
36 PlotSpec(”ALL{ Current} ”, ylabel=’Synaptic\ nCurrent’, yunit=units.pA),
37 PlotSpec(”ALL{ Current,MyOtherTag} ”, ylabel=’Synaptic\ nCurrent’, yunit=units.pA),
38])

Listing 7 | An example of building a simple network simulation in

morphforge. Two Hodgkin-Huxley type neurons are created from a
library (lines 9,10; described above). A template for a double-exponential
post-synaptic receptor (PSR) is defined (lines 12-14). One instance of
this PSR is created at the soma of cell1, and triggered by specific

spike times (lines 16-18), and another is created at the soma of cell2,
where it is triggered by an action potential in the soma of cell1
(lines 20-23). The generated plots (lines 34-37) are shown in Figure 3,
and the summary PDF file (line 33) is given in the supplementary
material.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 47 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hull and Willshaw morphforge: multicompartmental simulation in Python

Traces should be plotted, the PlotSpec objects use tag-
selection strings and directly query the SimulationResults
object. TagViewer objects have a set of PlotSpecs that
are used by default and automatically plot Voltage, Current,
Conductance and other standard tags.

3.2.7. Automatic model documentation
Models in computational neuroscience can involve complex
equations, many units and large numbers of parameters; for

FIGURE 3 | The figure produced by the code in Listing 7. The three plots
correspond to the three PlotSpec objects defined in Listing 7, and pick
out suitable records based on the tag-selection strings provided. (The
legends in second and third plots were moved manually for clarity).

example a Hodgkin-Huxley type sodium channel may involve 7
equations and 12 parameters. Often modeling involves adjusting
parameters, which renders the tracking of model development
difficult. Manually noting all the details of a complex simula-
tion is unfeasible. One approach is to use version control, for
example Sumatra (Davison, 2012). An alternative approach is to
directly generate summaries of a simulation from the internal
object-model to produce human readable output. The need for
standard presentation formats for models has been recognized,
even if exact formats have not yet been defined (Nordlie et al.,
2009; Crook et al., 2012). morphforge can produce HTML and
PDF document summaries from Simulation objects directly
using the mredoc (Modular Reduced Documentation) library.
This library is a high-level interface for producing documents
containing images, tables, code snippets and equations for docu-
menting mathematical models. Since simulations in morphforge
can be populated with Synapse and Channel objects from
different formats, which may be user defined, the summary archi-
tecture allows these objects to create summaries of themselves.
The summary PDF file can contain summaries of individual
neurons, (including 2D projections of morphologies and tables
detailing parameters and channel distributions), and summaries
of the dynamics of the channels and synapses (including tables
of parameters and graphs of rate constants, steady-state values
and time-constants). An example is given in Listing 6 and the
resulting PDF file is given in the supplementary material.

3.3. EXAMPLE: 2 NEURONS CONNECTED BY A SYNAPSE
morphforge allows neurons to be connected by both gap junc-
tions and chemical synapses. The numbers of synapses in a
simulation can quickly become very large, and in order to allow
efficient code to be generated, PostSynapticTemplate
objects can be defined once and then instantiated between pairs
of neurons, for example, as shown in Listing 7. morphforge

1

2 title=Responses of passive cell to step current injection
3 description="""
4 In a simulation lasting ms
5 Create a single compartment neuron ’cell1 ’ with area <A> and initialvoltage <VS > and capacitance <C>
6 Add Leak channels to cell1 with conductance <GLK > and reversalpotential <EREV >
7 Inject step -current of <I> into cell1 from t ms until t ms
8 Record cell1.V as $V
9 Run the simulation """

11 expectations="""
12 |A | C |I | GLK | EREV |VS | V mean | V mean | V (eps |
13 |-------|------|-------|-------|--------|------|---------------|------------------|--------------------|
14 | | | | -51 |-51 | -51 | | -49.1952 |
15 | | | | -51 |-51 | -51 | -44.3333 | |
16 | | | | -31 |-31 | -31 | | -29.1952 |
17 | | | | -31 |-31 | -31 | -24.3333 | |
18 | | | 1.3 | -51 |-51 | ? | | |
19 | | | 1.3 | -51 |-51 | ? | -49.4616 | -49.5731 |
20 """

Listing 8 | A simplified example scenario from the

Simulator-TestData repository, which defines the expected

responses of a neuron with passive channels to a step current injection.

A human readable description of the simulation is given, as well as a table of
expected values. The units of each parameter are given in a table in the file
(not shown). Slice notation in the table columns represent times.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 47 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hull and Willshaw morphforge: multicompartmental simulation in Python

FIGURE 4 | A simple example of a graphical tool built on top of morphforge, which allows the effects of different parameters and rate-constant

curves on the response of a neuron to step current injection to be interactively explored.

also allows populations of neurons to be defined and connected
together with synapses, using constructs similar to those used
to connect single-compartment neurons in PyNN (not shown),
although the object-model for this is experimental and likely
to evolve. morphforge also supports spatial compartmentaliza-
tion of multicompartmental neurons using a high-level notation
(not shown). A fuller discussion of the software architecture with
respect to synaptic models, populations and compartmentaliza-
tion, as well as the design decisions taken for the implementation
of the NEURON-backend can be found in the documentation
and in the examples on the website.

3.4. TESTING MORPHFORGE
The developmental approach to morphforge was a combination
of defensive programming in conjunction with high-level func-
tional testing (McConnell, 2004). For the functional testing, a new
Simulator-TestData repository was created, which defines
a set of scenarios in a simple, consistent, human and machine
readable text file. Each scenario file describes the setup for a simu-
lation, as shown in Listing 8. The specification allows parameters
to be used in the description (for example <A>, <VS>, <C>,
<GLK>, <EREV> and <I>), and defines what should be recorded
(for example the voltage of cell1 as $V). The file defines which
units to use for all the parameters and recorded values, and also
defines the values that should be used for each parameter for
parameter sweeps (not shown). The repository is designed for

verifying the results from a simulator in two ways. Firstly, results
can be compared against a set of hand-calculated results, which
are given as a table in the scenario file (lines 11–20), and secondly,
result traces from different simulators can be compared against
each other.

The scenario files were designed to be human readable, and
it was found that by using techniques from Behavior Driven
Development (BDD) (Chelimsky, 2010), it was possible to
directly parse the description in the scenario files to build mor-
phforge simulations. This removed the need to manually imple-
ment the tests in morphforge code and also raised the possibility
of allowing neuroscientists to build complete simulations using a
natural language syntax.

3.5. BUILDING ON THE OBJECT MODEL
An advantage of building an object-model over a stand-alone pro-
gram is that it can be used as a basis to build more complex
tools. For example, a simple tool was built that allowed the effects
of channel parameters on the firing responses of a neurons in
response to step current injections to be interactively explored
(Figure 4). The curves are approximated as piecewise line seg-
ments, and the connecting points can be adjusted by dragging
with the mouse. This was implemented as a custom Channel
type for the NEURON backend. The graphs are interconnected
and moving a point on either the time constant or steady
state activation graphs will automatically adjust the forward and

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 47 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hull and Willshaw morphforge: multicompartmental simulation in Python

backward rate equation graphs. Changing any parameters in the
simulation will cause the simulation to be run in NEURON and
the results to be displayed in the center panel. The tool was built
using the chaco3 library.

4. DISCUSSION
morphforge was initially developed in order to allow computa-
tional models of small regions of the tadpole nervous systems to
be easily built and reused and allow a large number of in silico
experiments to be performed and maintained. It was generalized
to an object-model for modeling and simulating small networks
of multicompartmental neurons. The toolbox has a conceptually
simple user-interface and also exposes a Python object model for
further development. Since modelers at the cutting edge of sci-
ence will often want to go beyond what was initially envisaged by
a software package, morphforge does not try to define everything
itself and instead allows users to provide custom functionality by
writing specific plugins. morphforge is not a final polished piece
of software, development is ongoing, and examples of simulations
are provided. During its development, some decisions were taken
because they were simple to implement, rather than being the
best solutions and improvements are possible. (For example, if
500 Traces are recorded during a simulation, then 500 identi-
cal arrays will be created containing the time points, whereas a
more efficient implementation would share these arrays between
Traces.) morphforge provides a platform of loosely coupled
tools for building and analysing simulations which allow com-
plete model networks to be defined within a single Python file,
without the need for external dependencies, whilst also allow-
ing basic templates for components to be defined and variations
reused across multiple simulation experiments.

Two routes exist for improving interoperability with exist-
ing software in the modeling ecosystem. The first would be to
integrate with PyNN (Davison et al., 2008), to provide a sin-
gle interface for multiscale modeling. This would allow a range
of models from small networks of detailed multicompartmental
neurons through to much larger networks of single compartment
neurons to be implemented entirely within Python. The second is
the representation of output data. In morphforge, the results from
simulations are currently represented as Trace objects. Recently,
the NEO library has defined a set of data structures for represent-
ing electrophysiological data, which allows files from a different
vendors to be treated similarly 4. Migrating morphforge to use
these more standard data structures would allow the results from
simulations to use the analysis routines for electrophysiological
data more transparently.

Across all levels of nervous system research, from the tad-
pole to human brain, in order to build more complex models
and validate them against experimental results, the infrastruc-
ture needed to manage data and simulations will become more
complex. The scientific community has limited resources and we
need to move toward standardized, flexible platforms that every-
one can use and contribute to Crook et al. (2012). In biophysical
modeling, the problems faced are not from understanding the

3http://code.enthought.com/projects/chaco/.
4http://neuralensemble.org/neo/.

concepts behind mathematical models but from the difficulties
in quickly and reliably converting our ideas into simulations and
then managing and communicating them (Wilson, 2006). To do
this, we need to eliminate unnecessary complexity, avoid sources
of trivial errors and provide libraries that allow us to succinctly
build models without needing to regularly reinvent the wheel. We
should develop and standardize tools and object-models that sim-
plify mundane tasks to allow us to focus on the exciting scientific
questions.

4.1. DATA SHARING
morphforge, including further examples and documenta-
tion is available at: https://morphforge.readthedocs.org. The
Simulator-TestData repository is available from https://
github.com/mikehulluk/simulator-test-data. morphforge uses
Python 2.7 and runs on Linux.

ACKNOWLEDGMENTS
Many thanks to Robert Merrison-Hort and Drs. Andrew Davison
and Robert Cannon for providing valuable comments on drafts
of this paper.

FUNDING
This work was undertaken as part of the Ph.D thesis of Michael
Hull at the Neuroinformatics Doctoral Training Centre at the
University of Edinburgh, supported by the EPSRC, MRC and
BBSRC.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fninf.2013.

00047/abstract

REFERENCES
Baxter, D. A., Canavier, C. C., Clark, J. W., and Byrne, J. H. (1999). Computational

model of the serotonergic modulation of sensory neurons in Aplysia.
J. Neurophysiol. 82, 2914–2935.

Bower, J. M., and Beeman, D. (1998). The Book of GENESIS: Exploring Realistic
Neural Models with the GEneral NEural SImulation System, 2nd Edn. (New York,
NY: Springer-Verlag). doi: 10.1007/978-1-4612-1634-6

Brette, R. (2012). On the design of script languages for neural simulation. Network
23, 1–7. doi: 10.3109/0954898X.2012.716902

Calin-Jageman, R. J., Tunstall, M. J., Mensh, B. D., Katz, P. S., and Frost, W. N.
(2007). Parameter space analysis suggests multi-site plasticity contributes to
motor pattern initiation in Tritonia. J. Neurophysiol. 98, 2382–2398. doi:
10.1152/jn.00572.2007

Cannon, R. C., O’Donnell, C., and Nolan, M. F. (2010). Stochastic ion chan-
nel gating in dendritic neurons: Morphology dependence and probabilistic
synaptic activation of dendritic spikes. PLoS Comput. Biol. 6:e1000886. doi:
10.1371/journal.pcbi.1000886

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge:
Cambridge University Press. doi: 10.1017/CBO9780511541612

Cataldo, E., Brunelli, M., Byrne, J. H., Av-Ron, E., Cai, Y., and Baxter, D. A.
(2005). Computational model of touch sensory cells (T Cells) of the leech: role
of the afterhyperpolarization (AHP) in activity-dependent conduction failure.
J. Comp. Neuro. 18, 5–24. doi: 10.1007/s10827-005-5477-3

Chelimsky, D. (2010). The RSpec book : Behaviour-Driven Development with RSpec,
Cucumber, and Friends. Lewisville, Tex:Pragmatic Bookshelf.

Crook, S. M., Bednar, J. A., Berger, S., Cannon, R., Davison, A. P., Djurfeldt, M.,
et al. (2012). Creating, documenting and sharing network models. Network 23,
1–19. doi: 10.3109/0954898X.2012.722743

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 47 | 11

http://code.enthought.com/projects/chaco/
http://neuralensemble.org/neo/
https://morphforge.readthedocs.org
https://github.com/mikehulluk/simulator-test-data
https://github.com/mikehulluk/simulator-test-data
http://www.frontiersin.org/journal/10.3389/fninf.2013.00047/abstract
http://www.frontiersin.org/journal/10.3389/fninf.2013.00047/abstract
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Hull and Willshaw morphforge: multicompartmental simulation in Python

Davison, A. (2012). Automated capture of experiment context for easier repro-
ducibility in computational research. Comput. Sci. Eng. 14, 48–56. doi:
10.1109/MCSE.2012.41

Davison, A. P., Bruderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et
al. (2008). PyNN: a common interface for neuronal network simulators. Front.
Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Dodge, F. A., and Cooley, J. (1973). Action potential of the motorneuron. IBM J.
Res. Dev. 17, 219–229. doi: 10.1147/rd.173.0219

Doloc-Mihu, A., and Calabrese, R. L. (2011). A database of computational mod-
els of a half-center oscillator for analyzing how neuronal parameters influence
network activity. J. Biol. Phys. 37, 263–283. doi: 10.1007/s10867-011-9215-y

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2008).
PyNEST: a convenient interface to the NEST simulator. Front. Neuroinform.
2:12. doi: 10.3389/neuro.11.012.2008

Faisal, A. A., and Laughlin, S. B. (2007). Stochastic simulations on the reliability of
action potential propagation in thin axons. PLoS Comput. Biol. 3:e79. 783–795.
doi: 10.1371/journal.pcbi.0030079

Geit, W., Schutter, E., and Achard, P. (2008). Automated neuron model optimiza-
tion techniques: a review. Biol. Cybern. 99, 241–251. doi: 10.1007/s00422-008-
0257-6

Getting, P. A. (1983). Mechanisms of pattern generation underlying swimming in
Tritonia. II. Network reconstruction. J. Neurophysiol. 49, 1017–1035.

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., Farinella, M.,
et al. (2010). NeuroML: a language for describing data driven models of neu-
rons and networks with a high degree of biological detail. PLoS Comput. Biol.
6:e1000815. doi: 10.1371/journal.pcbi.1000815

Gleeson, P., Steuber, V., and Silver, R. A. (2007). neuroConstruct: a tool for
modeling networks of neurons in 3D space. Neuron 54, 219–235. doi:
10.1016/j.neuron.2007.03.025

Goddard, N. H., Hucka, M., Howell, F., Cornelis, H., Shankar, K., and Beeman,
D. (2001). Towards NeuroML: model description methods for collabora-
tive modelling in neuroscience. Philos. T. R. Soc. B 356, 1209–1228. doi:
10.1098/rstb.2001.0910

Hillis, W. D. (1993). Why physicists like models and why biologists should. Curr.
Biol. 3, 79–81. doi: 10.1016/0960-9822(93)90159-L

Hines, M., Morse, T., Migliore, M., Carnevale, N., and Shepherd, G. (2004).
ModelDB: a database to support computational neuroscience. J. Comp. Neuro.
17, 7–11. doi: 10.1023/B:JCNS.0000023869.22017.2e

Hines, M. L., Davison, A. P., and Muller, E. (2009). NEURON and Python. Front.
Neuroinform. 3:1. doi: 10.3389/neuro.11.001.2009

Hodgkin, A., and Huxley, A. (1952). A quantitative description of membrane cur-
rent and its application to conduction and excitation in nerve. J. Physiol. 117,
500–544.

Hudson, A. E., and Prinz, A. A. (2010). Conductance ratios and cellular identity.
PLoS Comput. Biol. 6:e1000838. doi: 10.1371/journal.pcbi.1000838

Hudson, R., Norris, J., and Reid, L. (2011). “Data-intensive management and anal-
ysis for scientific simulations,” in Ninth Australasian Symposium on Parallel and
Distributed Computing, Vol. 118, eds J. Chen and R. Ranjan (Perth: ACS), 13–14.

Hurwitz, I., Ophir, A., Korngreen, A., Koester, J., and Susswein, A. J. (2008).
Currents contributing to decision making in neurons B31/B32 of Aplysia.
J. Neurophysiol. 99, 814–830. doi: 10.1152/jn.00972.2007

Marder, E., Tobin, A.-E., and Grashow, R. (2007). How tightly tuned are network
parameters? Insight from computational and experimental studies in small
rhythmic motor networks. Prog. Brain Res. 165, 193–200. doi: 10.1016/S0079-
6123(06)65012-7

McConnell, S. (2004). Code Complete: A Practical Handbook of Software
Construction. Redmond, WA: Microsoft Press.

Moore, J. W., Stockbridge, N., and Westerfield, M. (1983). On the site of impulse
initiation in a neurone. J. Physiol. 336, 301–311.

Nordlie, E., Gewaltig, M.-o., and Plesser, H. E. (2009). Towards reproducible
descriptions of neuronal network models. PLoS Comput. Biol. 5: e1000456. doi:
10.1371/journal.pcbi.1000456

Painkras, E., Plana, L., Garside, J., Temple, S., Davidson, S., Pepper, J., et al. (2012).
Spinnaker: a multi-core system-on-chip for massively-parallel neural net simu-
lation, Custom Integrated Circuits Conference (CICC), 2012 IEEE, (San Jose, CA),
1–4.

Pecevski, D., Natschlger, T., and Schuch, K. (2009). Pcsim: a parallel simu-
lation environment for neural circuits fully integrated with python. Front.
Neuroinform. 3:11. doi: 10.3389/neuro.11.011.2009

Perkel, D., and Mulloney, B. (1974). Motor pattern production in reciprocally
inhibitory neurons exhibiting postinhibitory rebound. Science 185:181. doi:
10.1126/science.185.4146.181

Prinz, A. a., Billimoria, C. P., and Marder, E. (2003). Alternative to hand-tuning
conductance-based models: construction and analysis of databases of model
neurons. J. Neurophysiol. 90, 3998–4015. doi: 10.1152/jn.00641.2003

Raikov, I., Cannon, R., Clewley, R., Cornelis, H., Davison, A., De Schutter, E., et al.
(2011). NineML: the network interchange for neuroscience modeling language.
BMC Neurosci. 12(Suppl. 1):P330. doi: 10.1186/1471-2202-12-S1-P330

Ranjan, R., Khazen, G., Gambazzi, L., Ramaswamy, S., Hill, S. L., Schürmann,
F., et al. (2011). Channelpedia: an integrative and interactive database for ion
channels. Front. Neuroinform. 5:36. doi: 10.3389/fninf.2011.00036

Ray, S., Deshpande, R., Dudani, N., and Bhalla, U. S. (2008). A general biologi-
cal simulator: the multiscale object oriented simulation environment, MOOSE.
BMC Neurosci. 9(Suppl. 1):P93. doi: 10.1186/1471-2202-9-S1-P93

Roberts, A., Li, W.-C., and Soffe, S. (2010). How neurons generate behavior in
a hatchling amphibian tadpole: an outline. Front. Behav. Neurosci. 4:16. doi:
10.3389/fnbeh.2010.00016

Schmidt-Hieber, C., Jonas, P., and Bischofberger, J. (2008). Action potential ini-
tiation and propagation in hippocampal mossy fibre axons. J. Physiol. 586,
1849–1857. doi: 10.1113/jphysiol.2007.150151

Wilson, G. (2006). Where’s the real bottleneck in scientific computing? Am. Sci. 94,
5–6. doi: 10.1511/2006.57.3473

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 28 October 2013; accepted: 15 December 2013; published online: 28 January
2014.
Citation: Hull MJ and Willshaw DJ (2014) morphforge: a toolbox for simulating small
networks of biologically detailed neurons in Python. Front. Neuroinform. 7:47. doi:
10.3389/fninf.2013.00047
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2014 Hull and Willshaw. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) or licen-
sor are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 47 | 12

http://dx.doi.org/10.3389/fninf.2013.00047
http://dx.doi.org/10.3389/fninf.2013.00047
http://dx.doi.org/10.3389/fninf.2013.00047
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	morphforge: a toolbox for simulating small networks of biologically detailed neurons in Python
	Introduction
	Why Build Biophysical Models?
	Existing Neuronal Simulators
	Managing Complexity
	The Goals of morphforge

	Example: Current Injection into a Passive Cell
	The morphforge Package
	Architecture Overview
	Interesting Techniques Used
	Component libraries
	Embedded units
	Channel and synapse definitions
	Channel distribution notation
	Trace selection using a system of "tags''
	Automatic plotting of results
	Automatic model documentation

	Example: 2 Neurons Connected by a Synapse
	Testing morphforge
	Building on the Object Model

	Discussion
	Data Sharing

	Acknowledgments
	Funding
	Supplementary Material
	References

