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NEST is a simulator for large-scale networks of spiking point neuron models (Gewaltig
and Diesmann, 2007). Originally, simulations were controlled via the Simulation Language
Interpreter (SLI), a built-in scripting facility implementing a language derived from
PostScript (Adobe Systems, Inc., 1999). The introduction of PyNEST (Eppler et al.,
2008), the Python interface for NEST, enabled users to control simulations using Python.
As the majority of NEST users found PyNEST easier to use and to combine with
other applications, it immediately displaced SLI as the default NEST interface. However,
developing and maintaining PyNEST has become increasingly difficult over time. This is
partly because adding new features requires writing low-level C++ code intermixed with
calls to the Python/C API, which is unrewarding. Moreover, the Python/C API evolves
with each new version of Python, which results in a proliferation of version-dependent
code branches. In this contribution we present the re-implementation of PyNEST in
the Cython language, a superset of Python that additionally supports the declaration
of C/C++ types for variables and class attributes, and provides a convenient foreign
function interface (FFI) for invoking C/C++ routines (Behnel et al., 2011). Code generation
via Cython allows the production of smaller and more maintainable bindings, including
increased compatibility with all supported Python releases without additional burden for
NEST developers. Furthermore, this novel approach opens up the possibility to support
alternative implementations of the Python language at no cost given a functional Cython
back-end for the corresponding implementation, and also enables cross-compilation of
Python bindings for embedded systems and supercomputers alike.
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1. INTRODUCTION
Several projects in simulation have established themselves in the
domain of neuroscience as long-term providers of tools aiming
to supply the community with the simulation technology that
users can rely upon for a particular level of modeling. These
include STEPS (Hepburn et al., 2012) for stochastic simula-
tion of reaction-diffusion systems in three dimensions, NEURON
(Carnevale and Hines, 2006) for empirically-based simulations
of neurons and networks of neurons, and NEST (Gewaltig and
Diesmann, 2007) for large-scale networks of spiking point neu-
ron models. This process of establishement occurs partially as a
result of their respective maintainers’ consistent efforts to ensure
the quality and the sustainability of these software packages,
and partially by virtue of the fact that as the projects reach a
critical level of usage in the community, it creates a positive feed-
back loop which reinforces their acceptance. This “crystallization”
around successful simulators, such as (but not limited to) those
mentioned above, is fueled both by an increasing demand from
the scientific community for stable, performant, accurate and

re-usable tools, and likewise by large collaborative efforts to estab-
lish common simulation platforms in neuroscience, including
BrainScaleS1 and the Human Brain Project2.

However, in order to serve the community interests, it is not
enough to produce documented high-quality software packages
that provide solid implementations of efficient and scalable simu-
lation algorithms. An often overlooked notion is that the software
needs to evolve throughout its whole life. Hence, a software tool
that can be maintained with ease is preferable to an otherwise
excellent, but completely unmaintainable software package.

This need for continuous evolution is known as the “Law
of Continuing Change” in the software engineering literature
(Lehman, 1984) and stems from a number of factors. One of the
most important of these factors, particularly in the context of sci-
entific software, is the continuous evolution of the users’ needs
(or developers’ perception thereof). Conversely, even if we assume

1http://brainscales.kip.uni-heidelberg.de
2https://www.humanbrainproject.eu
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that the software specifications do not need to change throughout
its lifecycle, developers still need to perform regular modifications
of the software in order to fix discovered defects, and keep adapt-
ing it in response to the changes in the environment, such as newly
released versions of the operating systems, system compilers,
library dependencies, cutting-edge hardware, etc.

Unfortunately, these continuous adaptations result in an
increase of the project’s technical debt (Cunningham, 1992).
Technical debt is an increasingly popular metaphor in the
industry to describe the phenomenon in which accumulating
unattended individual quality issues in large software systems
ultimately cause severe degradation of the system as a whole.
Technical debt denotes the amount of effort that would have to
be invested to return the system to an acceptable quality level.
The quality issues are not necessarily due to negligence or poor
decision making, but can also originate from external constraints
obtaining at the time a particular design decision was made.
Therefore, focused maintenance needs to be performed in order
to counteract this tendency and ensure that the software remains
useful in the future. Critical maintenance tasks to ensure the
durability of software projects can be considered as falling into
the following classification structure, loosely based on Lientz and
Swanson (1980):

1. Homeostatic maintenance aims at closing the gap between
intended and actual software operation (fixing discov-
ered issues, ensuring compatibility with newest versions
of the dependencies such as operating systems, compilers,
libraries etc.).

2. Evolutionary maintenance aims at closing the gap between
current and desired software operation (developing new func-
tionality and adding new features in response to changes in
requirements).

3. Counter-revolutionary maintenance aims at closing the gap
between previous and revised assumptions on environmen-
tal constraints and opportunities (paying back the technical
debt).

Many large applications have bindings to dynamic languages,
which can be used for scripting their behavior or interacting
with other software. One important example of this is Python
bindings, which are usually provided with simulators written
in a different language such as C/C++. They exhibit a classic
maintainability issue as discussed above: there are multiple imple-
mentations of Python language, and multiple versions of those
implementations, each with their own C API.

One approach for simulator developers to deal with this prob-
lem would be to restrict themselves to supporting only one,
or a small number of Python implementations/versions thereof.
However, this reduces the usefulness of the application, espe-
cially in the case that users do not have this aspect under their
own control (e.g., when the Python version is defined by the
project policy or interoperability requirements). Another possi-
bility would be to introduce conditional branches to account for
the differences between Python implementations in the course of
homeostatic maintenance. Unfortunately, the resulting spaghetti

code3 inflates the code base and increases the maintenance burden
pro rata.

Here we present a third option: in the spirit of counter-
revolutionary maintenance, we have chosen to rewrite the
PyNEST low-level API, originally implemented in a mixture of
C and C++, in a higher level language (Cython). In Section 2 we
introduce the necessary concepts and methods and explain how
we have applied them to the NEST code base. We then demon-
strate in Section 3 that the resulting code is now independent of
the Python/C API, since all hand-crafted C API calls have been
removed. The size of the code base was reduced almost by half,
and the bindings became more comprehensible and maintain-
able. At the same time, a performance assessment of the new
implementation reveals no substantial degradation in terms of
runtime and memory consumption. Finally, in Section 4 we dis-
cuss the applicability of this approach to other neuroinformatics
software as well as available alternatives.

2. METHODS AND MATERIALS
Software packages for large-scale simulations generally have to
fulfill two quintessential requirements: high performance and
high scalability. In the domain of high performance computing
(HPC), most hardware vendors choose to focus on supporting
development environments primarily for Fortran and C/C++
programming languages. Specifically, this means that they pro-
vide compilers that are able to emit highly tuned machine code
that yields maximum performance on their hardware. They also
make optimized libraries available that support established par-
allel and distributed programming paradigms, such as OpenMP
and MPI, as well as additional facilities to fully exploit the capabil-
ities of the hardware, such as processor features (e.g., header files
declaring intrinsic functions) or interconnect topology (including
proprietary libraries or system calls). Consequently, if a simu-
lation software is intended to extract the maximally achievable
performance out of the available HPC hardware, the choices
of programming languages to implement its core are essentially
reduced to Fortran and C/C++.

Nevertheless, a productive user interface is also an important
requirement for a successful simulator. This is especially true
in the research context, where scientists’ productivity is deter-
mined not only by the runtime of individual simulations, but
also by the time required to evolve these simulations into follow-
up experiments, taking into account newly acquired information
from the previous runs. It is time-consuming to perform such
evolutionary re-formulation of simulations using rather low-
level statically typed compiled languages such as C/C++ and
Fortran, because of the overheads incurred due to the traditional
“write-compile-run” cycle.

In order to resolve this dilemma, many established simulators
either include a built-in interpreter of a domain-specific language
to describe simulations, or provide bindings to a dynamic lan-
guage interpreter such as Python. This can then be used to control
the core of the simulator, express the models under investigation,
and modify them in a much more agile manner. In Section 2.1

3Source code abundant in complex and entangled control structures, espe-
cially branching, that encumber comprehension of the program flow.
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we review the approaches adopted by several established neuronal
network simulators and in Section 2.2 to 2.4 we elaborate on the
direction that we have taken.

2.1. PYTHON BINDINGS FOR A NEURONAL NETWORK SIMULATOR
CPython (the reference implementation of Python in C) features
a comprehensive C/C++ API4 for both extending and embedding
the Python interpreter. This API makes it possible to implement
new functions and define objects along with their methods in
C/C++ to make them available to the users of the interpreter in
form of dynamically loadable modules. Additionally, it makes it
possible to build the Python interpreter into an application for
use as a scripting language.

In the case that a neuronal network simulator has a well-
defined public API, an automatic bindings generator such as
SWIG 5 or Py++ 6 can be employed. The former is exploited in
PyMOOSE (Ray and Bhalla, 2008), the Python interface to the
MOOSE simulator, while the latter is used in PCSIM (Pecevski
et al., 2009) in conjunction with the Boost.Python7 library to gen-
erate the Python (primary) interface to the PCSIM simulator. The
obvious benefit of this technique is that a comprehensive set of
bindings covering the entire public API is automatically generated
from the original source code with minimal effort on the part of
the programmer, based on a rather succinct set of instructions
for the bindings generator. The resulting bindings readily allow
the software to interact with Python, with the option of bidirec-
tionality: application functions can be invoked from Python and
Python callbacks can be registered with the application.

Many existing simulation codes were originally designed as
applications rather than libraries. Their user-facing interfaces are
the respective command interpreters, which shield the details of
the internal class hierarchy and low-level class methods imple-
mentations from the user. The NEURON (Carnevale and Hines,
2006) and NEST (Gewaltig and Diesmann, 2007) simulators
exemplify this class of applications: NEURON embeds the HOC
interpreter (based on the original High Order Calculator by
Kernighan and Pike, 1983), and NEST provides SLI (Simulation
Language Interpreter; a language that inherits from PostScript
by Adobe Systems, Inc., 1999). Both simulators have evolved
together with their respective interpreters and the set of estab-
lished idioms for the interpreter comprises their de facto stable
high-level public APIs.

When designing an application with a command interpreter,
it is still possible and desirable to separate the simulation kernel
from the command interpreter, thus defining a clean internal API.
This could later be exposed as a public API, to which an automatic
bindings generator can be applied. If this separation of concerns
is not built in from the outset as a design goal, a number of archi-
tectural deficiencies can arise that make it difficult to define an
API at a later time. Among such deficiencies are convoluted class
hierarchy for object-oriented applications, tight coupling between
classes, proliferation of constructs introducing shared state, and

4http://docs.python.org/c-api/
5http://www.swig.org
6http://sourceforge.net/projects/pygccxml/
7http://www.boost.org/libs/python/

insufficient compartmentalization. If a complete refactoring of
the code to address these architectural issues is not possible due to
limited resources, exploiting the interpreted language as a public
API is the only practical option.

The NEURON simulator exposes the state of the HOC inter-
preter through its Python bindings via an instance of a Python
object defined using Python/C API (Hines et al., 2009). It allows
this state to be read out and manipulated by means of the normal
Python object attribute access.

The overall design of PyNEST (Python bindings for NEST)
is depicted in Figure 1; for a detailed sequence diagram showing
the interaction between Python and SLI, including the directions
of the calls, refer to Figure 2 in Eppler et al. (2008). Due to SLI
being a primitive stack machine, a simpler approach than that
of NEURON can be applied. PyNEST provides only three low-
level primitives to manipulate the SLI interpreter from Python.
The first primitive (SLI_RUN) executes SLI code formulated by
the high-level API and passed as a string to the SLI interpreter.
The other two primitives are concerned with passing data around:
SLI_PUSH pushes a Python object down the SLI interpreter’s stack
by converting it to a SLI object and SLI_POP pops a SLI object off
the SLI interpreter’s stack by converting it to a Python object. The
high-level NEST Python API is implemented in pure Python and

FIGURE 1 | Diagram depicting the design of PyNEST, the Python

bindings for the NEST simulator. The inner circle represents the NEST
simulation kernel and the SLI interpreter. The simulation kernel of NEST
uses private SLI data structures (black dot), and many SLI commands are
implemented using private NEST simulation kernel APIs (white dot); this
non-separation of concerns is discussed in details in the main text. Taken
together, however, they effectively constitute a stable high-level public API
to the NEST simulator. The first rectangle that encompasses the circle
represents PyNEST low-level (private) API, previously implemented in C++
and now re-written in Cython. This API provides three primitives to control
the SLI interpreter: a primitive to feed a string as a command for the SLI
interpreter to run, and two primitives to push objects on the stack and pop
objects off the stack. The outer rectangle illustrates PyNEST high-level
(public) API, implemented in pure Python. This high-level API uses the
low-level API to provide a “pythonic” interface to the functionality of NEST,
such as the creation of neurons, wiring routines, etc.
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is the one most seen by users. It uses these interpreter manipu-
lation primitives to access the higher level functionality provided
by the SLI/NEST command library, e.g., the connection routines
employed to wire the neurons, routines to query and set object
properties, etc.

Although the low-level NEST Python API that interacts
directly with the SLI interpreter (PYNESTKERNEL.SO) is substan-
tially simpler than the NEURON Python API, it comprised more
than 1000 lines of C++ code excluding comments and whites-
pace (as reported by the CLOC utility8). The majority of these
> 1000 code lines contained calls to Python/C API and NumPy/C
API. Moreover, much of the rest of them were scattered through-
out the source code of SLI, due to an earlier decision to use the
visitor pattern to implement the conversion of SLI objects into
Python objects. The visitor pattern is a commonly used design in
object-oriented programming that separates an algorithm from
the entity on which it operates (see Gamma et al., 1994 for a thor-
ough description). For the details on how it was previously used
in PyNEST, see (Eppler et al., 2008) and specifically the section
“From SLI to Python.”

This turned out to be problematic mainly for two reasons.
First, the Python/C API continues to evolve with the new versions
of the CPython interpreter, especially during major transitions
like Python 2 → Python 3. If one intends to support several ver-
sions of the interpreter from the same code base, this by necessity
leads to the proliferation of conditional code branches, which
imposes additional maintenance burden on NEST developers.
The same reasoning applies to the NumPy/C API, which is also
subject to change. Second, it introduces a dependency upon the
compile-time presence of NumPy development header files on the
target machine. This was a frequent cause of confusion: the user
would first install NEST and then NumPy, but the latter would
not become available to NEST without re-compilation. It was
possible to solve this second problem by implementing support
for the new-style Python buffer protocol (PEP 3118 9), however
this would have aggravated the situation with respect to the first
problem.

2.2. BUILDING BRIDGES WITH CYTHON
In view of the issues outlined in the previous section, and due to
the increasing pressure to support CPython 3, the implementa-
tion of the new major revision of the Python language, we were
driven to reconsider the original approach of manually imple-
menting the low-level PyNEST API in C++ using Python and
NumPy/C APIs. We identified Cython (Behnel et al., 2011) as
a tool that not only solved the problems that we had with the
previous implementation, but also presented a number of pre-
viously unanticipated compelling advantages (see Section 3.1).
Since Cython natively supports C++, we opted to completely
replace our low-level API code with a Cython implementation.
For the remainder of this manuscript, we will refer to the version
of the software with the low-level API implemented in Cython
as CyNEST; PyNEST refers to the previous implementation with

8http://cloc.sourceforge.net
9http://www.python.org/dev/peps/pep-3118/

hand-crafted low-level API implementation using Python and
NumPy/C APIs.

Cython is the name of both the relevant superset of Python
language and the optimizing compiler for this language. The com-
piler works by generating C or C++ source code (containing
Python/C API calls) from Cython code, which can in turn be
compiled by an optimizing C/C++ compiler, such as GCC, into
a stand-alone application embedding the Python interpreter, or a
binary dynamic shared object (DSO). The resulting DSOs can be
loaded into Python by importing them from within the Python
code, just as any other extension module. Therefore, Cython
can in some sense be considered as an abstraction for Python/C
API. This raises the question of how stable its interfaces are. So
far, the development strategy of Cython has been to minimize
backwards-incompatible changes that would impact downstream
users. Having worked with Cython for several years, we can attest
that this has never been a problem for us in practice. Additionally,
it is worth noting that Cython aims to be source-compatible with
Python in “pure Python” mode10, in which functions provided
by the CYTHON module are used to augment the code rather
than Cython syntax extensions. A comprehensive discussion of
the Cython language and compiler, its advantages and disadvan-
tages, and where it stands in the Python ecosystem is presented
in Behnel et al. (2011); an introduction to the language including
an example of using Cython for wrapping a C library is given in
Behnel et al. (2009).

2.3. PORTING TO PYTHON 3
2.3.1. Background
Python 3, the new major revision of the Python language,
offers a large number of enhancements to the syntactic consis-
tency of the language as well as updates to the standard library
and performance improvements of the reference implementa-
tion. Unfortunately, some of these features required backwards-
incompatible changes to be made to Python 3, which considerably
slowed down its adoption since its initial release in 2008.

In the specific context of the scientific Python community,
the usability of Python is largely determined by the availability
of three core libraries: NumPy, which provides a foundation for
fast and memory-efficient manipulation of n-dimensional arrays,
SciPy, which packages key scientific computing algorithms and
functions, and Matplotlib, which provides plotting functional-
ity. These core libraries introduced Python 3 support in 2010,
2011, and 2013, respectively. With these libraries having achieved
Python 3 compatibility, it has become attractive to migrate scien-
tific software to take advantage of the cleaner syntax, new features
and performance enhancements.

One performance boost that is particularly relevant for NEST
is the dramatic reduction in the number of STAT() calls issued
by the Python import machinery11. A STAT() call is a standard
UNIX system call12 that obtains metadata about a named file,
such as size, protection mode, creation and modification times,
and so on. This reduction was achieved by adding a directory

10http://docs.cython.org/src/tutorial/pure.html
11http://bugs.python.org/issue14043
12http://pubs.opengroup.org/onlinepubs/009695399/functions/stat.html
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entry cache to the IMPORTLIB’s file finder, with further improve-
ments under way13. Since there is a growing drive to use the
Python interface of NEST on ever larger clusters, backed by shared
network filesystems such as NFS and GPFS, and the speed of
metadata operations is a known performance bottleneck for large
distributed file systems, minimizing the number of STAT() calls is
especially important.

Unfortunately, while other groups have observed similar prob-
lems with a huge number of STAT() calls unacceptably slowing
down the startup of the interpreter (Enkovaara et al., 2011), their
proposed solutions did not address the root cause. Instead the
Python interpreter was modified to use MPI such that meta-
data operations only happen on one process, and results are
broadcasted to other ranks. Since the release of Python 3.3, the
aforementioned performance improvements are available to all
Python users and do not require applying any modifications to
the interpreter or the user code.

The developments discussed above convinced us that the next
major release of NEST should fully support Python 3.

2.3.2. Implementation
In order to port Python 2 code to Python 3, an automated transla-
tion tool such as 2TO3 can be applied to the code base, typically at
installation time. The applicability of this approach is limited by
the “intelligence” of the translation tools and changes to the code
base must often be made to assist the tools to produce correct
results. It is also necessary to check the output of the translators,
especially after making extensive changes to the code, to ensure
that the automatically generated patches do not introduce subtle
differences in the logic.

Alternatively, the single source approach can be pursued: the
code uses only constructs that work the same way across the major
versions of Python, such that exactly the same source runs both
on Python 2 and Python 3 interpreters. This might initially sound
very limiting, but Python developers have put a great deal of
effort into backporting features from Python 3 to Python 2 in
a forwards-compatible manner, so that they can also be used in
code targeting Python 2 interpreters. For example, the PRINT()
function has been available since Python 2.6, and hence using
it instead of the PRINT keyword makes it possible for a single
source to work on the interpreters of Python 2.6+. Additionally,
portability helpers such as SIX14 provide wrappers for functions
that have changed names and/or semantics. These wrappers can
be used to write code so that it works with both Python 2 and
Python 3. Consequently, the single source approach can be an
interesting option, although it necessitates adding extra depen-
dencies upon portability helpers or temporarily giving up on
some conveniences provided by Python 3.

Finally, some projects that are heavily reliant upon low-level
Python implementation details or advanced language features
might evaluate the decision to maintain separate branches of code
for each major version of Python. This method is seldom put into
practice because of the large amount of maintenance work that it
entails.

13http://bugs.python.org/issue18810
14https://pypi.python.org/pypi/six/

The documentation provided with Python includes a com-
prehensive porting guide that discusses these possibilities in
detail15. In order to decide on a technique that would be most
appropriate for the Python front-end to NEST, we had to con-
sider two of its layers: the low-level API and the high-level API
(Figure 1).

The low-level API, which was previously written in C++, was
essentially ported in the process of rewriting it in Cython, because
the latter transparently abstracts the differences between Python
2/3. The generated C++ code contains conditional preprocessor
definitions that ensure the compatibility of the single source file
with all supported versions of Python.

The high-level API was written in pure Python and hence
required some adaptation. Having carefully considered NEST
usage statistics, we decided to limit the supported Python versions
to Python 2.6 and higher. The distributions shipping Python 2.5
have already mostly reached end-of-life, while distributions ship-
ping Python 2.4 are still in use mainly on clusters running Red
Hat Enterprise Linux 5 and its derivatives, where newer versions
of Python are typically provided to the users via the modules sys-
tem. Besides, as explained in the porting guide, limiting oneself
to Python 2.6 and higher is critical for the feasibility of the single
source approach.

In view of these considerations, we opted to start porting from
the single source and make the decision on whether to use helpers
such as SIX at a later stage. As it turned out, after updating the
code to use Python 2.7 best practices, there remained only one
instance in which conditional branching depending on Python
2/3 was inevitable. Thanks to the substantial test coverage (Eppler
et al., 2009) and a large library of examples, the remaining Python
3 porting effort basically consisted of identifying the underlying
reasons for test failures and fixing the code to use the idioms
accepted by both Python 2/3 interpreters. A responsive continu-
ous integration system (Zaytsev and Morrison, 2013) giving rapid
feedback on the number of tests still failing and the amount of
broken example code supported this process considerably.

2.4. ALTERATION OF BUILD SYSTEM
A long-standing grief with PyNEST was the state of its build
system: since PYNESTKERNEL.SO includes full-fledged copies of
the NEST simulation kernel and the SLI interpreter, its compila-
tion by necessity required re-building a large complex C++ code
base composed of hundreds of files, which is otherwise built with
Autotools and Libtool (Calcote, 2010). Originally implemented
with DISTUTILS16, it quickly became arcane and later completely
unmaintainable due to the amount of custom hooks required to
replicate the functionality of Autotools. In addition, these hooks
proved to be rather fragile, because they relied upon parsing
temporary files generated by the main build sequence.

During the rewrite (which could have also been implemented
for the original system), it was decided to leave the building of
the shared object from the C++ source generated with Cython to
Autotools, using DISTUTILS only to install pure Python code and
inject a binary shared module built with Autotools as a payload.

15http://docs.python.org/3/howto/pyporting.html
16http://docs.python.org/distutils/
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An additional noteworthy advantage of this strategy is in that
it enables the Python bindings to be cross-compiled using the
standard mechanisms available in Autotools. Whereas it is not
impossible to hijack DISTUTILS classes to use a different toolchain
from the one used to compile the host interpreter, this solution
is very complex and hard to maintain. With Autotools, the only
required extra piece of information to be supplied is the loca-
tion of the headers of the target interpreter, as they cannot be
automatically detected; the rest is taken care of automatically.

3. RESULTS
3.1. MAINTAINABILITY OF CODE
The new implementation of the low-level API consists of only two
files: PYNESTKERNEL.PYX, which contains Cython source code
and PYNESTKERNEL.PXD, which contains definitions, similar to
C/C++ header files. The original implementation in C/C++
consisted of 7 core files and touched 22 other files from the SLI
interpreter source code. The affected files contained the defini-
tions of SLI data types, and previously had to be modified to add
calls to the converter class used to coerce them to the appropriate
Python data types. Additionally, the previous strategy required
splitting several files into interface and implementation parts to
break cyclic dependencies, which is no longer necessary for the
new implementation.

The new code is not only more straightforward, being writ-
ten in a higher level language, but also contains no Python/C
API calls. Behavioral differences between Python versions and
API changes are all transparently handled by Cython behind the
scenes. It is also fully self-contained, so all modifications made
to the SLI interpreter are no longer necessary and were reverted.
Moreover, it is half the size of the previous implementation,
containing <500 lines of code according to the CLOC utility,
about ∼30% of which consisting of trivial definitions.

Furthermore, thanks to the “Typed Memoryviews”17 feature
of Cython, we can now process any Python objects providing
PEP 3118 buffers transparently (including native ARRAY.ARRAY

objects), along with NumPy 1.5.0+ arrays using a clear and con-
cise syntax devoid of any additional branching. This requires
neither a compile-time dependency on NumPy, nor manual han-
dling of strides, which is rather difficult to get right and is known
to have caused problems in PyNEST in the past.

The reduction of the source code footprint and the use of
easier to understand constructs, which are thus more main-
tainable, are the most noticeable benefits of the rewrite of the
low-level PyNEST API (Figure 1) in Cython as described in detail
in Section 2.2. They can be generally attributed to a greater
expressiveness of higher level languages as compared to lower-
level languages, and hence are unsurprising. However, we also
observed a number of advantages, which are not immediately
obvious, but are nevertheless important for the maintainability
and the correctness of the code:

1. Since Cython abstracts the differences between Python 2/3, we
now have the benefits of working on a single source without
any version-dependent branches.

17http://docs.cython.org/src/userguide/memoryviews.html

2. Manual balancing of the Python object reference counts,
which is notoriously hard to handle18, is no longer an issue
with Cython due to the “reference nanny” it provides to verify
generated code.

3. Exceptions thrown on the C++ level are correctly propagated
to the level of Python, and no longer abort the interpreter,
thanks to the in-built support for the “EXCEPT+” clause by
Cython.

4. Correct handling of Unicode strings with Cython requires no
additional effort from developers, due to the string handling
(encoding and decoding) functions it makes available19.

The concept of the reference nanny requires some additional
explanation. CPython primarily uses reference counting garbage
collection for automatic memory management, which works by
keeping track of the number of times an object is referenced
by other interpreter objects. The reference count is incremented
whenever a new reference to the object is created, and decre-
mented when a reference to the object is removed. If the reference
count goes to zero, the object is identified as garbage and deal-
located. From the point of view of the Python/C API, reference
counting is implemented via the PY_INCREF()/PY_DECREF()
macros and it is the responsibility of the programmer to ensure
the right balancing.

In order to assist programmers in finding memory man-
agement errors such as memory leaks or premature dealloca-
tions, Cython’s reference nanny provides special versions of these
macros, which are used in the generated code to record the num-
ber of times the corresponding C API macros have been called.
If the reference nanny is inactive, these special macros simply
become aliases to the corresponding original macros. The refer-
ence nanny is enabled by default for Cython’s own test suite and
has to be manually activated with a preprocessor directive for user
code.

Note that this is not necessarily applicable to other Python
implementations, such as PyPy, which comes with a trac-
ing garbage collector and does not rely on reference count-
ing. However, alternative implementations have to emulate said
macros for C API level compatibility with CPython, and hence it
is still important to have them right.

To summarize, the Cython features discussed in this section
facilitate the reduction of the amount of extension code, its
complexity and the number of its compile time dependencies.

3.2. MAINTAINABILITY OF THE BUILD SYSTEM
The re-write of the build system described in Section 2.4 not
only reduces the amount of lines of code by a factor of two
(according to the CLOC utility report), but also addresses many
other enduring problems, such as unreliable installation path
detection on multiarch platforms and inconsistent incremen-
tal builds due to flawed dependency calculation. We can only

18Refer, for instance, to the CPYCHECKER project by David Malcolm of Red
Hat, Inc., which helped to identify a large number of programming mistakes
of this kind: http://gcc-python-plugin.readthedocs.org/en/latest/cpychecker.
html
19http://docs.cython.org/src/tutorial/strings.html
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recommend investigating this approach to other developers in a
similar situation.

The build system revision constitutes a typical example of
counter-revolutionary kind of maintenance as defined in the
Introduction. Even though the previous version of the build
system was in working order (with the exception of the above-
mentioned known issues), the assumptions that were made at
the time of the original implementation turned out to be incor-
rect. Indeed, a purely DISTUTILS-based approach has proven to be
fragile and difficult to maintain. Hence, continued maintenance
of this suboptimal implementation can be regarded as interest on
the accrued technical debt, which is now paid back by updating
the system based on a more accurate set of assumptions.

It is important to note that these changes did not cause any
degradation in user experience. In spite of the introduced sepa-
ration of concerns between Autotools and DISTUTILS, the build
and installation processes are still launched by “make” and “make
install” commands respectively. Furthermore, the use of Cython
by the developers does not impose an additional compile time
dependency on the users. Future releases of NEST will ship with a
pre-compiled version of CyNEST low-level API implementation
in form of a regular C++ file (along with the PYX/PXD sources),
which will be used during the build process. Only developers
wishing to bootstrap the build system from scratch for the pre-
release versions and/or make custom modifications to the Cython
code will need to have the Cython compiler installed on their
systems.

3.2.1. Cross-compiling CyNEST
Owing to the inclusion of the patches enabling cross-compilation
in the stock distribution since Python 3.3, we were able to cross-
compile Python 3.4.0b2 for the IBM BlueGene/Q supercomputer
JUQUEEN installed at the Jülich Research Center, Germany with
only minor changes. Detailed performance and scalability assess-
ments are subjects of current research, and work is still in progress
on the systematic testing of the resulting build and the inclusion
of patches resolving identified issues upstream. However, prelimi-
nary scaling tests up to the full machine (458,752 cores/1,835,008
threads) have confirmed that the improvements to the module
loader described in Section 2.3.1 indeed allow the interpreter to
be initialized and an MPI communicator to be established in less
than 3 min, which makes it practicable to use Python on this scale.

As a proof of concept, we were able to cross-compile CyNEST
for this interpreter and run a test simulation on one BG/Q node-
board (2048 threads); the required changes to the build system
will be part of future NEST releases. This is the first recorded
instance of running a cross-compiled Python front-end to NEST
that we are aware of.

3.3. PERFORMANCE AND SCALABILITY
There were various design decisions made during the develop-
ment of the Cython implementation of the low-level API of
the Python front-end to NEST that could potentially reduce
the performance or the scalability of NEST. Firstly, we aban-
doned the visitor pattern for type conversion (see Eppler et al.,
2008) and restructured the code by breaking large functions into
smaller ones, thus increasing the function call overhead. Second,

the Cython features of C++ exception propagation and proper
handling of strings (see Section 3.1) incur additional costs.

To investigate whether our Cython implementation gives rise
to a significant reduction in performance or scalability, we ran a
set of synthetic benchmarks on PyNEST and CyNEST low-level
API primitives. These benchmarks consisted of repeatedly calling
the PyNEST/CyNEST primitive under investigation to measure its
runtime, and were performed on a KVM virtual machine running
a minimal installation of Fedora Core 18 i386 operating system
(shipping Python 2.7.3 and Python 3.3.0), assigned one core of
the Intel Xeon X5680 CPU @ 3.33 GHz and 8 Gb of RAM. We
used Python 2.7.3 for all of our tests, because the legacy PyNEST
implementation does not support Python 3. The Python TIMEIT

module was used to call each of the primitives at least 107 times
with at least 5 repetitions. For SLI_PUSH() and SLI_POP() prim-
itives, the interpreter stack was prepared in advance to contain
a sufficient amount of elements, in order to minimize interfer-
ence from non-relevant code which we would otherwise have
needed to insert inside the measurement loop. The best timing
was selected for each experiment.

The results are presented in Table 1 and demonstrate that
CyNEST primitives are currently slower than PyNEST by 30–
150%. This slowdown can be explained by the function call
overhead, exception handling and (previously non–existent) null
pointer checks. However, these synthetic benchmarks are not rep-
resentative for real use cases. In most realistic situations, the time
taken for network construction, simulation and analysis dom-
inates the total runtime, with the time taken for the Python
bindings to communicate with the NEST kernel contributing only
a small fraction.

Therefore, in order to get an insight into how such a slow-
down would affect real-world simulations, as opposed to our
synthetic benchmarks, we selected a simplified version of the Hill-
Tononi model of the early visual pathway (Hill and Tononi, 2005),
implemented using the NEST Topology module (shipped with
the public releases of NEST as “hill_tononi_Vp.py”). The total
model runtime under CyNEST includes contributions from the
new low-level API kernel implemented in Cython, as well as from
substantial modifications to the high-level API to clean up its
internals and add support for Python 3. The replacement of the

Table 1 | Comparison of execution timings of low-level API primitives

in PyNEST and CyNEST.

LL-API call PyNEST [µS] CyNEST [µS]

sli_run() 18 24

sli_push() 0.25 0.5

sli_pop() 0.15 0.4

For the SLI_RUN() primitive the command “clear” was used as a parameter, but

the results were similar for an empty command string. For the SLI_PUSH() and

SLI_POP() primitives, an arbitrarily selected integer x = 42 was chosen as a test

value. PyNEST (the original implementation) was benchmarked at the last revi-

sion in the Subversion repository before the merge (r10626), CyNEST (the new

implementation) was benchmarked at r10683. These revisions correspond to the

development versions of the code which will eventually supersede the current

publicly available release of NEST 2.2.2.
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low-level API implementation written in C++ with the new one
written in Cython required an extensive adaption of the high-level
API, and thus it is not possible to measure the impact directly by
simply exchanging the binary kernels. Instead, we traced the exe-
cution of the model, measured the number of calls to the low-level
API primitives, and computed the predicted total impact, caused
by the changes to the low-level API.

The breakdown is shown in Table 2 and indicates that the pre-
dicted increase of the runtime due to the low-level API changes is
of the order of magnitude of 0.2 s, which is a negligible propor-
tion of the total runtime of the simulation on the hardware and
software setup described above. Additionally, we measured the
total runtime of the model using PyNEST and CyNEST presented
in Table 3 and observed an overall slowdown of ∼1.3 s, which
we attribute largely to the changes in the high-level API, such as
more extensive parameter checks and usage of SLI literals wrap-
ping Unicode strings as dictionary keys instead of binary strings.
We conclude that the observed performance degradation is a tiny
price to pay for the benefits outlined in the previous sections
and does not negatively affect any real simulations carried out
with NEST.

Since NEST with a Python front-end scales in the same way
as NEST with its native SLI front-end, the scalability is currently
limited by its memory consumption (Kunkel et al., 2012). If the
new implementation required substantially more memory than

Table 2 | Simplified Hill-Tononi model as a benchmark for PyNEST

and CyNEST.

LL-API call Invocations Slowdown [µS] Impact [s]

sli_run() 38947 6 0.2

sli_push() 40484 0.25 0.01

sli_pop() 74497 0.25 0.02

The table contains the number of invocations of each of the three low-level

API primitives, slowdown per invocation per primitive (see Table 1), and the

corresponding predicted total impact.

Table 3 | The runtime and memory consumption measurements

performed on the untraced version of the simplified Hill-Tononi

model using single-threaded simulation on the hardware/software

setup described in the main text.

Median Minimum Maximum

RUNTIME OF THE MODEL [s]

PyNEST 64.8 63.8 66.9

CyNEST 66.1 65.5 71.6

PEAK MEMORY USAGE [MiB]

PyNEST 327 327 328

CyNEST 329 329 329

The runtime (which includes the collection of the results and the production of

the graphics) was obtained using the shell TIME command and the memory

usage was recorded using Massif. Each experiment was repeated n = 15 times,

alternating the measurements for PyNEST and CyNEST.

the original implementation, it would thus compromise the scal-
ability of NEST. In order to assess the memory consumption of
the re-written extension in real-world simulations, we measured
the memory consumption of the previously described simplified
Hill-Tononi model using Massif heap profiler, which is a part of
the Valgrind20 instrumentation framework.

As shown in Table 3, we were unable to detect any sig-
nificant differences: the discrepancy in peak memory usage
between PyNEST and CyNEST amounted to <1%. In addition
to that, a synthetic benchmark that consisted of running the
GETCONNECTIONS() function on a network with at least 107

connections and measuring the memory consumption of the pro-
cess, showed ∼15% improvement in memory usage. We attribute
this improvement to the smaller overhead of Python arrays in
CyNEST as compared to NumPy arrays in PyNEST for the small
number of elements used to represent the connection objects.
Therefore, we conclude that the rewrite in Cython does not
negatively affect the memory consumption and hence does not
degrade the scalability of NEST.

4. DISCUSSION
The outstanding productivity that can be achieved by researchers
using the Python bindings for NEST to set up their simulations
is one of the key factors in its continued success as a research tool
for simulating large networks of spiking point neurons or neurons
with a small number of electrical compartments. This success,
however, comes at the cost of reduced maintainability of the
code base, in large part due to the difficulties in simultaneously
supporting several versions of Python.

The reduction in maintainability is due to the architecture of
NEST. For software applications that provide a stable well-defined
public API, it is often possible to make use of automatic bind-
ings generators such as SWIG or XDress 21, and a number of
simulators such as PCSIM and MOOSE have benefited from this
approach in the past, as described in Section 2.1. In the case of
NEURON and NEST, this technique turned out to be imprac-
tical. Consequently, the Python bindings were originally written
by hand using Python/C API, which leads to the maintainability
issues mentioned and increases a project’s technical debt.

We therefore investigated an alternative approach, namely
implementing the low-level Python API of NEST in Cython, a
superset of Python (see Section 2.2), which can be automatically
compiled into C/C++ code. We also carried out a set of related
measures to improve the maintainability of the code base, specifi-
cally porting to Python 3 through the single source technique and
re-designing the build system.

This approach resulted in a reduction of the code footprint
of around 50% and a significant increase in the cohesiveness
of the code related to the Python bindings: whereas previously
seven core files and 22 additional files were involved, the new
approach requires merely two core files. The new implementation
also removes the compile-time dependency on NumPy and pro-
vides numerous additional maintainability benefits by reducing

20http://valgrind.org
21http://xdress.org
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complexity and increasing comprehensibility of the code. The re-
write of the build system also resulted in a 50% reduction of code,
and resolved multiple issues with its usability and robustness. We
analyzed the performance of the new implementation, and dis-
covered that although the low-level API calls in CyNEST are more
costly than in PyNEST, the difference is only detectable in care-
fully designed synthetic benchmarks. For all sensible use cases,
the extra overhead is negligible. Additionally, the new implemen-
tation decreases the memory footprint, so that the scalability of
CyNEST is not deteriorated with respect to PyNEST or NEST
using the native SLI front-end.

We can recommend this approach for many other projects in
which a Python front-end is required to bind with C or C++
functions. The use of languages other than C/C++ does not nec-
essarily preclude taking advantage of Cython, provided that the
language in question has a good foreign function interface (FFI)
for C, such as Fortran. The possibility of creating more “pythonic”
bindings by exposing an API that operates with data structures
commonly used in Python (for instance, functions returning lists,
or consuming iterators) and seamlessly blends with idiomatic
Python code, can be an additional benefit of hand-crafting bind-
ings in Cython, although not one that was exploited in the current
study. For applications written in Java, it would typically be more
appropriate to use Jython22, which provides a seamless integra-
tion with Java Virtual Machine based languages. One advantage
of NEST with respect to our approach is that it only has three
low-level API primitives. For software applications with a larger
number of such calls, the re-implementation of the Python bind-
ings in Cython would naturally involve somewhat more work,
but this is largely of a trivial nature. Each API call requires one
function definition in the PXD file (one line) and one wrapper
function in Cython that calls the declared C-function (two or
more lines).

We would not recommend our approach for a software project
which has sufficient resources to re-design the architecture such
that the interpreter is separated from the computation kernel. In
this case, the re-design would be viewed as the ideal approach.
Not only does this permit the use of automatic bindings gen-
erators, but it also reduces coupling, increases cohesiveness and
permits greater testability. Finally, the architectural improvements
do not preclude a combined approach, where an additional layer
written in Cython and/or pure Python is provided on top of the
automatically generated bindings in order to improve the API, as
mentioned above.

The current study demonstrates that efforts to reduce the
technical debt of a project can have far-reaching consequences
beyond the original goals. As mentioned in Section 2.3.1, the
latest advances in bringing Python to HPC gave us the incen-
tive to reconsider the previously established notion that it is
impractical to use the Python front-end of NEST on supercom-
puters. The remaining challenge was in the cross-compilation
of the binary extension module for the compute nodes (where
the code is run), which generally provide a different environ-
ment from that of the front-end nodes (where the code is com-
piled). Since the compilation of CyNEST is now managed by

22http://www.jython.org

Autotools (see Section 2.4) and NEST with the SLI front-end
could already be cross-compiled using Autotools for the compute
nodes, no fundamental obstacles remained to cross-compilation.
We were able to work around the few remaining issues with
the build system and cross-compile the Python front-end for
NEST for the IBM BlueGene/Q supercomputer; these changes
will be included in future releases of NEST. As a result of these
changes, researchers working on supercomcomputers can benefit
from the same advantages in describing and controlling simu-
lations as are currently available for personal workstations and
small clusters. Moreover, a researcher can now directly scale up
simulations coded in Python and developed on personal work-
stations or laptops to big machines without first translating them
into SLI, which was previously the only available option. It is
important to note that supercomputers are not the only targets
that require cross-compilation: at the other end of the com-
puting spectrum, cross-compiling is required for most widely
available embedded platforms. Therefore, the ability to cross-
compile also opens up new possibilities for using NEST with a
Python front-end on embedded systems, e.g., for robotics and
control applications.

The re-implementation in Cython also makes it possible to
use the resulting extension with other implementations of Python
than the official CPython implementation at practically no cost,
provided that support for those implementations is added to
the Cython code-generating back-end. One such implementa-
tion of particular interest is PyPy23, which features a Just-in-
Time (JIT) compiler that potentially allows Python code to run
not only faster than interpreted by CPython, but faster even
than hand-crafted code written in compiled languages, such as
C/C++ or Fortran. Therefore, complex pre-processing of the
data required to set up neural network simulations, or post-
processing of simulation results could be implemented in pure
Python, taking full advantage of its dynamic nature, and run
using the same interpreter. A feasibility study has been per-
formed in the scope of this project, and a working prototype
of CyNEST that runs on PyPy has been created. However, it
is not yet possible to achieve an “out of the box” transla-
tion that would work without manual changes to the generated
code, due to the current imperfect interoperability of Cython
with PyPy. Another implementation worth mentioning is Jython,
which might get a Python/C API emulation layer that can be
exploited by Cython as the JyNI24 project matures. This imple-
mentation is interesting, because it allows one to profit from
the performance of JVM, and enables seamless integration with
JVM-based languages which are especially popular in the indus-
try. Currently, JyNI is at the early “alpha” stage, so it is not yet
stable enough to be considered as a potentially supported target
for Cython.

In conclusion, we hope that through a more widespread use of
Cython, neuroscientific software developers will be able to focus
their creative energy on refining their algorithms and implement-
ing new features, instead of working to pay off the interest on the
accumulating technical debt.

23http://pypy.org
24http://jyni.org
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