
TECHNOLOGY REPORT ARTICLE
published: 20 January 2015

doi: 10.3389/fninf.2014.00085

FocusStack and StimServer: a new open source MATLAB
toolchain for visual stimulation and analysis of two-photon
calcium neuronal imaging data
Dylan R. Muir1,2* and Björn M. Kampa1,3

1 Department of Neurophysiology, Brain Research Institute, University of Zürich, Zürich, Switzerland
2 Biozentrum, University of Basel, Basel, Switzerland
3 Department of Neurophysiology, Institute of Biology 2, RWTH Aachen University, Aachen, Germany

Edited by:

Arjen Van Ooyen, VU University
Amsterdam, Netherlands

Reviewed by:

Thomas Wachtler,
Ludwig-Maximilians-Universität
München, Germany
Arjen Van Ooyen, VU University
Amsterdam, Netherlands

*Correspondence:

Dylan R. Muir, Biozentrum,
University of Basel,
Klingelbergstrasse 50/70,
4056 Basel, Switzerland
e-mail: dylan.muir@unibas.ch

Two-photon calcium imaging of neuronal responses is an increasingly accessible
technology for probing population responses in cortex at single cell resolution, and with
reasonable and improving temporal resolution. However, analysis of two-photon data is
usually performed using ad-hoc solutions. To date, no publicly available software exists
for straightforward analysis of stimulus-triggered two-photon imaging experiments. In
addition, the increasing data rates of two-photon acquisition systems imply increasing
cost of computing hardware required for in-memory analysis. Here we present a Matlab
toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging
stacks on consumer-level hardware, with minimal memory footprint. We also present
a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed
to be triggered over a network link from a two-photon acquisition system. FocusStack is
compatible out of the box with several existing two-photon acquisition systems, and is
simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment
for movement correction, automated cell detection and peri-stimulus time histograms are
already provided, and further tools can be easily incorporated. Both packages are available
as publicly-accessible source-code repositories1.

Keywords: two-photon calcium imaging, neuronal responses, Matlab, visual stimulus generation, analysis

toolbox, small memory footprint, open source

1. INTRODUCTION
Two-photon calcium imaging has become a major method to
record neuronal activity. However, analysis of the acquired data
has special requirements because of the image based data for-
mat. In addition, increasing spatial and temporal resolution also
require increasing computation power of the analysis system.
While consumer computing hardware is cheap and accessible
for most researchers, it is usually limited in maximum address-
able memory. Microscopes with resonance scanners, which are
increasingly becoming standard equipment for two-photon imag-
ing of neuronal signals on fast timescales, can easily generate in
the order of 10 MB (10×220 bytes) of data per second. Coupled
with the trend toward imaging in awake, behaving animals, which
necessitates lengthly imaging trials, single imaging sessions can
produce 10 of gigabytes (10×230 bytes) of data. In-memory anal-
ysis of two-photon imaging data entails considerable hardware
requirements (and increasingly so), leading to a rapid rise in cost
and accessibility.

Here we present a new, open-source, Matlab-based two-
photon analysis toolchain designed to process large two-photon
imaging stacks with only a small memory footprint. This makes
analysis possible on standard consumer hardware.We also present

1https://bitbucket.org/DylanMuir/twophotonanalysis; https://bitbucket.org/
DylanMuir/stimserver

a new open-source Matlab-based server for visual stimulus gen-
eration and presentation which can be controlled remotely over
TCP or UDP network links.

In Section 2 we present a high-level overview of our stim-
ulation and analysis toolchain. In Section 3 we discuss how
the end user interacts with FocusStack, and how the design of
FocusStack makes analysis of two-photon imaging data sim-
pler. In Section 4 we present the low-level representation of a
FocusStack object, and discuss how FocusStack can easily be
adapted to new two-photon imaging data formats. In Section 5
we discuss the design of StimServer, and how stimuli are con-
figured and queued during an experiment. In Section 6 we
present an example two-photon imaging experiment and analysis
using StimServer and FocusStack. The experimental data ana-
lyzed, and Matlab scripts required to reproduce the analysis, are
available as Supplementary Material.

1.1. EXISTING TWO-PHOTON STACK ANALYSIS PACKAGES
The only other publicly-available two-photon processing sys-
tem, at time of writing, is the Two-Photon Processor (2PP;
Tomek et al., 2013). 2PP is a GUI-based Matlab toolbox
for analyzing two-photon calcium data, and performs auto-
mated ROI segmentation, stack alignment, and calcium sig-
nal extraction. Our toolchain differs from 2PP in a number
of ways:

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 85 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2014.00085/abstract
http://community.frontiersin.org/people/u/26847
http://community.frontiersin.org/people/u/10890
mailto:dylan.muir@unibas.ch
https://bitbucket.org/DylanMuir/twophotonanalysis
https://bitbucket.org/DylanMuir/stimserver
https://bitbucket.org/DylanMuir/stimserver
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Muir and Kampa Matlab analysis of two-photon imaging data

• FocusStack is aware of stimulus identity and timing, and auto-
mates derandomization of time-series data, when stimuli are
presented in random order;

• FocusStack is command-based, as opposed to the GUI-based
interface of 2PP. We believe a command-based interface is
more appropriate for analysis of experimental data, where
identical analysis steps need to be repeated for several data
sets;

• FocusStack is designed for small memory requirements, using
novel Matlab classes for efficient data access. 2PP is not
designed for lazy data access, implying that entire stacks must
be analyzed in-memory, with a consequently large memory
footprint;

• FocusStack interfaces directly with additional Matlab analysis
tools for spike estimation from calcium response traces. 2PP
incorporates these algorithms internally.

2. TOOLCHAIN OVERVIEW
The design goal of FocusStack and StimServer was to provide
simple, extensible tools to assist experiments using two-photon
calcium imaging of neuronal responses; accessible to those with
little programming experience, but powerful enough to auto-
mate most low-level analysis of calcium response stacks. Although
alternative programming languages are increasing in popularity
(such as Python, R and Octave), Matlab remains an accessible and
frequently used tool for analysis and statistical testing, with a rep-
utation for simple uptake by non-programmers. For this reason,
we designed a toolchain that does allows users to design and script
their entire analysis in Matlab, without the need for additional
software packages.

An overview of a two-photon acquisition and visual stimula-
tion setup is shown in Figure 1. Due to the real-time requirements
of both visual stimulation and acquisition of two-photon imag-
ing data, these tasks are usually performed on separate dedicated
computing systems (Figure 1A). StimServer is controlled over
a TCP or UDP network link, to trigger stimulus presentation

and sequencing. Two-photon acquisition occurs using the soft-
ware appropriate for the experimental equipment used, and
stores the resulting imaging stacks as binary data files on disk.
Ideally, meta-data about the stack—stimulus identity and ran-
dom sequencing, stack resolution, information about the acqui-
sition system, etc.—are stored with the stack data files in a file
header or a “side-car” meta-data file.

Binary stack data files are analyzed in Matlab, by using
FocusStack to map several stack files to a single FocusStack

object (Figure 1B). This object appears as a simple Matlab tensor
(i.e., a multi-dimensional Matlab matrix), with frames, chan-
nels, and single pixels accessed using standard Matlab referencing
(Figures 1D-E). Since FocusStack objects can be accessed as
Matlab tensors, many existing Matlab analysis functions that
expect tensors can seamlessly be passed FocusStack objects with-
out modification (Figure 1C).

However, FocusStack objects are aware of stimulus timing and
sequencing, provide services for stack alignment, provide support
for assigning baseline fluorescence distributions, and have simple
helper functions to perform derandomization and segmentation
of stack data. These facilities are described in the next section.
An example flow-chart for analysis using a FocusStack object is
shown in Figure 3.

3. HIGH-LEVEL INTERFACE TO FocusStack
The design of FocusStack is to provide a smart wrapper inter-
face to two-photon imaging data. An example of creating and
accessing a two-photon imaging stack using a FocusStack object
is given in Figure 1B. Several files of acquired calcium responses
can be wrapped by a FocusStack object, to appear to Matlab and
to calling functions as a simple Matlab tensor (Figures 1C–E).

3.1. STACK META-DATA
Although a FocusStack object can be accessed just like a Matlab
tensor, each frame and pixel in the stack has many items of meta-
data associated with it (see Figure 2 and Tables 1,2). Meta-data

FIGURE 1 | Overview of visual stimulation, stack acquisition and

analysis in Matlab. (A) StimServer is used to generate and present
visual stimuli to an animal, under the control of a calcium imaging system,
over a network link. Data is stored in a binary format. (B) A FocusStack
object is created in Matlab, to access several sequential data blocks as a

single concatenated stack. (C) The FocusStack object “fs” can now be
accessed as a Matlab tensor, and passed into Matlab functions. (D)

Extracting a single frame is as simple as referencing a Matlab tensor. (E)

Extracting the response trace through time of a single pixel is equally
simple.

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 85 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Muir and Kampa Matlab analysis of two-photon imaging data

FIGURE 2 | Stimulus information and other meta-data associated with

each frame. A series of drifting grating stimuli were presented in randomized
order (see values of nStimulusSeqID), over several repeats (see values of
nBlockIndex). Using FocusStack.FrameStimulusInfo, the
stimulus meta-data associated with each frame can be accessed (meta-data

is listed for the frame indicated by the arrow). In addition, each frame is
associated with a mis-alignment shift (mfFrameShifts), a “black” level
(vfBlackTrace), and a per-pixel baseline distribution (insets at top right).
Colors at top left indicate the corresponding traces of meta-data values in the
time-series plot.

consists of stack-global information such as the resolution (pix-
els per μm) and dimensions of the stack, imaging frame rate and
Z-step per frame. Stimulus-specific global meta data includes the
number of unique stimuli presented, the duration of each stimu-
lus, the order of presentation, and which periods of the stimulus
presentation should be used for analysis (see Listing 2).

Associating this meta-data with the stack enables FocusStack
to provide detailed information about each frame (Figure 2),
using the FrameStimulusInfo method. Each frame is tagged with
the information about the stimulus being presented while that
frame was being acquired.

For file formats supported out of the box by FocusStack,
meta-data stored in the data files is automatically loaded
and assigned to the FocusStack object. When implement-
ing two-photon acquisition software and extending FocusStack

to support the corresponding file formats, care should be
taken to store and automatically load as much meta-data as
possible.

3.1.1. Stack alignment
Ensuring that each successive frame is aligned with the previous
frames in the stack is essential for extracting calcium responses
with high signal to noise ratio. FocusStack provides transpar-
ent internal support for sub-pixel rigid linear translation of each
frame. Each frame in a FocusStack object has a [2×N] double list
mfFrameShifts of displacements for each frame, relative to the
unshifted stack origin. If misalignments are assigned to the stack,
then FocusStack transparently shifts each frame when the stack is
accessed. Re-alignment of each frame occurs lazily, the first time

a frame is requested, and is subsequently cached on disk for quick
repeated access.

FocusStack includes a sub-pixel, rigid linear transla-
tion alignment algorithm based on Fourier phase matching
(Guizar-Sicairos et al., 2008; example in Listing 1). This
algorithm supports progressive alignment or alignment to a
reference frame or image. Per-frame spatial filtering, sliding-
window frame averaging and single-frame shift size rejection
to regularize the alignment process. However, any alignment
algorithm can be used and the shifts manually assigned to the
FocusStack.mfFrameShifts property.

3.1.2. Defining the baseline fluorescence distribution
Two-photon calcium imaging commonly uses fluorescent dyes
that change their conformation and emission properties when
bound to Ca2+ molecules. In single-channel imaging, the cal-
cium concentration change (a proxy for firing rate) of a neuron
is related to the proportional increase in fluorescence (e.g., OGB;
Grynkiewicz et al., 1985). In FRET imaging, a molecule consisting
of two bound fluorophores with differing emission wavelengths
causes a differential change in fluorescence of both fluorophores
when bound to Ca2+ (e.g., Yellow Cameleon; Nagai et al., 2004).
In this case the response signal is the ratio of the responses in two
imaging channels.

Both of these techniques require estimation of the “baseline”
fluorescence (F0) of a neuron to define the differential calcium
response �F/F0. In FocusStack, this is obtained through two
mechanisms. Firstly, each frame is assigned a “black” reference
level using the FocusStack.DefineBlackRegion method or

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 85 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Muir and Kampa Matlab analysis of two-photon imaging data

Table 1 | List of meta-data provided by a FocusStack object.

Meta-data parameter

name

Contents

STACK-GLOBAL META-DATA

.fPixelsPerUM Spatial calibration of the stack (X and Y), in
pixels per µm

.tFrameDuration Acquisition time per frame, in seconds

.fZStep Z spacing between subsequent frames,
in µm

.mfFrameShifts Misalignment shifts for each frame, in
fractional pixels. Assigned manually, or
using alignment method
FocusStack/Align

.vfBlackTrace Black set-point value for each frame, in
raw units. Assigned manually, or using
utility method
FocusStack/DefineBlackRegion

STIMULUS-RELATED META-DATA

.tBlankTime Blank time between episodic visual stimuli

.vnStimulusIDs List of stimuli presented (one stimulus ID
per data file). Each stimulus ID can contain
a sequence of several individual stimuli

.nNumStimuli (Read-only)Total number of individual
stimulus sequence IDs presented in the
entire stack

.cvnSequenceIDs Cell array, each element containing a
vector of stimulus sequence IDs in the
order they were presented

.vtStimulusDurations Vector of stimulus sequence ID durations,
in seconds. Each entry specifies the
duration of the corresponding stimulus
sequence ID

.vtStimulusStartTimes Vector of onset times for each individual
stimulus presentation, as an offset in
seconds from the first frame of the stack.
Assigned manually, or computed
automatically

.vtStimulusEndTimes Vector of end times for each individual
stimulus presentation, as an offset in
seconds from the first frame of the stack.
Assigned manually, or computed
automatically

.mtStimulusUseTimes Matrix of times indicating which periods of
stimulus presentation should be used for
analysis. Each row corresponds to a
stimulus sequence ID, and is a row vector
[tStartTime tStopTime], indicating
offsets from the start of the presentation
of the corresponding stimulus

All the parameters listed here are FocusStack class properties, and should be

assigned from meta-data stored with the data file, whenever possible.

by directly setting the FocusStack.vfBlackTrace property.
DefineBlackRegion allows a number of pixel indices to be pro-
vided that define a region in the stack which is expected to have
zero fluorescence (for example, the interior of a blood vessel).

Table 2 | List of meta-data provided by a FocusStack object

(continued from Table 1).

Meta-data parameter

name

Contents

FRAME-RELATED META-DATA

vtGlobalTime The time in seconds since the first frame
in the stack. (FSI)

vnBlockIndex The index of the block (data file) the
associated frame falls within. (FSI)

vnFrameInBlock The index of the associated frame within
the block, with the first frame given
index 1. (FSI)

vtTimeInBlock The time in seconds since the first frame
in the block. (FSI)

vnStimulusSeqID The stimulus sequence ID associated with
each frame. (FSI)

vtTimeInStim
Presentation

The time in seconds of the associated
frame since the onset of the stimulus in
which the frame falls. (FSI)

vnPresentationIndex The index of the current stimulus
presentation in the entire stack. The first
stimulus is given index 1. (FSI)

vbUseFrame A boolean value associated with each
frame, indicating whether that frame
should be used for analysis. (FSI)

tfBlankMean,
tfBlankStd

Mean and standard deviation distribution
of the baseline distribution assigned to a
stack. Obtained by referencing a stack
using fs.BlankFrames(<stack
reference>) or by using the
FocusStack/GetCorresponding
BlankFrames class method
The baseline distribution is assigned using
the FocusStack/AssignBlankFrame
class method (see Section 3.1.2 and
Listing 1)

Parameters listed that specify “FSI” for access are obtained using the

FocusStack/FrameStimulusInfo class method, and are computed from

the parameters given in Table 1.

This can be performed either by providing pixel indices, or
through a GUI-based selection of a circular region.

Secondly, a baseline fluorescence distribution (F̂0 and σF0 )
must be estimated and recorded for each frame. An example pro-
cedure for estimating the baseline distribution using FocusStack

is given in Listing 1. In FocusStack, the baseline distribution
is stored efficiently as stack meta-data (Figure 2). Each base-
line frame is associated with a range of stack frames, leading to
minimal storage requirements.

3.2. STACK SEGMENTATION, STIMULUS DERANDOMIZATION AND
EXTRACTING CALCIUM RESPONSES

3.2.1. Defining regions of interest (ROIs)
Since FocusStack objects appear as Matlab tensors, standard
image-processing pipelines can be applied directly. We have
included two simple pipelines: the first, FindCells_G, seek
peaks of intensity in channel 1—useful for imaging with
calcium indicators that brightly label cell nuclei; the second,

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 85 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Muir and Kampa Matlab analysis of two-photon imaging data

Listing 1 | Creating a FocusStack object; performing stack alignment; estimating the baseline fluorescence distribution and

assigning it to the FocusStack object.

%% - Create a FocusStack object
fs = FocusStack({’block1.fcs’, ’block2.fcs’});

%% - Align the stack using a sub-pixel, rigid alignment method (Guizar-Sicairos et al., 2008)
% See documentation for FocusStack/Align for details
fs.Align();
% - Misalignments were automatically stored in fs.mfFrameShifts

%% - Get frame stimulus information
[vtGlobalTime, ...
vnBlockIndex, vnFrameInBlock, vtTimeInBlock, ...
vnStimulusSeqID, vtTimeInStimPresentation, ...
vnPresentationIndex, vbUseFrame] = ...
FrameStimulusInfo(fs, 1:size(fs, 3), 0);

%% - Estimate baseline distribution for each block
for (nBlock = 1:numel(fs.cstrFilenames))
% - Get frames for this block
vbBlockFrames = vnBlockIndex == nBlock;

% - Get the baseline for this block from the blank stimulus
vbBlockBlankStimFrames = vbBlockFrames & ...
(vnStimulusSeqID == nBlankStimID) & vbUseFrame;

% - Extract baseline frames
tfBlankFrames = double(fs.AlignedStack(:, :, vbBlockBlankStimFrames, 1)));

% - Compute mean
mfThisBaseline = nanmean(tfBlankFrames, 3);

% - Calculate std. dev. for divisive normalization
mfBlockBlankStd = nanstd(bsxfun(@rdivide, tfBlankFrames, mfThisBaseline), [], 3);

% - Assign the blank frame to the whole block
% (by default)
fs.AssignBlankFrame(cat(3, mfThisBaseline, mfBlockBlankStd), vbBlockFrames);

end

FindCells_GR, subtracts channel 2 from channel 1—useful when
a second channel is used for a neuron-excluding fluorescent label
such as sulforhodamine. Code is also included to import ROI
definitions from ImageJ (Schneider et al., 2012).

3.2.2. Extracting calcium responses
In any good experiment design, stimulus presentation order is
randomized. During analysis of the acquired time series data,
stimulus segmentation, and derandomization therefore becomes
an important but fiddly task. Our solution is to store the stimulus
presentation order with the stack, along with information about
stimulus duration, “blank” stimuli, and periods of stimulus pre-
sentation during which analysis of the calcium signals should be
performed (see Figure 2).

Extracting calcium response time-series from a FocusStack

object is accomplished using the ExtractRegionResponses func-
tion (see Listing 2). This workhorse function transparently per-
forms stimulus derandomization, simultaneously averages and
extracts responses from a number of arbitrary ROIs in the stack,
segments the stack into single-trial per-neuron traces and returns
estimated responses for each stimulus and each trial. FocusStack
therefore provides an automated extraction of the peri-stimulus
time histogram (PSTH) for each presented stimulus.

Listing 2 | Assigning stimulus durations and extract-

ing derandomized calcium traces. Note that the order

of stimulus presentation can and should be stored as

meta-data by the two-photon acquisition system. If meta-

data is present in the data files, then FocusStack will

assign the meta-data to the stack when the stack is

created.

%% - Assign stimulus presentation order
% (usually loaded from stack data file)
fs.cvnSequenceIDs = {[2 3 1 4], [4 2 3 1]};

%% - Assign stimulus timing information
fs.vtStimulusDurations = [4 4 4 4];
fs.mtStimulusUseTimes = [0 4; 2 4; 2 4; 2 4];

%% - Segment, derandomize and extract calcium
%% responses and traces
[vfBlankStds, mfStimMeanResponses, mfStimStds, ...

mfRegionTraces, tfTrialResponses,
tnFramesInSample, ...
cvfTrialTraces, mfRawRegionTraces] = ...
ExtractRegionResponses(fs, sRegions,
nBlankStimID);

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 85 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Muir and Kampa Matlab analysis of two-photon imaging data

ExtractRegionResponses is highly modular, and allows the
user to define what a “response” means for a given calcium trace.
For example, toolbox functions are included to extract the mean,
the peak, and the ratio of a calcium stack; all support either
extraction of raw signals or �F/F0 processed data.

A flowchart showing an example of information flow dur-
ing standard two-photon analysis steps applied to a FocusStack

object is given in Figure 3.

3.3. INTERFACING WITH OTHER SOFTWARE
ROIs are defined using the Matlab region structure format
returned by bwconncomp. This means that FocusStack can eas-
ily accept ROI segmentations determined using the Matlab image
processing toolbox. However, code is also included in FocusStack

to import ROIs from ImageJ.
Since all responses traces and response values are produced

by FocusStack in Matlab standard formats, existing software
for processing calcium response traces can be used directly—
for example, the fast non-negative deconvolution algorithm for
estimating spike times of Vogelstein et al. (2010), the compressive-
sensing approach of Dyer et al. (2013) or the peeling algorithm of
Grewe et al. (2010) and Lütcke et al. (2013).

4. LOW-LEVEL FocusStack REPRESENTATION
FocusStack already provides in-build access to the data format
of a previously published 3D imaging software, “Focus” (Göbel
et al., 2007) and the open source project “HelioScan” (Langer
et al., 2013). There are presently a plethora of binary data formats
in which two-photon imaging systems store recorded calcium sig-
nals. Many of these are ad-hoc, “in-house” formats, and which
may change with little warning. For this reason, it is impor-
tant that a general analysis toolchain is abstracted away from the
particular binary format in which data is stored. We designed
FocusStack such that the low-level representation is itself mod-
ular, with a standard interface to the rest of the FocusStack core
code. This implies that adding support for a new data format is
a matter of an hour’s work or less, after which existing analysis
scripts will run without modification.

FocusStack contains support for two low-level Matlab classes,
which map binary data on disk to a Matlab tensor represen-
tation. The first, MappedTensor, handles arbitrary binary data
files with linear representations and fixed numbers of bits per
pixel. The second, TIFFStack, provides rapid access to standard
multi-frame, multi-channel TIFF graphics files, which are gener-
ated by several common microscopy systems. Both classes use a
lazy access paradigm, where data is only loaded from disk when
needed.

4.1. MappedTensor CLASS
The MappedTensor class2 transparently maps large tensors of arbi-
trary dimensions to temporary files on disk, or makes existing
binary files available as Matlab tensors. Referencing is iden-
tical to a standard Matlab tensor, so a MappedTensor can be
passed into functions without requiring that the function be
written specifically to use MappedTensors. This is opposed to

2http://dylan-muir.com/articles/mapped_tensor/

FIGURE 3 | Information flow of a FocusStack object, during standard

analysis steps applied to a two-photon imaging stack. Additional
analysis steps can easily be added (see text).

objects of the built-in Matlab class memmapfile, which cannot
be used in such a way. memmapfile occasionally runs out of vir-
tual addressing space, even if the data is stored only on disk.
MappedTensor does not suffer from this problem. MappedTensors
transparently support complex numbers, another advantage over
memmapfile.

Being able to use MappedTensors as arguments to functions
requires that the tensor is indexed inside the function (as opposed
to manipulating the object without sub-referencing). This implies
that a function using a MappedTensor must not be fully vector-
ized, but must operate on the mapped tensor in segments inside a
for loop. Note that parfor loops are unsupported, but may work
for local clusters or with a shared storage architecture. Functions
that work on every element of a tensor, with an output the same
size as the input tensor, can be applied to a MappedTensor with-
out requiring the entire tensor to be allocated in memory. This is
done with the convenience function SliceFunction.

MappedTensor offers support for basic operations such as
permute and sum, without requiring space for the tensor to be
allocated in memory. Many operations can be performed in O(1)
time, such as negation, multiplication and addition, transpose
and permute. Addition and subtraction of scalars are performed
in O(N) time.

MappedTensor is implemented as a Matlab class, wrapping effi-
cient file access and tensor handling functions. MappedTensor

inherits from the Matlab handle class, which implies that

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 85 | 6

http://dylan-muir.com/articles/mapped_tensor/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Muir and Kampa Matlab analysis of two-photon imaging data

duplicating a MappedTensor object does not duplicate the under-
lying data storage. Copies of a single MappedTensor contain the
same data and properties, and modifying one copy modifies
them all.

Examples of using MappedTensor objects are given in Listing 3.

4.2. TIFFStack CLASS
A TIFFStack object3 behaves like a read-only memory mapped
TIFF file. The entire image stack is treated as a Matlab tensor. Each
frame of the file must have the same dimensions. Reading the
image data is optimized to the extent possible; the header infor-
mation is only read once. permute, ipermute and transpose are
transparently supported, with O(1) time requirements.

Examples of using TIFFStack objects are given in Listing 4.

4.3. ADAPTING FocusStack TO NEW FILE FORMATS
Enabling FocusStack to open new file formats requires adapting
the FocusStack/OpenFiles static method. Depending on the file
extension, OpenFiles must create a handle to a mapped file using
MappedTensor, TIFFStack, memmapfile or any other appropri-
ate method. OpenFiles must also extract any available meta-data
concerning the stack, such as stimulus sequence and stack resolu-
tion. It is important for the design of FocusStack that binary data
access be performed on a lazy basis, so that the memory footprint
remains small.

3http://dylan-muir.com/articles/tiffstack/

The MappedTensor class described above is extremely flexible,
and can easily be used to access binary data files with a wide range
of formats.

4.4. SIZE AND TIME BENCHMARKS
Here we include some benchmarks for memory storage and
data access time using FocusStack and TIFFStack, compared
with loading stacks using the Matlab imread function and the
Two-Photon Processor (2PP; Tomek et al., 2013). All bench-
marks were performed on a MacBook Pro (two-core Intel Core
i7 3 GHz; 8 GB RAM; SSD HD; OS X 10.0) running Matlab
2014a. Scripts used for time benchmarks of FocusStack and
imread are shown in Listings 5 and 6; benchmark results are
given in Table 3. Data storage requirements for FocusStack

Listing 4 | Creating and accessing TIFFStack objects.

tsStack = TIFFStack(’test.tiff’);
% Construct a TIFF stack associated with an existing

file

tsStack(:, :, 1, 3); % Retrieve the 3rd plane of the
1st frame

tsStack(4); % Linear indexing is supported
tsStack.bInvert = true; % Turn on data inversion

tsStack = permute(tsStack, [2 3 1]); % Permutation
is supported in O(1) time

Listing 3 | Creating and accessing MappedTensor objects.

mtVar = MappedTensor(500, 500, 1000, ’Class’, ’single’);
% A new tensor is created, 500x500x1000 of class ’single’. A temporary file is generated on disk to

contain the data for this tensor.

mtVar = MappedTensor(’DataDump.bin’, 500, 500, 1000);
% The file ’DataDump.bin’ is mapped to mtVar.

mtVar = mtVar’;
% Transpose and permutation of dimensions are supported in O(1) time

mtVar(3874)
mtVar(:, 1, 1)
% Linear and subscript indexing are supported

mtVar = -mtVar;
mtVar = 5 + mtVar;
mtVar = 5 - mtVar;
mtVar = 12 .* mtVar;
mtVar = mtVar / 5;
% Unary and binary mathematical operations are supported, as long as they are performed with a scalar.

Multiplication, division and negation take O(1) time; addition and subtraction take O(N) time.

mfSum = sum(mtVar, 3);
% Summation is performed without allocating space for mtVar in memory.

mtVar2 = SliceFunction(mtVar, @(m)(fft2(m), 3);
% ’fft2’ will be applied to each Z-slice of mtVar in turn, with the result returned in the newly-created

MappedTensor mtVar2.

SliceFunction(mtVar, @()(randn(500, 500)), 3);
% "Slice assignment" is supported, by using "generator" functions that accept no arguments. The assignment

occurs while only allocating space for a single tensor slice in memory.

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 85 | 7

http://dylan-muir.com/articles/tiffstack/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Muir and Kampa Matlab analysis of two-photon imaging data

Listing 5 | Timing the loading of a stack using FocusStack.

%% - Time FocusStack creation
tic;
for (nRep = 1:nNumReps)

fs = FocusStack({’sponti1.tif’, ’sponti2.tif’});
end
toc ./ nNumReps

%% - Time loading the entire stack
tic;
fs = FocusStack({’sponti1.tif’, ’sponti2.tif’});
tfStack = fs(:, :, :, :);
toc

Listing 6 | Timing the loading of a TIFF file using imread.

tic;
% - Load frames from stack 1
nNumFrames = numel(imfinfo(’sponti1.tif’));
for (nFrame = nNumFrames:-1:1)

tfStack1(:, :, nFrame) = imread(’sponti1.tif’,
’Index’, nFrame);

end

% - Load frames from stack 2
nNumFrames = numel(imfinfo(’sponti2.tif’));
for (nFrame = nNumFrames:-1:1)

tfStack2(:, :, nFrame) = imread(’sponti2.tif’,
’Index’, nFrame);

end
toc

and TIFFStack objects were estimated by linearizing the objects
using the Matlab struct command. When timing file loading, the
range of several benchmark trials is reported, skipping the first
trial.

When accessing stacks stored in the “Focus” binary format,
FocusStack required 0.05% of the memory storage than a Matlab
matrix in a data-native format (uint8), and 0.006% of that
required when using the default Matlab format (double).

When accessing data in TIFF format, FocusStack required
4% of the memory storage than using the 2PP or a data-native
Matlab matrix (uint16), and 1% of that required when using
the default Matlab format (double). In addition, TIFFStack and
FocusStack were considerably faster when accessing data: 2PP
required between three and nine times as long to read data.
FocusStack and imread performed comparably, with FocusStack

requiring 1.5 times as long as imread to read data; however,
TIFFStack was approximately twice as fast as imread.

The low-level primitives used by FocusStack therefore
allow efficient access to binary stack data, both in terms
of speed and of memory usage. The time required to load
data, align a stack and extract calcium responses was com-
pared between FocusStack and 2PP. FocusStack/Align and
FocusStack/ExtractRegionResponses were called in sequence
to process a binary stack. The same stack was processed using 2PP
via the TSeriesProcessor/getIntensities method, called with
a minimal set of parameters. FocusStack completed alignment
and signal extraction in only 30% of the time required by 2PP, and

Table 3 | Memory storage and time benchmarks for FocusStack,

TIFFStack, imread, and the Two-Photon Processor (2PP; Tomek

et al., 2013).

Benchmark Result

BINARY FILE FORMAT

Data size on disk 241 MBa

Time to create FocusStack object ≈350 ms

Time to read in data for entire stack FocusStack 16–17 s

Memory usage within Matlab FocusStack 108 kB

data-native uint8 tensor 230 MB

default double tensor 1.8 GB

TIFF FILE FORMAT

Data size on disk 958 MBb

Time to create stack FocusStack ≈280 ms

TIFFStack ≈230 ms

Time to read in data for entire stack FocusStack 18–25 s

TIFFStack 6.5–7.4 s

imread 12–17 s

Two-photon processor (2PP) 57–68 s

Memory usage within Matlab FocusStack 33 MBc

Two-photon processor (2PP) 900 MB

data-native uint16 tensor 900 MB

default double tensor 3.5 GB

DATA ACCESS AND PROCESSING

Data size on disk 116 MBd

Time required to load data, align stack and extract calcium

responses FocusStack 150 s

Two-photon processor (2PP) 470 s

Memory usage within Matlab FocusStack 230 kB

Two-photon processor (2PP) 116 MB

a128 × 128 × 7378 × 2 pixels, 8-bit data across 7 files.
b512 × 512 × 900 × 1 pixels, 16-bit data across 2 files.
cMemory usage by FocusStack for TIFF data is mostly consumed by caching

of image header information within TIFFStack objects.
d128 × 128 × 7378 × 1 pixels, 8-bit data across 7 files.

in 0.2% of the memory footprint. Note that the performance of
both packages will depend greatly on the exact processing pipeline
used.

5. HIGH-LEVEL INTERFACE TO StimServer
StimServer is a new, open source, Matlab-based stimulus gen-
eration and sequencing server for visual stimulation, using
Psychtoolbox for low-level driving of a stimulus screen (Brainard,
1997; Pelli, 1997; Guizar-Sicairos et al., 2008). Stimuli are
designed and configured on the server machine, after which
StimServer is designed to be controlled remotely to initiate
stimulus presentation. StimServer requires either the Matlab
Instrument Control Toolbox (ICT4) or the TCP/UDP/IP Toolbox
(PNET5 ; included with Psychtoolbox) for low-level network
communication.

4http://www.mathworks.com/products/instrument/
5http://www.mathworks.com/matlabcentral/fileexchange/345-tcp-udp-ip-tool
box-2-0-6

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 85 | 8

http://www.mathworks.com/products/instrument/
http://www.mathworks.com/matlabcentral/fileexchange/345-tcp-udp-ip-toolbox-2-0-6
http://www.mathworks.com/matlabcentral/fileexchange/345-tcp-udp-ip-toolbox-2-0-6
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Muir and Kampa Matlab analysis of two-photon imaging data

5.1. CONFIGURING STIMULI
An example of generating stimulus objects and configuring
StimServer is given in Listings 7 and 8. Stimuli are represented
as Matlab structures with a standard format that describes the
parameters of a stimulus, which parameters are available for mod-
ification by the remote controlling process, and the names of the
stimulus generation, presentation, and description functions.

Listing 7 | Initialization of the StimServer environment.

% - Create PsychToolbox window
[hWindow, vnScreenRect] = ...
Screen(’OpenWindow’, nStimScreen, nGrey);

% - Get display size calibration
vfDisplaySizeMetres = [0.48 0.396];
vnResolution = [1280 800];
fDistanceFromEyeMetres = 0.28;

[vfPixelsPerDegree, vfDegreesPerMetre, ...
vfPixelsPerMetre, vfSizeDegrees] = ...
CalibrateDisplay(vfDisplaySizeMetres, ...

vnResolution, fDistanceFromEyeMetres);

% - Configure frame markers
FrameMarkerFlip(hWindow, [40 40], true, true, false);

Listing 8 | Configuring a set of stimuli and starting the

StimServer.

% - Construct drifting grating stimuli
tFrameDuration = GetSafeFrameDurations(hWindow,

0.03);%30 ms
tStimulusDuration = 4; % 4 s
nNumRepeats = 1;
vfSizeDegrees = []; % Full screen
fCyclesPerDegree = 1/20; % cycles/deg
fPixelsPerDegree = mean(vfPixelsPerDegree);
fBarWidthDegrees = []; % 50% duty cycle
fShiftCyclesPerSec = 1; % Hz
fRotateCyclesPerSecond = 0;

nNumDirections = 16;
vfDirections = linspace(0, 360, nNumDirections+1);
vfDirections = vfDirections(1:end-1);

for (nDir = 1:nNumDirections)
vsGratings(nDir) = ...
STIM_SquareGrating(tFrameDuration, ...

tStimulusDuration, nNumRepeats, ...
vfSizeDegrees, fCyclesPerDegree, ...
fPixelsPerDegree, fBarWidthDegrees, ...
vfDirections(nDir), fShiftCyclesPerSec, ...
fRotateCyclesPerSecond);

end

% - Make drifting grating sequence
sSquareGratSeq = STIM_Sequence(nan, vsGratings);

% - Configure and start StimServer
vsStimuli = [sSparseNoise sSquareGratSeq sMovie];
nStimServerListenPort = 5000;
StartStimulusServer(vsStimuli, ...
nStimServerListenPort, hWindow, true);

Stimuli are configured using a set of generation functions
(STIM...). These functions return stimulus objects which are
then passed directly to StimServer. The number and iden-
tity of a set of stimuli is fixed once StimServer is started.
However, many or all parameters of a given stimulus can be
determined dynamically at presentation time, by sending a set
of stimulus arguments over a network interface when triggering
stimulus presentation. For example, the server could be config-
ured with a single drifting grating stimulus. At presentation time,
the network interface could dynamically set the orientation and
drift speed, as well as other parameters of the stimulus.

5.2. CONTROLLING THE SERVER REMOTELY
Stimulus presentation is triggered over a network link (both TCP
and UDP are supported). A series of textual commands are used
to control stimulus presentation, parameters, and sequencing. An
example dialogue between a controlling machine and StimServer

is shown in Figure 4.
Most parameters of a visual stimulus can be controlled

remotely at presentation time, including the order of presentation
of a stimulus sequence. In this case the remote controlling process
generates a pseudo-random sequence in which to present a set of
stimuli; this sequence can then be recorded as meta-data along
with the acquired neuronal responses. Alternatively, dynamic
stimulation can be performed—for example, setting an arbitrary
orientation or spatial frequency of a drifting grating—online
during an experiment.

Once a connection is established with the server, a reverse
“talkback” connection can be configured so that feedback and
confirmation of commands is available to the remote controlling

FIGURE 4 | Example dialogue between StimServer and controlling

machine. Commands are sent over the command channel (red); talkback
notifications are sent of the talkback channel (blue).

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 85 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Muir and Kampa Matlab analysis of two-photon imaging data

process. Logging of stimulus commands and any error messages
are either logged by StimServer locally to a file, or delivered over
another network connection for storage along with the acquired
experimental data.

5.3. ADDING NEW STIMULI
Many useful visual stimuli are available out of the box (see
Table 4), and including new stimuli is straightforward due to
the modular architecture of StimServer. Stimuli have a com-
mon defining structure, requiring a generation function, a
description function and a presentation function. Any new
stimulus that adheres to this interface can then be included
in new stimulus sets, transparently to the core StimServer

code.
StimServer also provides a PresentSimpleStimulus function,

which takes care of all the low-level timing and presentation
tasks for stimuli comprising drifting and rotating textures, with
optional masking.

A flowchart showing execution flow through StimServer,
indicating functions replaced by user-defined stimuli, is given in
Figure 5.

6. EXAMPLE EXPERIMENTS AND ANALYSIS
In this section we present analysis of in vivo two-photon calcium
imaging recordings from mouse primary visual cortex (V1). The
goal of the experiment was to characterize responses in mouse
V1 to drifting grating and to natural visual stimuli, in popula-
tions of neurons with overlapping receptive fields. Experimental
procedures followed the guidelines of the Veterinary Office of
Switzerland and were approved by the Cantonal Veterinary Office
in Zurich.

Example data and example scripts that reproduce the analyses
in this section are available as supplementary information.

6.1. TWO-PHOTON CALCIUM IMAGING OF NEURONAL RESPONSES IN
MOUSE V1

Methods for two-photon acquisition were as described else-
where (Kampa et al., 2011; Roth et al., 2012). Briefly, C57BL/6
mice (at P75–P90) were initially anesthetized with 4–5% isoflu-
rane in O2 and maintained on 1.5–2% during the surgi-
cal procedure. The primary visual cortex (V1) was localized
using intrinsic imaging. A craniotomy of 3–4 mm was opened
above the region of strongest intrinsic signal response. The
genetically encoded calcium indicator GCaMP6m (Chen et al.,
2013) (AAV1.Syn.GCaMP6m.WPRE.SV40; UPenn) was injected
around 250 μm below the cortical surface to target superfi-
cial layer neurons. The craniotomy was then sealed with a
glass window. After recovery and expression of the calcium
indicator, animals were head-fixed and calcium transients
were acquired using a custom-built two-photon microscope
equipped with a 40× water-immersion objective (LUMPlanFl/IR,
0.8 NA; Olympus). Frames of 128×128 pixels were acquired at
7.81 Hz with bidirectional scanning using custom-written soft-
ware (“Focus”; LabView; National Instruments).

Visual stimuli generated with StimServer were presented on a
24 inch LCD monitor (1200 × 800 pixels; 60 Hz) to the left eye of
the mouse, spanning approximately 80 visual degrees. Details of
each visual stimulus are given below.

Table 4 | Stimuli provided out of the box by StimServer.

Stimulus (STIM_...) Description

Blank Blank stimulus
Sequence Group a set of other stimuli into a

randomizable sequence
SineGrating Drifting and rotating masked sinusoidal

grating
SinePlaid Drifting and rotating plaid composed of two

additively combined sinusoidal gratings,
with arbitrary relative orientations

SquareGrating Drifting and rotating masked square-wave
grating

SquarePlaid Drifting and rotating plaid composed of two
additively combined square-wave gratings,
with arbitrary relative orientations

OscillatingGrating Static oriented square-wave grating that
oscillates in contrast

OscillatingPlaid Static plaid composed of two oriented
square-wave gratings that oscillate in
contrast and phase

SparseNoise Sparse noise composed of pixels arranged
in a grid

SparseNoiseFlicker Sparse noise composed of pixels that
oscillate in contrast

SparseGrating Sparse noise, where each pixel is a masked
square-wave grating that drifts and rotates

BandLimitedNoise Spatially- and temporally-filtered white noise
DotKinematogram Random dot kinematogram stimulus

FlashedImageSequence A sequence of flashed arbitrary images
GaborField A field of Gabors with arbitrary locations and

arbitrary individual parameters, that drift in
phase and rotate

GaborGrid A regular grid of Gabors with arbitrary
individual parameters, that drift in phase and
rotate

MaskedMovie Present an arbitrary movie from a file, with a
circular mask

6.2. RECEPTIVE FIELD LOCALIZATION
Knowing the location in visual space of the receptive fields
(RF) of the neurons in an imaged region of visual cortex
is important, if properties of the neural responses should
be compared between neurons with fully overlapping RFs. If
masked stimuli are to be used, the location and extent of the
mask will depend also on the RF locations of the recorded
neurons.

StimServer provides several stimuli for estimating RF loca-
tions: STIM_SparseNoise uses flashed high-contrast squares;
STIM_SparseNoiseFlicker uses contrast-reversing squares; and
STIM_SparseGrating uses patches of drifting and rotating high-
contrast gratings. We configured a 5×5 grid of 12 deg. diameter
pixels on the stimulus screen, with 40% overlap between adjacent
pixels. Each pixel contained a 100% contrast vertical square-wave
grating of 25 deg. per cycle, drifting at 1 Hz and presented for
1 s, with the full set of pixels presented in random order. Seven
random repeats of the stimulus were collected to estimate RF
location.

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 85 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Muir and Kampa Matlab analysis of two-photon imaging data

FIGURE 5 | Overview of StimServer information flow. (A) A list of
stimuli and stimulus sequences is constructed (see Listing 8). (B)

StartStimulusServer is called from the Matlab command line. (C) If
the Instrument Control Toolbox is used for network communication (green),
control returns to the Matlab command line (i.e., non-blocking network
listening). If PNET is used for network communication then StimServer
enters a blocking poll loop (blue). When a presentation command is
received (D), the stimulus-defined presentation function is called (E).
Commands shown in orange are modular, and can be replaced to introduce
new stimulus classes.

An example of RF localization analysis is given in Figure 6.
Segmented single-trial per-pixel responses are shown in
Figure 6D; the trial-averaged response matrix is shown in
Figure 6G. Both come directly from ExtractRegionResponses.
A smoothed RF estimate was obtained by summing Gaussian
fields located at each pixel, with a diameter of 12 deg., modulated
by the amplitude of the average calcium response of that pixel
(Figure 6H).

6.3. ORIENTATION TUNING
The canonical cortically-derived feature in primary visual cor-
tex is tuning for the orientation (or direction) of a drifting edge
(Hubel and Wiesel, 1962; Ohki et al., 2005). We used responses to
drifting grating stimuli to characterize the direction tuning curves
of neurons in mouse V1.

StimServer provides drifting sinusoidal and drifting square-
wave grating stimuli with a large range of manipulatable
parameters. We presented full-field drifting high-contrast sinu-
soidal gratings at 16 drift directions, with spatial frequency
of 20 deg per cycle and temporal frequency of 1 Hz (the
STIM_SineGrating stimulus provided by StimServer). These
stimuli were presented for 2 s each in random order, over
5 trials.

An example analysis of orientation tuning of a single cortical
neuron is given in Figure 6. Segmented single-trial single-neuron
responses are shown in Figure 6E. A polar plot of the trial-
averaged responses for the same neuron are shown in Figure 6I.
Both these data come directly from ExtractRegionResponses.

6.4. NATURAL MOVIE REPRESENTATIONS
Neurons in visual cortex show complex selectivity for natu-
ral scenes and movies (Kampa et al., 2011). We recorded the
responses of populations of neurons in mouse V1, to a sequence
of short grayscale movies with normalized contrast. We character-
ized the efficiency of encoding natural movies on a single-neuron
level and on a population level, by measuring the sparseness of
neuronal responses.

StimServer provides stimuli for presenting randomized
sequences of flashed images (STIM_FlashedImageSequence),
as well as efficient stimulation with movies in standard
Matlab-readable formats (STIM_MaskedMovie). Both these stim-
uli attempt to cache frames to the extent possible, leading to
efficient presentation of stimuli without dropped frames. We
presented 7 trials of a 43 s duration natural movie sequence
(30 Hz movie frame rate), centered at the average location of
the RF of the imaged population, and spanning approximately
70 visual degrees. The movie consisted of a sequence of three
segments of video. Responses up to 1.5 s post the onset of the
stimulus and after each movie transition were excluded from
analysis.

An example analysis of the natural movie response of a single
neuron in mouse V1 is given in Figure 6. Segmented single trial
responses are shown in Figure 6F. Once again, these traces come
directly from ExtractRegionResponses. An analysis of lifetime
(LT) and population (Pop.) response sparseness, defined as the
skewness of the calcium responses either over time (LT) or
over simultaneous responses in the population (Pop.), is shown
in Figure 6J. These data were calculated simply by taking the
trial-averaged response matrix from ExtractRegionResponses,
and passing it to the Matlab skewness function.

7. CONCLUSION
FocusStack provides a toolbox for simple yet powerful anal-
ysis of calcium imaging data. It presents an abstraction layer
that takes advantage of standard Matlab tensor represen-
tations, but facilitates analysis by being aware of stimulus
information and other experiment-related meta-data required
to interpret neuronal responses (Figure 2). Many low-level,
repeated tasks of calcium signal extraction and analysis are
taken care of by the toolbox, ensuring consistent analysis
between experiments and minimizing errors introduced by
re-writing code.

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 85 | 11

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Muir and Kampa Matlab analysis of two-photon imaging data

FIGURE 6 | Example analyses conducted with FocusStack and

StimServer from recordings made in mouse V1. (A) An RF localization
experiment, where a sparse random stimulus is presented over a 5×5 mesh.
(B) Measuring preferred orientation using drifting gratings. (C) Recording
single-neuron and population responses to natural movie stimuli. (D)

Single-trial single-neuron calcium responses to sparse noise stimuli. (E)

Single-trial single-neuron responses to drifting high-contrast gratings. (F)

Single-trial single-neuron calcium responses to a natural movie stimulus. (G)

and (H) show the estimated RF location for the neuron shown in (D). (I) The
trial-averaged direction tuning curve for the neuron shown in (E). (J) The
population distribution of lifetime (L.T.) and population (Pop.) sparseness,
from responses imaged simultaneously with the neuron shown in (F).
Stimulus onset in all traces (D, E, F) is indicated by a vertical tick mark. Data
provided by M. Roth.

StimServer provides a modular toolbox for stimulus
generation and sequencing in Matlab, in conjunction with
Psychtoolbox. It is designed to integrate into two-photon imag-
ing systems, by allowing triggering of arbitrary stimuli over a
network interface (Figures 1, 4, 5). Presentation order and most
stimulus parameters can be reconfigured dynamically over the
network interface during an experiment, allowing a two-photon
acquisition system to sequence visual stimuli and then store
stimulus information along with acquired imaging data.

When this stimulus meta-data is provided to FocusStack, the
toolbox takes care of extraction of stimulus-related responses, by
automatically performing time-series segmentation and deran-
domization of a two-photon stack. This implies that responses
to complex and arbitrary sets of stimuli can be extracted and
analyzed easily with few lines of code (see Figure 6).

FocusStack and StimServer comprise an open-source tool
chain provided to the neuroscience community. We expect that
the open availability and easy to use structure will encourage
uptake of consistent analysis tools in the field, as well as
many contributions to add and exchange features in both
toolboxes.

FocusStack and StimServer are available as version-
controlled GIT repositories, or as stand-alone downloads, from
https://bitbucket.org/DylanMuir/twophotonanalysis and https://
bitbucket.org/DylanMuir/stimserver.

AUTHOR CONTRIBUTIONS
Dylan R. Muir designed and implemented the toolbox code,
and wrote the manuscript. Björn M. Kampa contributed to the
toolbox code, and wrote the manuscript.

FUNDING
This work was supported by the Novartis Foundation (grant to
Dylan R. Muir), Velux Stiftung (grant to Dylan R. Muir), the Swiss
National Science Foundation (Grant Nr. 31-120480 to Björn M.
Kampa), and the EU-FP7 program (BrainScales project 269921 to
Björn M. Kampa).

ACKNOWLEDGMENTS
The authors would like to express effusive thanks to M. Roth for
acquiring the experimental data illustrated in this manuscript and

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 85 | 12

https://bitbucket.org/DylanMuir/twophotonanalysis
https://bitbucket.org/DylanMuir/stimserver
https://bitbucket.org/DylanMuir/stimserver
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Muir and Kampa Matlab analysis of two-photon imaging data

making it available for distribution (Figures 1, 2, 6). We grate-
fully acknowledge the contributions of the users of FocusStack
and StimServer in locating and fixing bugs, and those who
also contributed code to the toolboxes. In particular, we would
like to thank M. Roth, P. Molina-Luna, and A. Keller for their
contributions.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fninf.2014.

00085/abstract

REFERENCES
Brainard, D. H. (1997). The psychophysics toolbox. Spat. Vis. 10, 433–436. doi:

10.1163/156856897X00357
Chen, T.-W., Wardill, T. J., Sun, Y., Pulver, S. R., Renninger, S. L., Baohan, A., et al.

(2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature
499, 295–300. doi: 10.1038/nature12354

Dyer, E. L., Studer, C., Robinson, J. T., and Baraniuk, R. G. (2013). “A robust and
efficient method to recover neural events from noisy and corrupted data,” in
Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference on
(San Diego, CA: IEEE), 593–596.

Göbel, W., Kampa, B. M., and Helmchen, F. (2007). Imaging cellular network
dynamics in three dimensions using fast 3d laser scanning. Nat. Methods 4,
73–79. doi: 10.1038/nmeth989

Grewe, B. F., Langer, D., Kasper, H., Kampa, B. M., Helmchen, F., Grewe, B. F., et al.
(2010). High-speed in vivo calcium imaging reveals neuronal network activity
with near-millisecond precision. Nat. Methods 7, 399. doi: 10.1038/nmeth.1453

Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985). A new generation of ca2+
indicators with greatly improved fluorescence properties. J. Biol. Chem. 260,
3440–3450.

Guizar-Sicairos, M., Thurman, S. T., and Fienup, J. R. (2008). Efficient sub-
pixel image registration algorithms. Opt. lett. 33, 156–158. doi: 10.1364/OL.33.
000156

Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154.

Kampa, B. M., Roth, M. M., Göbel, W., and Helmchen, F. (2011). Representation of
visual scenes by local neuronal populations in layer 2/3 of mouse visual cortex.
Front. Neural Circuits 5:18. doi: 10.3389/fncir.2011.00018

Langer, D., van’t Hoff, M., Keller, A. J., Nagaraja, C., Pfäffli, O. A., Göldi, M., et al.
(2013). Helioscan: a software framework for controlling in vivo microscopy
setups with high hardware flexibility, functional diversity and extendibility. J.
Neurosci. Methods 215, 38–52. doi: 10.1016/j.jneumeth.2013.02.006

Lütcke, H., Gerhard, F., Zenke, F., Gerstner, W., and Helmchen, F. (2013). Inference
of neuronal network spike dynamics and topology from calcium imaging data.
Front. Neural Circuits 7:201. doi: 10.3389/fncir.2013.00201

Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M., and Miyawaki, A. (2004).
Expanded dynamic range of fluorescent indicators for ca2+ by circularly
permuted yellow fluorescent proteins. Proc. Natl. Acad. Sci. U.S.A. 101,
10554–10559. doi: 10.1073/pnas.0400417101

Ohki, K., Chung, S., Ch’ng, Y. H., Kara, P., and Reid, R. C. (2005). Functional imag-
ing with cellular resolution reveals precise micro-architecture in visual cortex.
Nature 433, 597–603. doi: 10.1038/nature03274

Pelli, D. G. (1997). The videotoolbox software for visual psychophysics: trans-
forming numbers into movies. Spat. Vis. 10, 437–442. doi: 10.1163/156856897X
00366

Roth, M. M., Helmchen, F., and Kampa, B. M. (2012). Distinct functional proper-
ties of primary and posteromedial visual area of mouse neocortex. J. Neurosci.
32, 9716–9726. doi: 10.1523/JNEUROSCI.0110-12.2012

Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). Nih image to
imagej: 25 years of image analysis. Nat. Methods 9, 671–675. doi: 10.1038/
nmeth.2089

Tomek, J., Novak, O., and Syka, J. (2013). Two-photon processor and seneca: a freely
available software package to process data from two-photon calcium imaging at
speeds down to several milliseconds per frame. J. Neurophysiol. 110, 243–256.
doi: 10.1152/jn.00087.2013

Vogelstein, J. T., Packer, A. M., Machado, T. A., Sippy, T., Babadi, B., Yuste,
R., et al. (2010). Fast nonnegative deconvolution for spike train inference
from population calcium imaging. J. Neurophysiol. 104, 3691–3704. doi:
10.1152/jn.01073.2009

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 22 September 2014; accepted: 02 December 2014; published online: 20
January 2015.
Citation: Muir DR and Kampa BM (2015) FocusStack and StimServer: a new open
source MATLAB toolchain for visual stimulation and analysis of two-photon calcium
neuronal imaging data. Front. Neuroinform. 8:85. doi: 10.3389/fninf.2014.00085
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2015 Muir and Kampa. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in
this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Neuroinformatics www.frontiersin.org January 2015 | Volume 8 | Article 85 | 13

http://www.frontiersin.org/journal/10.3389/fninf.2014.00085/abstract
http://www.frontiersin.org/journal/10.3389/fninf.2014.00085/abstract
http://dx.doi.org/10.3389/fninf.2014.00085
http://dx.doi.org/10.3389/fninf.2014.00085
http://dx.doi.org/10.3389/fninf.2014.00085
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	FocusStack and StimServer: a new open source MATLAB toolchain for visual stimulation and analysis of two-photon calcium neuronal imaging data
	Introduction
	Existing Two-Photon Stack Analysis Packages

	Toolchain Overview
	High-Level Interface to FocusStack
	Stack Meta-Data
	Stack alignment
	Defining the baseline fluorescence distribution

	Stack Segmentation, Stimulus Derandomization and Extracting Calcium Responses
	Defining regions of interest (ROIs)
	Extracting calcium responses

	Interfacing with Other Software

	Low-Level FocusStack Representation
	MappedTensor Class
	TIFFStack Class
	Adapting FocusStack to New File Formats
	Size and Time Benchmarks

	High-Level Interface to StimServer
	Configuring Stimuli
	Controlling the Server Remotely
	Adding New Stimuli

	Example Experiments and Analysis
	Two-Photon Calcium Imaging of Neuronal Responses in Mouse V1
	Receptive Field Localization
	Orientation Tuning
	Natural Movie Representations

	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


