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This work is focused on mapping biomedical datasets to a common representation,

as an integral part of data harmonization for integrated biomedical data access and

sharing. We present GEM, an intelligent software assistant for automated data mapping

across different datasets or from a dataset to a common data model. The GEM system

automates data mapping by providing precise suggestions for data element mappings.

It leverages the detailed metadata about elements in associated dataset documentation

such as data dictionaries that are typically available with biomedical datasets. It employs

unsupervised text mining techniques to determine similarity between data elements and

also employs machine-learning classifiers to identify element matches. It further provides

an active-learning capability where the process of training the GEM system is optimized.

Our experimental evaluations show that the GEM system provides highly accurate data

mappings (over 90% accuracy) for real datasets of thousands of data elements each,

in the Alzheimer’s disease research domain. Further, the effort in training the system

for new datasets is also optimized. We are currently employing the GEM system to

map Alzheimer’s disease datasets from around the globe into a common representation,

as part of a global Alzheimer’s disease integrated data sharing and analysis network

called GAAIN1. GEM achieves significantly higher data mapping accuracy for biomedical

datasets compared to other state-of-the-art tools for database schema matching that

have similar functionality. With the use of active-learning capabilities, the user effort in

training the system is minimal.
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BACKGROUND AND SIGNIFICANCE

This paper describes a software solution for biomedical data harmonization. Our work is in the
context of the “GAAIN” project in the domain of Alzheimer’s disease data. However, this solution
is applicable to any biomedical or clinical data harmonization in general. GAAIN—the Global
Alzheimer’s Association Interactive Network is a data sharing federated network of Alzheimer’s
disease datasets from around the globe. The aim of GAAIN is to create a network of Alzheimer’s
disease data, researchers, analytical tools and computational resources to better our understanding
of this disease. A key capability of this network is also to provide investigators with access to
harmonized data across multiple, independently created Alzheimer’s datasets.

1http://www.gaain.org.
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Our primary interest is in biomedical data sharing and
specifically harmonized data sharing. Harmonized data
from multiple data providers has been curated to a unified
representation after reconciling the different formats,
representation, and terminology from which it was derived
(Doan et al., 2012, Principles of data integration; Ohmann
and Kuchinke, 2009). The process of data harmonization can
be resource intensive and time consuming the present work
describes a software solution to significantly automate that
process. Data harmonization is fundamentally about data
alignment - which is to establish correspondence between related
or identical data elements across different datasets. Consider the
very simple example of a data element capturing the gender of
a subject that is defined as “SEX” in one dataset, “GENDER” in
another and “M/F” in yet another. When harmonizing data, a
unified element is needed to capture this gender concept and
to link (align) the individual elements in different datasets with
this unified element. This unified element is the “G.GENDER”
element as illustrated in Figure 1.

The data mapping problem can be solved in two ways as
illustrated in Figure 1. We could map elements across two
datasets, for instance match the element “GENDER” from one
data source (DATA SOURCE 1 in Figure 1) to the element “SEX”
in a second source (DATA SOURCE 2). We could also map
elements from one dataset to elements from a common data
model. A common data model is a uniform representation which
all data sources or providers in a data sharing network agree
to adopt. The fundamental mapping task is the same in both.
Also, the task of data alignment is inevitable regardless of the
data sharing model one employs. In a centralized data sharing
model (NDAR, 2015), where we create a single unified store of
data from multiple data sources, the data from any data source
must be mapped and transformed to the unified representation
of the central repository. In federated or mediated approaches to
data sharing (Doan et al., 2012, Principles of data integration)
individual data sources (such as databases) must be mapped to
a “global” unified model through mapping rules. The common
data model approach, which is also the GAAIN approach, also
requires us to map and transform every dataset to the (GAAIN)
common data model. This kind of data alignment or mapping
can be labor intensive in biomedical and clinical data integration
case studies (Ashish et al., 2010). A single dataset typically has
thousands of distinct data elements of which a large subset must
be accurately mapped. And it is widely acknowledged that data

FIGURE 1 | Data element mapping.

sharing and integration processes need to be simplified and made
less resource intensive for data sharing, for them to become a
viable solution for the medical and clinical data sharing domain
as well as the more general enterprise information integration
domain (Halevy et al., 2005). The GEM system is designed to
achieve this by providing automated assistance to developers for
such data alignment or mapping.

The GEM data mapping approach is centered on exploiting
the information in the data documentation, typically in the form
of data dictionaries associated with the data. The importance
of data dictionary documentation, and for Alzheimer’s data in
particular, has been articulated in Morris et al. (2006). These
data dictionaries contain detailed descriptive information and
metadata about each data element in the dataset. Our solution
is based on extracting this rich metadata in data dictionaries,
developing element similarity measures based on text mining
of the element descriptions, and employing machine-learning
classifiers tomeaningfully combinemultiple indicative factors for
an element match.

MATERIALS AND METHODS

Here we report the second version of the GEM system (Ashish
et al., 2015). The first version (GEM-1.0) (Ashish et al., 2015),
deployed in December 2014 is a knowledge driven system.
Element matches are determined in a heuristic manner based
on element similarity derived off the element metadata in data
dictionaries. In this second version (GEM-2.0), completed in
April 2015, we added machine-learning based classification to
the system. We have further added capabilities of active-learning
(Cohn et al., 1996) where the user effort in training the machine-
learning classifiers in the system is minimized.

While GEM-2.0 data mapping is powered by machine-
learning classification, it employs the element metadata
extraction developed in GEM-1.0 for synthesizing features
required for classification. In this section we will describe the
extraction of metadata from data dictionaries and element
similarity metrics as developed in GEM-1.0. We then describe
the machine-learning classification capabilities developed in
GEM-2.0. The last sub-section describes the active-learning
capability for training the system for new datasets, in an efficient
manner. Before describing the system however, we clarify some
terminology and definitions.

• A dataset is a source of data. For example a dataset provided by
“ADNI”2 is a source.

• A data dictionary is the document associated with a dataset,
which defines the terms used in the dataset.

• A data element is an individual “atomic” unit of information
in a dataset, for instance a field or a column in a table in a
database or in a spreadsheet.

• The documentation for each data element in a data dictionary
is called element metadata or element information.

• A mapping or element mapping is a one-to-one relationship
across two data elements, coming from different sources.

2ADNI—The Alzheimer’s Disease Neuroimaging Initiative is a database of

Alzheimer’s disease research data created and maintained by the laboratory of

Neuro Imaging.
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• Mappings are created across two distinct sources. The element
that we seek to match is called the query element. The source
we must find matches from is called the target source and the
source of the query element is called the query source.

◦ Note: A common data model may also be treated as a target
source.

• For any element, the GEM system provides a set of suggestions
(typically 5). We refer to this set as the window of suggestions.

Metadata Extraction for Element Similarity
Medical datasets, including datasets in domains such as
Alzheimer’s disease, are typically documented in data
dictionaries. The data dictionary provides information about
each element, including descriptions of the data element and
other details such as its data type, range or set of possible values
etc.

Figure 2 illustrates some snippets from a data dictionary for a
particular Alzheimer’s disease dataset. The element described (on
the left) is called “BILLS” and includes a short as well as a more
complete description of this data element. We are also provided
information about its type (numeric code in this case) and also
the possible values it can take, i.e., one of {0,1,2,3,8}. Such element
information is the basis for identifying GEM element mappings.

As a data mapping system GEM operates as follows:

• Elements are matched based on a metric of element similarity
that is assessed by using the above illustratedmetadata for each
element.

• Such metadata is first extracted from the data dictionaries (of
the datasets to be matched) and stored in ametadata database.

• Elements are matched from a source dataset to a target
dataset. For instance wemay be interested in findingmappings
between two datasets such as ADNI and say “NACC”3 of
which one would be the source and the other the target.

3NACC—The National Alzheimer’s Coordinating Center is another database of

Alzheimer’s disease research data.

◦ The target may also be a common data model. The elements
of the common model are treated as (data) elements of a
target data model.

• In determining the possible matches for a given data element,
some of the metadata constraints are used for “blocking,” i.e.,
elimination from consideration of improbable matches. For
instance an element (such as say BILLS) that takes one of 5
distinct coded values (as illustrated above) cannot match to an
element such as BLOOD PRESSURE that takes values in the
range 90–140.

• Probable matches for a data element are determined
using element similarity. The element similarity is a
score that captures how well (or not) the corresponding
text descriptions of two data elements match. This
text description similarity is computed using two
approaches.

◦ One is to use a TF-IDF cosine distance on a bag-of-
words representation of the text descriptions. TF-IDF,
short for term frequency–inverse document frequency,
is a numerical statistic that is intended to reflect how
important a word is to a document in a collection or corpus
(Robertson, 2004).

◦ Another approach requires building a topic model (Blei,
2012) over the element text descriptions and using the topic
distribution to derive the similarity between two element
text descriptions.

In machine learning and natural language processing, a topic
model is a type of statistical model for discovering the abstract
topics that occur in a collection of documents (Blei, 2012). Such
topics are not known in advance and are discovered dynamically
during topic modeling. Topics are defined by a set of words from
the document collection. After topic modeling a document is not
assigned to a single topic (necessarily) but rather a document’s
topic is essentially a distribution over multiple topics. In the
second approach for determining text similarity we compare
how similar the topic distributions of two documents (element
descriptions in this case) are.

FIGURE 2 | Element information in data dictionary.
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FIGURE 3 | GEM architecture.

Figure 3 illustrates the current GEM-2.0 architecture and
workflow, GEM-1.0 had the same components minus the
machine-learning classification modules, namely the boxes
labeled “FEATURE EXTRACTOR” and “CLASSIFIER” to the
right in Figure 3. In GEM-2.0 we also added a “NAMEMATCH”
module that determines the similarity of two element names—
this module is capable of matching complex element names
common in biomedical datasets and achieves this by segmenting
complex element names into “components” and matching
element names in a component wise fashion. In GEM-1.0 we
determined element matches by (i) Blocking or filtering out
improbable match candidates based on metadata constraints (the
METADATA FILTER in Figure 1) and (ii) Ranking probable
matches in order of the element similarity that was based on the
element text description similarity. GEM-1.0 is described inmore
detail in Ashish et al. (2015).

Machine Learning Classification
Our motivation for the incorporation of machine-learning based
classification for data mapping in GEM is two-fold. First, we
have multiple indicators that can help in identifying element
matches—for example text similarity measures, other metadata
constraints such as the element data type or set or range of
possible values, and also a measure of the similarity of element
names themselves. A classification approach can learn how to
optimally combine such various indicators for an element match.
Next, the GEM system is intended to operate as an intelligent
software assistant that suggests data mappings to human data
analysts and data integration developers. As such analysts and
developers “select” correct matches (from alternatives provided
by the system), implicitly providing training data to the system
in terms of labeled data mapping examples. The system must
incorporate this training data and improve the data mapping by
leveraging the new knowledge.

The classification problem in our system is to determine,
given a pair of element names (from the source and target),
whether they match (Y) or not (N). We now describe the features
employed for this task.

Features for Classification

The classification is driven off features that are based on
the metadata extracted and the computed element similarity.
Note that the features as defined for a pair of data elements
as the classification task is to classify element pairs into
whether they match or not. The features are in four broad
categories:

(i) Features based on the element text description similarity
(ii) Features based on the element name
(iii) Feature based on metadata constraints
(iv) Other features

Table 1 provides the feature set for classification where we have
provided the specific features, what they essentially represent and
their possible values. Many of these features are synthesized from
the information extracted from the data dictionary about the
elements. For instance the text description similarity scores and
ranks are synthesized from the element text descriptions, this is
described in more detail in Ashish et al. (2015). The name match
score is provided by a name-matching classification module.
Other features like the element cardinality or range are extracted
directly from the data dictionary.

The Table Correspondence Score needs some explanation.
Most datasets are originally housed in database systems, often in
relational database management systems in a relational format.
Data elements are thus organized and grouped into specific
tables, for instance all patient information and demographic
elements (patient age, gender, ethnicity etc.,) would likely be
represented as columns in a demographics table. The table
association can be a useful indicator for data mapping. For
instance if we know that certain elements such as AGE, RACE,
ETHNICITY all belong to a certain table “X” in the source
dataset, and that their corresponding matching elements all
(or mostly) come from a table “Y” in the target dataset, then
it is likely that a new element say GENDER also from table
X in the source has its corresponding matching element in
table Y in the target. The literal table names of elements are
not usable features, as the system would, at best, only learn
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TABLE 1 | Set of features for classification.

Feature basis Feature Description Values

Description

similarity

TFIDF4 based text similarity score

[Tfidf score]

We calculate the similarity score of the text

descriptions based on TFIDF similarity of the two

data elements present in their respective data

dictionaries.

A (real) value in the range 0.0–1.0

Topic model based text similarity score

[Topic score]

We build a topic model from the column

descriptions of all the data elements of the two

sources. We then calculate a similarity score based

on the cosine similarity of the topic distributions of

the two data elements.

A (real) value in the range 0.0–1.0

TFIDF rank [Tfidf rank] The (ordinal) rank based on the TFIDF text match

score

Integer with 1 denoting the top

(best) match

Topic model rank [Topic rank] The rank based on the topic model based text

match score

Integer with 1 denoting top match

Edit distance [Edit distance] A word-based edit distance between associated

element text descriptions

Integer

Element names Name match applicable [Name match] Whether a name match score is applicable (for a

given element pair) or not

Binary, Y or N

Name match score [Name score] A name match score that is provided by an element

name matching classifier module

A (real) value in the range 0.0–1.0

Metadata

constraints

Cardinality [Source/Target cardinality] The number of possible data values for an element

(if discrete)

Integer ≥ 1

Range [Source/Target min/max] The numeric range (if applicable) Real numbers for min and max of

range

Other Table correspondence score [Table

score]

This is a score that captures how well do the tables

that two elements belong to respectively,

correspond to each other

A (real) value in the range 0.0–1.0

about the specific table correspondences in the training data.
This would not scale to unseen table names in the data that
must be actually mapped. We have thus synthesized a feature
called the table correspondence score which is a measure of how
well two tables (one from the source and the other from the
target) “correspond.” Employing the metadata constraints and
the element text description similarity, we can determine the
“best” match for a source element, this is essentially what GEM-
1.0 does. The table correspondence score (TCS) captures the
proportion of such best matches across data elements from two
tables and is defined as:

TCS(eS, eT) =
M(eS, eT)

min(O(Tab(eS)),O(Tab(eT)))

where,

Tab(e) is the table to which element e belongs

M(eS, eT) =

{

1 if best match of eS is in Tab(eT)
0 otherwise

O(Tab(e)) = size of the table of element e (number of columns in
table)

4TFIDF, short for term frequency–inverse document frequency, is a numerical

statistic reflects how important a word is for a document in a collection or corpus

and is used as a weighting factor in information retrieval.

The FEATURE EXTRACTOR module (Figure 3) compiles these
above features from the metadata database. The CLASSIFIER
module is a suite of machine-learning classifiers that can be
trained on annotated training data for a pair of datasets to
be mapped. We have experimented with multiple kinds of
classifiers including functional classifiers such as Support Vector
Machines (SVM) and Logistic Regression, tree based classifiers
such as Random Forest and Simple CART, hybrid classifiers
such as Sequential Minimal Optimization (SMO) and also
neural network classifiers such as the Multi-Layer Perceptron
(Michalski et al., 2013). A comparative analysis of the relative
performance of these classifiers is provided in the Results
section.

Active Learning
The GEM system is intended for use as an intelligent software
assistant that provides precise mapping suggestions but it is a
human analyst that finally accepts or rejects suggested element
mappings. This forms the basis for active-learning in GEMwhere
the user is also provided assistance by the system in intelligently
selecting data mapping instances for training. The GEM user
interface (UI) serves a dual purpose as an intelligent assistant
to help with mappings, and also as an active-learning tool that
collects data for training.

Active learning (Cohn et al., 1996) itself is a special case of
semi-supervised machine learning in which a learning algorithm
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is able to interactively query the user (or some other information
source) to obtain the desired outputs at new data points. There
are situations in which unlabeled data is abundant but manual
labeling is expensive. In such a scenario, learning algorithms
can actively query the user/teacher for labels. Since the learner
chooses the examples, the number of examples to learn a concept
can often be much lower than the number required in normal
supervised learning.

Algorithms for determining which data points should be
labeled can be organized into a number of different categories
(Michalski et al., 2013). These include (i) uncertainty sampling
where we label those points for which the current model is
least certain as to what the correct output should be, (ii) query
by committee where a variety of models are trained on the
current labeled data, and vote on the output for unlabeled data,
(iii) label those points for which the “committee” disagrees the
most, (iv) expected model change where we label those points
that would most change the current model, (v) expected error
reduction where we label those points that wouldmost reduce the
model’s generalization error, and (vi) variance reduction where
we label those points that wouldminimize output variance, which
is one of the components of error. Figure 4 illustrates the two
possibilities for assembling training data to train GEM classifiers.

The first is “passive-learning” where a user must examine
data dictionaries in a brute force manner and determine training
instances. The second is to use active-learning where the system
itself provides selected candidates for training instances, with the
objective of significantly reducing user effort in determining good
training instances. Figure 5A is a screenshot of the GEM data
mapping user interface. Figure 5B illustrates the user options and
workflow.

The user is provided a set of suggested matches for a data
element as shown in Figure 5A. He or she can then (i) Approve
a match if he can identify a correct match from within the
suggestions, (ii) Ask for more match suggestions, (iii) Skip a
particular training instance, and (iv) Finally choose to end the
training data collection session. TheUI also provides information

FIGURE 4 | Training data for GEM.

about each suggested match such as its text description and
associated metadata (not illustrated) to help the user determine
if it is a match or not. The green highlight in the “Mappings”
box in the UI in Figure 5A indicates that the user has vetted that
element match as the correct one. The red highlights indicates
match suggestions provided by the system that the user explicitly
marks as incorrect.

Estimating User Effort
It is important to quantify the user effort with either passive-
learning or active-learning, objectively. The effort is directly
related to the number of data elements that a user must examine
in determining a match and we thus employ the number of data
elements examined as the matric. In active-learning, for a given
source data element, the system suggestsmatches for that element
in the order of the “rank” based on the text description match
scores. Assuming that the user examines target elements in the
order suggested by the GEM UI, the number of (target) elements
examine per source element is simply the rank of the correct
target match element. For instance if the rank of the correct target
match is 9, the user would examine 9 elements from the UI in
serial order and stop at the 9th element identifying it as a correct
match. The total effort to determine N training instances is thus:

E = 6i=1 to N r (ei)

where r(e) = rank of element e

Estimating the effort for passive-learning, even in terms of
the number of elements examined, is somewhat subjective. It
depends on factors such as the user’s familiarity with the domain,
familiarity with the scientific concepts that the data elements
represent, and also any prior knowledge of the particular
dataset(s) to be mapped. We conducted an assessment where we
tasked multiple developers—graduate students and data analysts
tomanually determinemappings across pairs of GAAIN datasets.
The developers had varying degrees of familiarity with the
Alzheimer’s disease domain and datasets.We determined that the
average number of target data elements examined per instance
was approximately N

4 where N is the size of the target dataset
(number of data elements). We will thus estimate the passive-
learning effort in terms of this model, if the user ascertains K
truth setmappings we estimate that the passive-learningmapping
determination effort is KN

4 .

GEM System
As a software system GEM is written in Java. It employs the
following tools and libraries—(i) the H2 main memory relational
database5, (ii) the Mallet toolkit6 for topic modeling and (iii)
theWeka toolkit7 for machine-learning classification. The system
works in a scalable fashion on a regular desktop or laptop
computer with Java being the only requirement. We are currently
working on (a) making the GEM software available for use free
and open-source to the community and (b) providing the GEM
data mapping capabilities as a service that can be invoked over an
API.
5http://www.h2database.com.
6http://mallet.cs.umass.edu.
7http://www.cs.waikato.ac.nz/ml/weka.
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FIGURE 5 | GEM data mapping and active learning interface. (A) GEM UI, (B) Process.

RESULTS

We conducted a series of experimental evaluations with GEM-2.0
system, which are centered on evaluating the mapping accuracy
with machine-learning classification added, and also the effort in
training the system for mapping.

Experimental Setup
The experimental evaluations have been conducted on data
mapping across various GAAIN datasets from different
institutions. We used six of the data sources of Alzheimer’s
disease data that we have in GAAIN namely (1) the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2008),
(2) the National Alzheimer’s Coordinating Center database
(NACC) (Beekly et al., 2007), (3) the Dominantly Inherited
Alzheimer Network database (DIAN) (Morris et al., 2006), (4)
the Integrated Neurogenerative Disease Database (INDD) (Xie
et al., 2011), (5) the Layton Aging and Alzheimer’s Disease
Center database (LAADC) (Wu et al., 2013), and (6) the
Canadian Longitudinal Study of Aging (CLSA) (Raina et al.,
2009). The data providers provided us with data dictionaries
for all of these sources. We manually created truth sets of data
mappings across these dataset pairs, which are used as the gold
standard against which GEM generated mappings and training
effort are evaluated. Each of these datasets contains between

five and then thousand distinct data elements. On an average,
between any two dataset pairs from the above, we have about
200 elements that correspond across both datasets. The duration
to determine these mappings manually was about 3 days per
pair on average, and with the actual time effort ranging between
8 and 12 h per pair. The mappings cannot be typically done
in “one sitting” as the process may require seeking additional
documentation or understanding of the data elements. The
manual mappings were done by graduate students and data
analysts with some familiarity of the neuro-informatics domain.

Mapping Accuracy with Classification
The first experiment is to evaluate the impact of using GEM-2.0
(with machine-learning classification for matching) vs. GEM-
1.0 (with no machine-learning classification). Figure 6A shows
the mapping accuracies achieved, across various pairs of GAAIN
datasets, with GEM-2.0 and GEM-1.0. The mapping accuracy
is provided as F-Measure which is a metric that combines the
precision as well recall—of the matches in this case. In pattern
recognition and information retrieval with binary classification,
precision is the fraction of retrieved instances that are relevant,
while recall is the fraction of relevant instances that are retrieved
(Baeza-Yates and Ribeiro-Neto, 1999). F-Measure itself is defined

as: F-Measure = 2.
precision.recall
precsion+recall

.
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FIGURE 6 | Mapping accuracy. (A) Mapping accuracy, (B) Classifiers.

FIGURE 7 | Feature relevance.

The mapping accuracy achieved with machine-learning
classification in GEM-2.0 is high—at above 90% (with a suggested
matches window size of 5) for all schema pairs (shown for
only 3 pairs). GEM-2.0 is also significantly more accurate
compared to GEM-1.0, thus establishing the importance of a
classification approach over features. We evaluated multiple
classifiers illustrated the best 3 in Figure 6B and determined
that the hybrid SMO classifiers performs best for this task. We
also analyzed the relative importance of the various features.
Figure 7 lists the most important classification features in
terms of the information gain associated with each feature.
Information gain is an entropy based metric that essentially
captures how discriminative (or not) an attribute or feature is
for a classification task (Michalski et al., 2013). The information
gain, while shown for one pair of schemas, is representative of
the importance obtained for all other pairs. We see that the two
text matching scores and ranks are the most important features
driving the major part of the classification. We also observe that
the TF-IDF based text match information is more informative
compared to what the topic model match provides.

Training Effort with Active Learning
The objective of an active-learning capability is to make system
training efficient. We assess the user effort in training the system

TABLE 2 | Impact of active-learning on user effort.

Truth

set

size

Active learning effort

(elements examined)

Passive Learning

Effort* (elements

examined)

Accuracy

(F-measure)

Strategy 1 Strategy 2

Total Average Total Average Total Average

10 342 34 213 21 2500 250 0.79

20 691 35 431 22 5000 250 0.84

30 1004 35 674 22 7500 250 0.91

*Based on passive learning effort estimation.

with active-learning and provide a comparative estimate with the
effort required with passive-learning. Table 2 illustrates the user
effort, in terms of elements examined, for identifying truth set
mapping sets, of increasing sizes. We show the effort for both
active and passive learning (in terms of total number of elements
that had to be examined). For active learning we employed
two slightly different strategies for the user, namely: Strategy 1:
For a given element, repeatedly request more suggestions until
the correct match is shown and identified. Strategy 2: Skip the
element if the matching element is not found in the initial set
of suggestions. We also provide the mapping accuracy of the
GEM system at each stage, i.e., after training it with the examples
identified for the truth set.

As Table 2 shows, the effort required is about 10 times more
with passive-learning than with active-learning. The average
number of target elements examined per source element is 250
elements with passive-learning whereas it is slightly above 20
elements on average for active-learning (Strategy 2). We also
observe that a high mapping accuracy can be achieved with
training the system with a modest number of training examples.

DISCUSSION

The objectives of the GEM system are similar to that of eMERGE
(Pathak et al., 2011) which is a system for mapping phenotype
data elements to standard data elements from ontologies such
as the UMLS and SNOMED CT (Cornet and de Keizer, 2008).
The eMERGE approach to mapping is purely knowledge driven,
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based upon simple lexical matches to ontology concepts in
“pre-coordination” and “post-coordination” phases, depending
upon whether the semantic terms have been previously seen
and mapped or not, respectively. This approach is currently
not applicable to the GEM environment where we may be
mapping data across two dataset schemas vs. from a dataset
to common data elements from ontologies. In the longer term
however, as the GAAIN common model evolves and as we
anchor GAAIN common model terms to standard data elements
such as CDISC (Kuchinke et al., 2009), we could consider the
addition of such semantic mapping techniques to GEM. The
analysis on the element text descriptions in GEM is significantly
more sophisticated. Further, GEM also exploits metadata details
such as element codes, ranges of values etc., for mapping which
eMERGE does not. Data mapping is, in general, frequently
performed manually based on data dictionaries, on any other
information such as database design diagrams (Doan et al.,
2012, Principles of data integration) and in consultation with the
original dataset creators and/or administrators. Data mapping
is well understood (Doan et al., 2001, Reconciling schemas
of disparate data sources: A machine-learning approach) and
there are a number of software tools that have been developed
in the past years that relate to it. Existing tools can be
categorized as metadata visualization tools, Extract-Transform-
Load (ETL), and schema-mapping tools. Metadata visualization
tools are those that create a visual representation of the design
of a database by examining the database itself. For instance
SchemaSpy8 provides functionality of “reverse engineering” to
create a graphical representation of metadata, such as an “ER”
(Entity-Relationship) diagram (Garcia-Molina, 2008) from the
database metadata. Altova9 is a tool for analyzing and managing
relationships among data in data files in XML. These tools
are relevant to our task as they can be employed to examine
the data and/or metadata of new datasets. ETL tools provide
support for data schema mapping. However, the mappings are
not automated and have to be created by hand using a graphical
user interface (GUI). Tools in this category include Talend10,
Informatica11 and Clio (Halevy et al., 2005). The category
most relevant to our data mapping problem is Schema-Mapping
which provides automated mapping of data elements from two
different database or ontology schemas. These tools take as
input the data definition language or “DDL” (Garcia-Molina,
2008) associated with a dataset (database) and match elements
across two database schemas based on the DDL information.
Prominent examples in this category include the Harmony
schema-mapping tool12 from the Open Information Integration
or OpenII initiative and Coma++ (Aumueller et al., 2005). There
are also schema-mapping tools that are based on “learning-from-
examples,” i.e., the system is trained to recognize data element
mappings from a tagged corpus of element matches (from the
domain of interest). LSD (Doan et al., 2001, Reconciling schemas

8http://schemaspy.sourceforge.net.
9http://www.altova.com.
10http://www.talend.com.
11http://www.informatica.com.
12http://openii.sourceforge.net.

of disparate data sources: A machine-learning approach) is
an example in this category. Another tool is KARMA (Gupta
et al., 2012) which has more of an ontology alignment focus as
opposed to data (element) mapping. KARMA has been employed
for data mapping tasks in a variety of domains including in
bioinformatics for mapping various drug databases to a common
ontology, and also other domains such as geospatial data and
environmental data. Finally, PhenoExplorer (PhenoExplorer,
2015), is an online tool that allows researchers to identify research
studies of interest. Specifically, a researcher can search for studies
along a set of dimensions, including race/ethnicity, sex, study
design, type of genetic data, genotype platform, and diseases
studied and the system determines the relevance of a study by
mapping data elements in a study to dimensions specified by a
researcher. Our work was motivated by the observation that the
richmetadata available in data dictionaries of biomedical datasets
can be leveraged toward a significantlymore automated approach
to schema-mapping than could be achieved with existing
tools.

CONCLUSION

We have described and evaluated the GEM-2.0 system in this
paper. Compared to the existing state-of-the-art in schema
mapping, the GEM system is better suited to and optimized for
biomedical data mapping such as in Alzheimer’s disease research.
Our experimental evaluations demonstrate significant mapping
accuracy improvements obtained with our approach, particularly
by leveraging the detailed information synthesized for data
dictionaries. The addition of machine-learning classification has
helped us achieve significantly high accuracy of data mapping
with real datasets. We have also demonstrated that with active-
learning the system can be trained very efficiently with a
very small number of training examples and minimal data
element examination effort, to map data accurately in new
datasets. Finally, the system and technology are applicable
to data matching in any biomedical domain as the system
is driven by biomedical data dictionaries not restricted to
any domain or disease and can be trained with match
examples specific to a domain of interest. GEM is currently
also being applied to other data harmonization efforts in
neuro-informatics but not restricted to Alzheimer’s disease, for
instance in a project on biomedical big data discovery where
the focus is on developing a biomedical big data analysis
infrastructure that is applicable to any biomedical domain or
disease.
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