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Intensity non-uniformity (INU) in magnetic resonance (MR) imaging is a major issue when
conducting analyses of brain structural properties. An inaccurate INU correction may
result in qualitative and quantitative misinterpretations. Several INU correction methods
exist, whose performance largely depend on the specific parameter settings that need
to be chosen by the user. Here we addressed the question of how to select the best
input parameters for a specific INU correction algorithm. Our investigation was based on
the INU correction algorithm implemented in SPM, but this can be in principle extended
to any other algorithm requiring the selection of input parameters. We conducted a
comprehensive comparison of indirect metrics for the assessment of INU correction
performance, namely the coefficient of variation of white matter (CVWM), the coefficient
of variation of gray matter (CVGM), and the coefficient of joint variation between white
matter and gray matter (CJV). Using simulated MR data, we observed the CJV to be
more accurate than CVWM and CVGM, provided that the noise level in the INU-corrected
image was controlled by means of spatial smoothing. Based on the CJV, we developed
a data-driven approach for selecting INU correction parameters, which could effectively
work on actual MR images. To this end, we implemented an enhanced procedure for the
definition of white and gray matter masks, based on which the CJV was calculated. Our
approach was validated using actual T1-weighted images collected with 1.5 T, 3 T, and 7
T MR scanners. We found that our procedure can reliably assist the selection of valid INU
correction algorithm parameters, thereby contributing to an enhanced inhomogeneity
correction in MR images.

Keywords: bias correction, bias field, intensity non-uniformity, RF inhomogeneities, magnetic resonance imaging

INTRODUCTION

Magnetic Resonance Imaging (MRI) is a technique that delivers detailed images of the human body
by analyzing its interactions with radio waves superimposed on a strong magnetic field. Due to
high spatial resolution and imaging contrast, MRI has achieved a widespread use in clinical brain
imaging. Indeed, it is regularly utilized for the detection of structural changes driven by trauma
(Irimia et al., 2012; Sappenfield and Martz, 2013), neurodegenerative disease (Canu et al., 2011;
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Tillema and Pirko, 2013) and neuropsychiatric disorders
(Buchanan et al., 2004; Pomarol-Clotet et al., 2010).

A major drawback in the quantitative as well as qualitative
interpretation of structural MR images arises from the presence
of artifactual smooth intensity variations across the whole MR
image (Belaroussi et al., 2006; Bernstein et al., 2006). These
are commonly referred to as intensity non-uniformity (INU),
but also intensity inhomogeneity or spatial bias. According
to the radio frequency (RF) field mapping theory, intensity
inhomogeneities in MR images can be modeled as multiplicative
(Insko and Bolinger, 1993; Stollberger and Wach, 1996). The
main factors that can influence the magnitude and spatial
profile of the INU include: static field strength, reduced RF
coil uniformity, RF penetration, gradient-driven eddy currents,
inhomogeneous reception sensitivity profile, and overall subject
anatomy and position (Simmons et al., 1994; Mihara et al., 1998;
Belaroussi et al., 2006; Vovk et al., 2007). To address this problem,
INU correction methods that rely on image features to remove
spatial inhomogeneities of different sources have been widely
employed by the neuroimaging community (Arnold et al., 2001;
Belaroussi et al., 2006; Vovk et al., 2007; Boyes et al., 2008; Zheng
et al., 2009; Weiskopf et al., 2011; Uwano et al., 2014).

Since an effective INU correction is critical for investigations
of brain structure, previous studies have attempted to compare
the performance of several retrospective methods (Velthuizen
et al., 1998; Arnold et al., 2001; Likar et al., 2001; Vovk
et al., 2006). In the vast majority of studies, INU correction is
performed using default parameters. Nonetheless, it is a matter
of fact that each method performs better or worse depending
on the specific settings used (Boyes et al., 2008; Zheng et al.,
2009; Weiskopf et al., 2011; Uwano et al., 2014), and the default
configuration may provide in some cases much less accurate
results than other ones (Ganzetti et al., 2016). For instance, the
definition of optimized parameters is particularly important for
the INU correction algorithm implemented in SPM, which is one
of the most widely used software for MR data analysis (Ashburner
and Friston, 2005). Notably, since the INU correction in SPM
is integrated within the brain segmentation tool, an inadequate
removal of the INU directly affects the estimate of GM and
WM maps (Dawant et al., 1993; Clarke et al., 1995; Pham and
Prince, 1999; Zheng et al., 2009). It should be considered that the
definition of the best set of parameters for the INU correction
algorithm in SPM, as well as for any other alternative INU
correction algorithm, is still an unsolved issue.

The optimal set of INU correction parameters can be easily
identified on simulated data, for which a direct comparison
between true and estimated INU fields is possible. In this case,
the correspondence with a ground truth image may be assessed
by correlation (Arnold et al., 2001), root mean square error
(Ganzetti et al., 2016), L2-norm (Chua et al., 2009), and voxel-
wise distance (Weiskopf et al., 2011). On the other hand, the
use of indirect evaluation metrics, which do not require any
reference image, is the only option for actual MR data. Popular
indirect measures are based on intensity variability, such as the
coefficient of variation of white matter (CVWM), the coefficient
of variation of gray matter (CVGM), and the coefficient of
joint variation between white matter and gray matter (CJV).

A common premise about the spatial intensity distribution in MR
images is that the gray scale distribution of white matter (WM)
and gray matter (GM) is somehow defined. Hence, an effective
INU correction should theoretically restore the original intensity
distribution amplitude, which was altered by the inhomogeneity
field. The distribution variability within WM and GM tissues can
be separately quantified by CVWM and CVGM, respectively. CJV
does not only quantify the intensity variability in both WM and
GM but also accounts for the overlap between their distributions.

In this study, we evaluate to what extent and how indirect
metrics can assist the selection of optimal input parameters for
a given INU correction algorithm. We conduct our investigation
using the INU correction algorithm implemented in SPM12
(Wellcome Trust Centre for Neuroimaging, University College
London), the results of which are particularly sensitive to
the selected input parameters (Ganzetti et al., 2016). We
focus on T1-weighted images, which are the most commonly
used images to investigate brain structure, and the ones
typically affected by the INU. We generate simulated MR
images with INU fields at different magnitudes and with
different image noise levels to define a suitable approach for
the detection of algorithm input parameters. Therefore, using
the same simulated data, we evaluate the relation between
direct and indirect metrics in terms of image quality. After
defining an optimized strategy to define INU correction
parameters based on an indirect metric, we validate it using
actual MR images with different INU spatial profiles and
magnitudes.

MATERIALS AND METHODS

Description of the Data-Driven Approach
Our data-driven approach to define optimal parameters for INU
correction (see Figure 1) requires a raw (unprocessed) structural
MR image as input. After defining the whole set of possible INU
correction parameters to be examined (parameter space), INU
correction and image segmentation are run for each combination
of parameters. For each of these runs, the INU-corrected image
is spatially smoothed to mitigate the negative effects of noise.
In parallel to this, all the gray matter (GM) and white matter
(WM) images produced by the image segmentation are processed
to derive optimized subject-specific GM and WM masks. After
selecting a metric among CVWM, CVGM and CJV, the INU
correction performance is estimated for each combination of
input parameters on the basis of the smoothed and INU-
corrected MR image and the subject-specific GM and WM masks.
A search for the minimum metric value is conducted, leading to
the selection of the set of INU correction parameters putatively
yielding the best performance. The software implementing this
data-driven approach described above is freely available, and can
be found at http://www.bindgroup.eu/index.php/software.

Definition of the INU Correction Parameter Space
The INU correction parameters depend on the specific INU
correction algorithm chosen. In this study, we tested our
approach with the INU correction method implemented in
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FIGURE 1 | Flowchart of the data-driven approach. The set of optimal
intensity non-uniformity (INU) correction parameters is identified by searching
the minimum performance metric value (either CVWM, CVGM, or CJV) across
values obtained for each combination of the parameters under investigation.
The metric value is calculated using subject-specific GM and WM masks and
the smoothed INU-corrected MR image.

SPM121. This is incorporated within the unified segmentation
module (Ashburner and Friston, 2005) and integrated within
the ‘Segmentation’ toolbox. The INU correction algorithm is
based on two parameters: the regularization and the bias
field smoothing. By decreasing/increasing the regularization,
the method may be more/less sensitive to sharp intensity
transitions between image structures, whereas the bias field
smoothing permits to model the smoothness of the INU
field. For our investigations, we run INU correction on
the same image using regularization values (0, 10−5, 10−4,
10−3, 10−2, 10−1, 1, 10) and bias field smoothing values
(between 30 and 150 mm, sampled at 10 mm intervals) that
spanned the whole range suggested by the developers. For a
description of the INU correction algorithm and a detailed
analysis of its performance, please refer to Ganzetti et al.
(2016).

Selection of the Indirect Metric
Our approach requires the selection of a metric among
CVWM, CVGM, and CJV to indirectly estimate INU correction
performance. These three metrics measure different properties
of the image histogram, and are widely used to evaluate to what
extent intensity inhomogeneities affect the MR image. They are
defined as follows:

1http://www.fil.ion.ucl.ac.uk/spm

CVWM =
σ(WM)

µ(WM)
, CVGM =

σ(GM)

µ(GM)
, (1)

CJV=
σ(WM) + σ(GM)

µ(WM) − µ(GM)

where σ and µ indicate the standard deviation and the mean
intensity of a given tissue class, respectively. It is commonly
accepted that relatively low values of these metrics correspond
to smaller presence of INU field and hence better correction
performance (Chua et al., 2009).

Definition of Optimal Smoothing Level
A drawback concerning the use of CVWM, CVGM, and CJV is
that their values are sensitive to image noise (Chua et al., 2009).
Accordingly, the presence of noise in actual MR data limits
their reliability when evaluating the INU correction effectiveness.
To address this problem, we integrated in our approach spatial
smoothing on the INU-corrected MR image. We used the
smoothing algorithm implemented in SPM12, and we set the
Gaussian smoothing kernel to have full-width at half maximum
(FWHM) equal to or smaller than 3 mm in order to avoid
excessive image blurring and limit partial volume effects.

Definition of Image-Specific GM and WM Masks
A key aspect that hampers an effective use of CVWM, CVGM,
and CJV for real MR data is the fact that optimized masks for
WM and GM are not accessible, and that those generated from
population-specific templates may not be sufficiently accurate to
ensure reliability. Hence, we developed a procedure to address
also this problem. For each parameter configuration, the WM and
GM probability maps produced by the ‘Segmentation’ toolbox
were registered to the SPM template in MNI space, using the
deformation field generated by the toolbox itself. Afterward,
we binarized the WM and GM probability maps registered to
MNI space using a threshold equal to 0.9 to minimize the
contaminating effect of partial volume voxels. For each parameter
configuration, we calculated the Dice Similarity Index (DSI)
between the registered and the SPM template masks for both
WM and GM (Zou et al., 2004). The mean DSI (mDSI) for each
parameter configuration was computed by averaging the two DSI
values for WM and GM, respectively. After estimating the mDSI
for each parameter configuration, we selected a relative amount
of configurations (called RT hereinafter) that were characterized
by the highest mDSIs. For both WM and GM, the probability
maps belonging to the selected configurations were averaged
together, and the average probability map was thresholded at 0.9
to generate a representative mask. We examined the mDSI of
the representative WM and GM masks, obtained for RT ranging
from 50 to 100% at intervals of 5%. Thus, using the simulated
data, we identified the RT value yielding the maximum mDSI
value, and consistently used it in subsequent analyses on actual
MR data. As such, representative WM and GM mask obtained
with the identified RT value were considered optimized masks,
and employed for the calculation of indirect metrics.
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Identification of the Optimal Set of INU Correction
Parameters
Rather than implementing an iterative algorithm for the
determination of the optimal set of INU correction parameters,
we opted for a search across the whole space of possible
combinations. In first instance, this choice can be justified
by the limited problem size, but also by the simplicity of
implementation. A number of INU correction algorithms, for
instance SPM, typically show relatively similar performance
between parameters configurations that are close in the
parameter space. These algorithms are therefore suited for the
implementation of an iterative search algorithm, which tries
to identify a gradient that leads to the configuration with
minimum metric value. Nonetheless, there are algorithms, as
for example the one implemented in BrainVoyager2, for which
parameter configurations that are close in the parameter space
may have very different accuracy (Ganzetti et al., 2016). The
implementation of a search across the whole space of possible
combinations may permit to effectively use our data-driven
approach with any INU correction algorithm.

Performance Analysis
Testing on Simulated MR Data
Creation of simulated MR images
Simulated MR data were obtained from the BrainWeb MRI
Simulator3. First of all, we extracted a realistic INU field map
for the T1-w imaging modality, simulated using known spatial
varying perturbation of the RF pulse flip angle (Kwan et al.,
1999). This map has a smooth spatial profile, reflecting intensity
inhomogeneities that are typically observed with lower magnetic
field systems, e.g., 1.5 and 3 T MR scanners. The MRI simulator
provides an INU field with 20% spatial variation (intensity values
between 0.9 and 1.1). For our study, we also generated INU fields
with 40 and 80% variation by rescaling the INU profile from the
simulator to have values ranging between 0.8 and 1.2 and between
0.6 and 1.4, respectively (Figure 2A,B).

In order to generalize our results, we generated an additional
intensity inhomogeneity field, characterized by higher dynamics.
This profile is intended to mimic better inhomogeneities from
higher field scanners. As proposed by Vovk et al. (2004),
the field was created by cubic B-spline interpolation between
equally spaced nodes at 40 voxels in each direction. Node
values, also defined as multiplication factors, were randomly
distributed between the same intervals adopted in the previous
field (Figures 2C,D).

From the BrainWeb MRI simulator we also extracted the
phantom volume, which is a simulated MR image representing
an anatomical model of a healthy brain. The phantom volume
is created by combining ten three-dimensional “fuzzy” tissue
membership volumes: GM, WM, cerebrospinal fluid, fat, muscle,
skin, skull, glial matter, connective tissue, and background.
In each tissue memberships volume, the value of each voxel
represents the probability of the tissue to be found at that specific
voxel. The MRI simulator combines the tissue membership

2www.brainvoyager.com
3brainweb.bic.mni.mcgill.ca/brainweb

volumes using weights estimated by Bloch equations (Kwan et al.,
1999). These weights are assigned by the simulator depending on
the pulse sequence parameters chosen, and can reproduce MR
image contrast in a realistic manner (Collins et al., 1998; Kwan
et al., 1999). We used default settings of simulator parameters
to generate an INU- and noise-free T1-weighted image in order
to make our results comparable with previous studies on INU
correction (Sled et al., 1998; Arnold et al., 2001; Ashburner and
Friston, 2005; Vovk et al., 2005, 2006; Ying et al., 2009; Tustison
et al., 2010; Ganzetti et al., 2016). The image was obtained using
Spoiled Fast Low Angle Shot (SFLASH) pulse sequence, with
TR = 18 ms, TE = 10 ms and α = 30◦. The image space was
181 mm × 217 mm × 181 mm, with voxel sampling of 1 mm
isotropic. After obtaining the INU field and the INU- and noise-
free T1-weighted image from the MRI simulator, we multiplied
these to generate an INU-corrupted T1-weighted image. Finally,
we also added Rician-distributed noise to the INU-corrupted
image. Noise levels were set at 1, 3, and 5% SD compared to the
intensity of the brightest tissue in the unbiased image.

Performance analysis on simulated data
First, we evaluated the CVWM, CVGM, and CJV in the
identification of the optimized parameter configuration using
simulated data with different INU magnitude and noise level. To
this end, we adopted WM and GM probability maps provided
by the MRI simulator. Before extracting tissue distributions, we
thresholded each map at 0.9, in order to control for partial volume
effects (Chua et al., 2009). Afterward, σ and µ were computed
for both tissues. Finally, we assessed the performance of CVWM,
CVGM, and CJV, at different levels of noise and INU magnitudes.

The direct performance was quantitatively evaluated on the
estimated INU field, rather than on the INU-corrected images.
In this way, we examined the INU correction results without our
performance measures being directly affected by the noise added
to the MR images. To account for potential inconsistencies due
to arbitrary scaling of the INU estimates, all the INU fields were
normalized in intensity (Chua et al., 2009). Normalization was
implemented by multiplying the estimated INU field by a scalar
value ω, according to the formula by (Chua et al., 2009) as follow:

ω =

∑n
i = 1(bsim,i · best,i)∑n

i = 1 (bsim,i)2 (2)

where bsim, and best are the simulated and the estimated INU
fields, respectively, and n is the number of brain voxels. The
deviation (D) of the simulated from the estimated INU fields was
then assessed by computing the median of the brain-voxel values
in the image T, defined as:

T =
2|ωbsim − best|

ωbsim + best
(3)

The smallest D-value was associated with the best
reconstruction performance (Weiskopf et al., 2011).

To assess the reliability of the information extracted from the
indirect metrics, we used two primary indices: (1) the D-value
obtained for the input parameter configuration providing the
lowest metrics value; (2) the Spearman’s correlation coefficient
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FIGURE 2 | Simulated INU fields. Spatial profiles and histograms of the low-dynamic (A,B) and the high-dynamic INU fields (C,D) at 20% level are represented.
Both INU fields are displayed in coronal (y = 1), axial (z = 0), and sagittal (x = 15) sections. It is worth noting that the INU fields at 40 and 80% level are characterized
by the same spatial profile of the one at 20%, whereas the field values range from 0.8 to 1.2 and from 0.6 to 1.4, respectively.

between the matrix of metrics values obtained for all parameter
configurations and the corresponding matrix of absolute
distances D (matrix-to-matrix correlation, MMC).

Testing on Actual MR Images
Actual MR images
To validate the proposed approach, we also used T1-w images
from three publicly available datasets, acquired at different
magnetic field strength in healthy volunteers. The first was
the IXI database of the Imperial College London4 the second
was the KIRBY21 database of the Kirby Research Center for
Functional Brain Imaging in Baltimore5. This dataset contained
images collected in 21 subjects during two different sessions
(Landman et al., 2011), which were used in this study for a test–
retest analysis. The third dataset, contributed by Dr. Bennett
Landman from the Vanderbilt University, was downloaded from
the NITRC neuroimaging data repository6. MR data belonging
to the different datasets were collected in compliance of the
requirements set by the review ethical boards of the relevant
institutions. Details on scanning parameters for the different
datasets are provided in Table 1.

Performance analysis on actual data
On actual MR data, we run INU correction and segmentation
using the same range of input parameters used with simulated

4http://biomedic.doc.ic.ac.uk/brain-development/index.php?n=Main.Datasets
5http://www.nitrc.org/frs/shownotes.php?release_id= 2178
6http://mri.kennedykrieger.org/databases.html

data. First, we computed the segmented WM and GM probability
maps for each parameter configuration and generated optimized
masks (see the procedure described in Definition of Image-
Specific GM and WM Masks). Then, we estimated the relative
noise as compared to the signal intensity in each image under

TABLE 1 | Real data: magnetic resonance (MR) imaging sequence
parameters.

IXI KIRBY21 NITRC

Scanner Gyroscan Intera, Philips Achieva, Philips Achieva, Philips

Magnetic field
(Tesla)

1.5 3 7

Pulse sequence MPRAGE MPRAGE 3D TFE

Coil Standard TMJ coil 8-channel coil 16-channel coil

TR (ms) 9.8 6.7 5.5

TE (ms) 4.6 3.1 2.6

Flip angle
(degrees)

8 8 7

Inplane
resolution (mm)

0.94 × 0.94 1 × 1 0.7 × 0.7

Slice
thickness (mm)

1.2 1.2 0.7

MR images from different datasets (IXI, KIRBY21, NITRC) were used in this study.
The three datasets are characterized by a different static field magnitude. The main
imaging parameters of each sequence are reported in the table. TR, repetition time;
TE, echo time; α, flip angle; MPRAGE, magnetization-prepared rapid gradient-echo;
3D TFE, Three-dimensional Turbo Field Echo; TMJ, Temporomandibular joint.
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investigation. We quantified both signal and noise on an axial
slice cutting the corpus callosum at both ends: the signal
corresponded to the maximum intensity within a polygonal ROI
at the anterior end of the corpus callosum, and the noise to
the standard deviation of the intensity within a circular ROI of
10 mm radius located outside the brain. Based on the estimated
noise level, we defined the necessary level of smoothing based
on the results of our simulations and we applied to the actual
MR volumes. Finally, the optimized masks and the spatially
smoothed MR images were then used to calculate indirect
metric values, searching for the input parameter configuration
potentially yielding the most accurate results.

We checked the accuracy of the INU correction results by
visual inspection of the INU-corrected T1-weighted images, as
well as the reconstructed INU profile. Importantly, we verified
that MR images with higher dynamics in the INU profile
(typically associated with a MR scanner with higher static field)
lead to the definition of smaller regularization values, and
possibly smoothing values. Also, we used the whole set of images
from KIRBY21 dataset to conduct a test–retest analysis, aimed
at examining whether the INU correction with the parameters
determined using our data-driven approach leads to increased
image reproducibility compared to the default configuration.

To this end, we used as a quantitative index the DSI between
GM (and WM) masks in MNI space, derived from each of the
two sessions. We assessed significant increases/decreases in DSI
values between sessions at the group-level by means of paired
t-tests.

RESULTS

We started our investigations by using the simulated T1-weighted
image with INU 40% relative magnitude and 1% noise level,
and examining the variability of CJV, CVWM, and CVGM across
different configurations of input algorithm parameters. For
each metric, the configuration with the lowest value (associated
with the putatively best INU estimate) was identified and its
accuracy was quantified by comparing the corresponding INU
against the simulated INU (Figure 3). This analysis revealed
that the CJV generally provides lower absolute distances, and
therefore more accurate results than CVWM and CVGM. For
CJV, CVWM, and CVGM calculated on low-dynamic profile MR
images, D was 0.6, 1.4, and 1.1%, respectively. For the high-
dynamic profile, it was 0.8, 1.5, and 1.1%, respectively. Not
only did a smaller absolute distance characterize the selected

FIGURE 3 | Metric dependence on the INU correction results produced by different input parameters. In order to assess the performance of intensity
inhomogeneity correction for each indirect metric, we analyzed several parameter configurations. In SPM, the regularization and the bias field smoothing (FWHM)
parameters were varied accordingly. We computed the voxel-wise distance D between the simulated and the estimated INU field for each configuration, which was
used as a reference. CJV (indicated with a diamond marker), CVWM (indicated with the circle marker), and CVGM (indicated with the triangle marker) are shown for
the low-dynamic (A) and high-dynamic (B) profiles. The results shown in figure refer to the simulated MR dataset with 40% INU and 1% noise level.
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parameter configuration, but also the matrix patterns better
resemble the matrix of absolute distances D. For the low-
dynamic profile, MMC was 0.96, 0.57, and 0.63 for CJV,
CVWM and CVGM, respectively; for the high-dynamic profile,
MMC was 0.99, 0.72, and 0.78 for CJV, CVWM, and CVGM,
respectively.

Then, we evaluated the performance of the three metrics
for different levels of INU field magnitude and image noise
(Figure 4). As before, the absolute distance D for the parameter

configuration selected from a given metric was computed, as
well the MMC between the metric and the distance matrices. An
increased INU field magnitude and/or an increase image noise
level generally yielded higher D for all the metrics. CJV generally
outperformed the others at low noise levels regardless the INU
field magnitude and the spatial profile, but was relatively less
effective on high-noise MR images. In turn, CVGM showed good
stability at higher noise levels. CVWM underperformed the other
two metrics for most of the INU and noise levels.

FIGURE 4 | Sensitivity of different metrics to inhomogeneity magnitude and noise. For each INU field magnitudes and noise level, we calculated the
voxel-wise distance D between the simulated and the estimated INU fields, as well as the matrix-to-matrix correlation (MMC). We report in this figure the results for
the parameter configuration identified by each metric. CJV, CVWM, and CVGM were compared for the low-dynamic (A) and high-dynamic (B) INU profiles.
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By means of a two-way analysis of variance (ANOVA) we
examined the influence of noise and INU magnitude on the
absolute distance D. For both INU profiles, the effect of noise was
highly significant (F = 367.28, p < 0.001 for the low dynamic,
F = 50.6, p = 0.001 for the high dynamic), whereas the INU
magnitude showed a much less significant effect (F = 7.56,
p = 0.0229 for the low-dynamic profile, F = 3.87, p = 0.0834
for the high-dynamic one). We did not investigate further the
dependence of the metrics on the INU magnitude, and reported
from this point on only average performance over INU levels.

Next, we evaluated to what extent and how spatial smoothing
can influence an accurate INU reconstruction (Figure 5). For a
smoothing level set at 1 mm FWHM, a marked improvement
of CJV, and no clear changes of CVWM and CVGM values, were
found. Notably, a smoothing larger than 2 mm of FWHM led
to less accurate INU reconstructions. This was evident in CVWM
and CVGM, and less pronounced in CJV measures. Based on these
results, we selected the CJV to identify input configurations with
low INU estimation errors, and conducted further analyses on
CJV only.

We addressed the issue of defining subject-based masks
to enhance the use of CJV in actual MR images. GM and
WM probability maps corresponding to each of the parameter
configurations under investigation were estimated, and a subset

of them was used to generate average WM and GM masks. Our
analysis on both low and high dynamic INU profiles revealed
that, on average, including 85% of the masks with the largest
correspondence with the SPM template mask in individual space
(RT equal to 85%) is likely to be a reliable approach to ensure an
effective use of the CJV (Figure 6).

The need of a procedure for the definition of reliable WM
and GM masks was confirmed by a complementary analysis
conducted on the CJV, using the template (not subject-specific)
masks derived from SPM (Figure 7). When comparing D-values
obtained using the SPM template masks and the average-
based individual masks, the performance obtained using the
former was found to be much inferior. On the other hand,
by implementing our data-driven procedure, it was possible
to achieve performance similar to the ones derived from the
BrainWeb simulator masks used in the first part of the study (for
comparison, see Figure 5).

To validate the usefulness of the data-driven approach for the
input parameters definition, three MR images, collected with 1.5
T, 3 T, and 7 T scanners, respectively (Figure 8), were used. The
noise level was 1.38, 1.25, 0.72% for the three images, respectively.
As such, a smoothing level equal to 1 mm FWHM was used to
estimate the CJV. Then, WM and GM masks were generated
with a relative amount of configurations RT equal to 85%. The

FIGURE 5 | Relation between spatial smoothing and image noise. We assessed the relation between image noise and amount of smoothing applied after INU
correction. The voxel-wise distance D between the simulated and the estimated INU fields was computed. We report in this figure the results for the parameter
configuration identified by each metric. CJV, CVWM, and CVGM were compared for the low-dynamic (A) and high-dynamic (B) INU profiles.
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FIGURE 6 | Mean Dice Similarity Index (mDSI) threshold analysis. By
defining a subset of segmented WM and GM masks corresponding to each
parameter configuration and averaging them together, we generated an
improved version of the same masks. This was separately done for
low-dynamic (A) and high-dynamic (B) INU profiles, using a relative amount of
configurations RT ranging from 50 to 100%. Each of these values represents
the relative amount of included masks with respect to the total number of
parameter configurations. The bar plots represent the mDSI, which quantifies
the correspondence of each segmented mask with respect to the SPM
template mask. The mDSI shown in figure was calculated for the two INU field
profiles, averaging together the results over the whole set of simulated data
(12 simulated images: 3 INU field magnitudes × 4 noise levels).

analysis of CJV values obtained using different input parameters
for the INU correction algorithm revealed different solutions
for the three MR images under investigation. The 1.5 T dataset
was characterized by a smoothing parameter of 30 mm FWHM
and a regularization parameter of 0.1, consistent with the low-
dynamic profile. This was supported by a visual inspection of
the raw data, which also showed a negligible INU magnitude.
A parameter matrix mainly weighted to higher regularization
values characterized the 7 T image, which had a highly dynamic
spatial profile. In this case, the identified regularization parameter
was equal to 0.001. The INU for the 3 T image had intermediate
magnitude compared to those of thee 1.5 T and 7 T images, as
well as low dynamic profile. The analysis of the CJV suggested the
regularization parameter to be best set to 0.01, with a smoothing
parameter of 30 mm FWHM. When we extended this analysis
of all the 42 MR images collected at 3 T and belonging to
the KIRBY21 dataset, our data-driven approach was found to
yield the same parameter configuration (smoothing level: 30 mm

FWHM; regularization parameter: 0.01). By using the KIRBY21
dataset, we also tested whether our approach yielded increased
INU correction reliability. Notably, a significant increase was
observed in the test–retest DSI analysis for both GM and WM
masks (Figure 9) when using the optimized configuration as
compared to the default one. Specifically, the average DSI across
subjects increased from 0.862 to 0.8675 for GM (p= 0.0022) and
from 0.9406 to 0.9432 for WM (p= 0.0015).

DISCUSSION

Intensity non-uniformity correction is a fundamental processing
step for structural MR images. It is a matter of fact that the
performance of any INU correction method depends on the input
setting used (Boyes et al., 2008; Zheng et al., 2009; Weiskopf et al.,
2011; Uwano et al., 2014), and a less effective INU correction
can substantially hamper the reliability of MR imaging results
(Pham and Prince, 1999; Ashburner and Friston, 2000; Good
et al., 2001; Zheng et al., 2009). Using simulated MR data,
we previously showed that the INU correction using specific
parameter configurations may be much more accurate than those
obtained using a default one (Ganzetti et al., 2016). However, to
the best of our knowledge no reliable method exists to define
parameters that most likely yield the best correction for actual
MR data. Here we examined the characteristics of different
metrics, defined among them the most accurate one, and used
it to develop a data-driven approach to address this problem. We
conducted our investigation using the INU correction algorithm
implemented in SPM12, which is one of the most widely used
software for MR data analysis. Notably, this algorithm would
largely benefit from an optimization approach, as it is largely
sensitive to the selection of the input parameters, namely the
regularization and the smoothing factor (Ganzetti et al., 2016).

In actual MR data, a common approach to assess INU
correction is the one based on indirect measures relying on
intensity variability. Among them, the CJV, the CVWM and the
CVGM metrics are the most commonly used ones in the literature.
Specifically, the CV expresses the normalized standard deviation
in a single tissue class, whereas the CJV takes into account
the intensity distributions in both classes. In line of principle,
the smallest CV and CJV correspond to smaller intensity
inhomogeneity residual, thus better performance (Likar et al.,
2001; Belaroussi et al., 2006). On the other hand, the CJV not only
evaluates the parallel reduction of GM and WM distributions,
but also the degree of overlap between the two. Indeed, an
effective INU correction produces a consistent increment of
contrast in the image, reflected by a clear separation of WM
and GM distribution peaks, and thus a decrease of CJV. In
addition, a strong INU correction may remove smooth intensity
variations characterizing the actual anatomical contrast. In this
scenario, while CVGM and CVWM decrease, the CJV increases
because the WM and GM distributions peaks get closer. Our
simulation results on both voxel-wise distance (D) and matrix-
to-matrix correlation (MMC) revealed a larger accuracy of CJV
compared to the other two, regardless of the spatial profile of
the INU (Figure 3). CJV combines information about image
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FIGURE 7 | Coefficient of joint variation (CJV) results obtained using optimized and standard masks. We assessed the impact of the masks on the CJV
results, expressed in terms of the voxel-wise distance D between the simulated and the estimated INU fields. Specifically, we compared the results obtained using
the MNI template masks (A,B) and the optimized masks (C,D). We examined the performance for different noise level and smoothing, both for low- (A,C) and
high-dynamic (B,D) INU profiles.

intensities in both GM and WM. In this manner, it allows the
joint assessment of intensity variability within each tissue class
as well as in the image contrast between the two structures. In
turn, CVWM and CVGM are estimates derived from image values
only in WM and GM, respectively. When the INU correction
tends to overestimate the actual inhomogeneities present in the
MR image, the contrast diminishes and the CV may erroneously
detect an image improvement simply due to a reduced standard
deviation in the intensity distribution. This effect may explain -
at least in part - the results obtained on simulated data, for which
CVWM and CVGM tended to indicate low regularization values
and low smoothing factors as yielding better INU correction
(Figure 3). Specifically, lower values of regularization allow the
INU correction algorithm to follow sharp intensity variations, up
to the point that factual anatomical variations may be canceled.

Our findings suggest that considering the overlap between the
intensity distributions of distinct tissue classes is very important
for the detection of INU correction performance, and that the
CJV may be potentially more suitable than CVWM and CVGM for
an accurate inhomogeneity correction.

It should be considered that actual MR images may be
characterized by various noise levels and INU magnitudes. These
may depend on the subject as well as on the acquisition hardware
and sequence used. Our findings suggested noise to substantially
influence the performance of CJV, CVWM, and CVGM (Figure 4).
Specifically, all the three metrics provided accurate results for
low levels of noise (0–1%), with the CJV overperforming CVWM
and CVGM both in terms of D and MMC. On the other hand,
the CJV was the most sensitive to noise, and underperformed
CVWM and CVGM with very noisy MR data (5% noise level).
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FIGURE 8 | Intensity non-uniformity correction on actual MR images. We examined the effectiveness of the CJV analysis on actual MR data, after smoothing,
and mask optimizations, for three representative images collected using a 1.5 T, a 3 T, and a 7T MR scanner (A–C), respectively. The diamond marker highlights the
input parameter configuration selected on the basis of the CJV results. INU-corrupted image, estimated INU field and INU-corrected image are shown for each
dataset (D–F).

A possible explanation may be the spreading effect spatial noise
has in the intensity distribution of both WM and GM. This may
hamper a reliable measure of the actual statistical properties of
each tissue distribution, thus leading to an improper parameter
selection. The low MMC values obtained for CJV at high noise
levels seem to confirm this possibility (Figure 4). In line with
previous studies (Chua et al., 2009), a moderate amount of spatial
smoothing (i.e., 1 mm FWHM) led to a considerable increase
of the CJV accuracy (Figure 5). The same solution did not
prove to be as effective when using CVWM and CVGM instead
of CJV.

After establishing that CJV in combination with spatial
smoothing can yield a reliable estimation of INU correction
parameters, we addressed the problem of how this metric could
be effectively applied on actual MR data. Importantly, GM and
WM masks are needed to measure the CJV, and different options
exist as for deriving these masks from the actual MR images.
One aspect to consider is that the INU correction algorithm of
SPM is integrated with brain segmentation, such that GM and
WM probability maps are automatically generated. This means
that, in line of principle, it would be possible to estimate GM
and WM maps for each input parameter configuration, and use

them for the CJV calculation. Such a solution, however, does
not permit an unbiased comparison across configurations, as
the masks would be different case by case. Rather than using
the SPM template masks registered to individual space, we
implemented an approach that exploits the similarity between
those template masks and the ones estimated from the SPM
segmentation algorithm, which are subject-specific. By using the
mean Dice Similarity Index (mDSI), we searched through the
entire configurations space and selected a set of probability maps
that had mDSI superior to a certain threshold.

For both WM and GM, all the maps satisfying the mDSI
criteria were then averaged together, and then employed to create
the actual masks. The latter ones were then used across all
configurations for the CJV assessment. Our analysis on simulated
data revealed that this approach can lead to the definition of
masks that are very close to the ground truth masks and are
much more precise than the SPM template masks registered to
individual space (see Figures 5A,B and 7). It is our opinion
that the approach we implemented limits the possibility of
deceptive CJV evaluations due to partial volume effects, which
are typically present in the voxels including both WM and GM
tissues.
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FIGURE 9 | Test–Retest analysis of INU correction performance. We
used the full set of KIRBY21 images to perform a test–retest reliability analysis.
As an indirect measure of INU correction performance, we employed the DSI
between GM (and WM) segmented volumes. We compared the DSI values
obtained from the optimized and default parameter configurations using
paired t-tests. The bar plots show mean and standard error for GM and WM
masks, and for optimized (OPT) and default (DEF) configurations, respectively.
The probabilities estimated using the t-tests are indicated in the figure as well.

To show the potential usefulness of the developed data-
driven approach to estimate INU correction parameters, we
used also actual MR images collected with 1.5 T, 3 T, and 7 T
scanners, respectively. One of the main features that influences
INU properties is indeed the strength of the static field (Boyes
et al., 2008; Uwano et al., 2014). With increasing magnetic field,
not only does the INU field magnitude rise, but also the INU
spatial dynamic is more variable as a result of tissue-induced
inhomogeneities (Mihara et al., 2005; Van De Moortele et al.,
2005; Bernstein et al., 2006; Moser et al., 2012; Umutlu et al., 2014;
Uwano et al., 2014). The CJV results for MR images at different
magnetic fields suggested this metric to be sensitive to INU
properties, since the minimum CJV value across the whole set of
input parameters was different across MR images (Figure 8). For
instance, a relatively low regularization parameter was identified
as being more accurate for the 1.5 T image, consistent with a low
frequency INU pattern compared to the underlying anatomical
structures. The intensity had a consistent intensity drop at the
center of the 3 T image. This might be related to a RF wavelength
shortening as well as the coil sensitivity (Bernstein et al., 2006).
Although this intensity inhomogeneity was still low frequency
compared with anatomical brain structures, the CJV analysis
suggested a larger level of regularization and the same FWHM
level of the 1.5 T image. This was putatively due to a larger
INU field magnitude. The 7 T image was characterized by a
substantially different intensity inhomogeneity profile compared
to the 1.5 T and 3 T images. In this case, the CJV values were
more weighted toward higher regularization parameters that
allowed the INU correction to better follow sharp inhomogeneity
variations across the MR image.

When we extended our analysis on actual MR images to
the whole KIRBY21 dataset, which was collected with a 3 T
MR scanner, we could appreciate a very high stability of the
configuration of input parameters selected by our data-driven
method. This may indicate that the selected input configuration,

rather than being subject-specific, more likely depends on
the MR hardware and acquisition sequence used. It remains,
however, to be verified if this finding for images collected at
3 T generalizes also to higher field strengths, for which tissue-
induced inhomogeneities are more prominent. This may indeed
lead to an increased inter-subject variability in the selected
parameter configuration. Importantly, we also observed that
the segmentation results for the same subject scanned in two
separate sessions were more similar when using optimized than
standard configurations (Figure 9). It is commonly accepted
that intensity inhomogeneity primarily affects the accuracy of
image segmentations (Belaroussi et al., 2006; Zheng et al., 2009).
Accordingly, this finding might be taken as indirect evidence of
an increased INU correction performance. Since we conducted
the rest–retest analysis on a single dataset, we suggest that future
studies are warranted to evaluate whether the increased INU
correction performance is confirmed with other datasets, possibly
collected with different scanners.

CONCLUSION

To the best of our knowledge, this is the first study that
addressed the problem of selecting the most appropriate input
algorithm parameters for INU correction of structural MR
images. Our analyses were based on the INU correction algorithm
implemented in SPM, but the same approach can be in principle
extended to any other INU correction algorithm requiring
the selection of input parameters. In short, we conducted a
comprehensive comparison of indirect metrics for the assessment
of the INU correction results. We identified the CJV as the
most accurate one, as long as the noise level in the INU-
corrected image was controlled by means of spatial smoothing.
Based on the CJV, we developed a data-driven approach aiding
the selection of the parameters to be used for an accurate
inhomogeneity correction in actual MR images. Our findings
suggest that it is possible to tailor the parameter configuration
of the INU correction algorithm based on the characteristics
of the MR image to be processed, leading to a substantial
improvement compared to the default parameter configuration.
Since substantial progress is being made on the development
of high-field MR scanners (Moser et al., 2012; Umutlu et al.,
2014), the problem of INU correction is becoming increasingly
important (Mihara et al., 2005; Van De Moortele et al., 2005;
Bernstein et al., 2006; Uwano et al., 2014). The data-driven
approach described here may contribute to address this problem
by optimizing the performance of any given INU correction
algorithm.
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