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The recent advances in neurological imaging and sensing technologies have led to
rapid increase in the volume, rate of data generation, and variety of neuroscience data.
This “neuroscience Big data” represents a significant opportunity for the biomedical
research community to design experiments using data with greater timescale, large
number of attributes, and statistically significant data size. The results from these
new data-driven research techniques can advance our understanding of complex
neurological disorders, help model long-term effects of brain injuries, and provide new
insights into dynamics of brain networks. However, many existing neuroinformatics
data processing and analysis tools were not built to manage large volume of data,
which makes it difficult for researchers to effectively leverage this available data
to advance their research. We introduce a new toolkit called NeuroPigPen that
was developed using Apache Hadoop and Pig data flow language to address
the challenges posed by large-scale electrophysiological signal data. NeuroPigPen
is a modular toolkit that can process large volumes of electrophysiological signal
data, such as Electroencephalogram (EEG), Electrocardiogram (ECG), and blood
oxygen levels (SpO2), using a new distributed storage model called Cloudwave
Signal Format (CSF) that supports easy partitioning and storage of signal data on
commodity hardware. NeuroPigPen was developed with three design principles:
(a) Scalability—the ability to efficiently process increasing volumes of data; (b)
Adaptability—the toolkit can be deployed across different computing configurations;
and (c) Ease of programming—the toolkit can be easily used to compose multi-step
data processing pipelines using high-level programming constructs. The NeuroPigPen
toolkit was evaluated using 750 GB of electrophysiological signal data over a variety of
Hadoop cluster configurations ranging from 3 to 30 Data nodes. The evaluation results
demonstrate that the toolkit is highly scalable and adaptable, which makes it suitable
for use in neuroscience applications as a scalable data processing toolkit. As part of
the ongoing extension of NeuroPigPen, we are developing new modules to support
statistical functions to analyze signal data for brain connectivity research. In addition,
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the toolkit is being extended to allow integration with scientific workflow
systems. NeuroPigPen is released under BSD license at: https://sites.google.com/
a/case.edu/neuropigpen/.
Keywords: data flow language, Apache Pig, electrophysiological signal data, neuroscience, MapReduce

INTRODUCTION

Rapid technological and methodological advances in sensing
as well as recording neurological data in patients with
epileptic seizures, stroke, and psychiatric disorders have
dramatically improved the availability of high-resolution multi-
modal neurological data for both biomedical research as well
as patient care (Bargmann et al., 2014). These multi-modal
datasets are playing a key role in neuroscience research efforts,
for example they are advancing research in the brain connectivity
networks using multiple data modalities representing both
structural and functional networks (Swann et al., 2012;
Wendling et al., 2016). The use of high-resolution magnetic
resonance imaging (MRI) data together with sophisticated fiber
tractography techniques has enabled the mapping of brain
structural networks at multiple levels of granularity and these
datasets can also be used to derive new information about
fiber tract density and fiber tract orientation (Hagmann
et al., 2006; Mukherjee et al., 2008). Similarly, high-resolution
electrophysiological signals such as electroencephalogram (EEG)
are providing new insights into brain functional connectivity
networks (Isnard et al., 2004;Wendling et al., 2010). For example,
intracranial depth electrodes implanted at precise brain locations
using stereotactic placement approaches to record EEG (called
SEEG) are being increasingly used in routine clinical care for
evaluation and diagnosis of patients suffering from complex
neurological disorders such as epilepsy (Schuele et al., 2012).
Signal data from SEEG is used as gold standard during pre-
surgical evaluation of epilepsy patients to identify brain tissues
responsible for epileptic seizures, which can be removed during
surgery and also to identify important brain regions such as the
speech center that need to be protected during surgery (Lüders
et al., 2012; Schuele et al., 2012).

The routine use of signal data in both patient care and
biomedical research has led to rapid accumulation of large
volumes of these datasets. For example, the epilepsy monitoring
unit (EMU) at the University Hospitals Case Medical Center
(UH-CMC) collects continuous multi-modal signal data from
admitted patients over 5 days and it has collected more than
32 Terabytes (TB) of signal data in the past 4 years. The
rate of data collection is increasing each year. The UH-CMC
EMU is also part of the Center for Sudden and Unexpected
Death in Epilepsy (SUDEP) Research (CSR), which is funded
by the National Institute for Neurological Disorders and Stroke
(NINDS), with 14 participating epilepsy centers across the
USA and the UK (Lhatoo, 2014). The CSR project aims to
collect and analyze signal, imaging, and related modalities
of data from thousands of epilepsy patients. Similarly, the
International Epilepsy Electrophysiology (IEEG) Portal hosts
data from 1200 subjects as part of a multi-institutional initiative

to create a repository of human and animal signal data, which
can be used by researchers to advance epilepsy research as
well as develop signal processing techniques (Kini et al., 2016).
These two projects and similar initiatives in the neuroscience
community (Marcus et al., 2011) highlight the need to develop
scalable data management tools to effectively use large volumes
of data to advance neuroscience research (Bargmann et al.,
2014).

Storing, processing, and analyzing extremely large volumes of
complex electrophysiological signal data requires development
of sophisticated data partitioning, parallel computing, and
distributed storage techniques that can effectively leverage
several computing nodes for fast and scalable data processing
applications. Current signal data processing tools were not
developed using parallel processing techniques and they
do not scale with increasing size of data. In addition,
current file formats used to store signal data, such as the
European Data Format (EDF; Kemp and Olivan, 2003), are
not suitable for storage and processing of signal data in high
performance distributed file systems. Therefore, new signal
data format is needed to support partitioning data across
several computing nodes. The development of these new
tools also require significantly greater programming time as
compared to traditional sequential data processing software
tools to address new challenges inherent in distributed and
parallel computing environments. For example, fault tolerance
(both hardware or software failures) is a critical requirement
for widespread deployment and use of neuroinformatics
tools.

The open source Hadoop technology stack is being
increasingly used to address scalability challenges faced by
the scientific community for data and compute intensive
tasks (Apache Hadoop, 2015). The MapReduce programming
approach divides computational tasks into two recurring
steps of Map and Reduce, which can be parallelized over
hundreds or thousands of computing nodes (Dean and
Ghemawat, 2010). Similar to Google MapReduce, the Hadoop
implementation, which was developed by Yahoo!, can be
deployed over inexpensive commodity hardware that allows easy
expansion of the Hadoop cluster to scale with increasing volume
of data (Borthakur et al., 2011). As part of the Apache Foundation
project, there are number of Hadoop-based platforms that are
being used to develop scalable software infrastructure for
scientific computing. For example, the Hadoop Distributed
File System (HDFS) allows reliable storage of large volume of
data and supports data retrieval with high throughput for faster
access (Shvachko et al., 2010). The Hive data warehouse platform
is built on Hadoop to support analytical queries expressed
in the HiveQL declarative language (Thusoo et al., 2010). In
addition, HBase is a key-value store that uses HDFS to support
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database operations with high consistency and throughput
for use in many social media and Web applications, such as
Facebook (Borthakur et al., 2011). However, the use of Hadoop
MapReduce for development of scalable data management tools
is restricted to developers with advanced technical skills due
to the complexity of parallel operations and multi-step data
flows.

To address this challenge, the Apache Pig dataflow system
was developed to allow users to easily compose multiple data
processing functions into multi-steps dataflow applications,
which are automatically compiled into MapReduce tasks by
the Pig compiler (Gates et al., 2009). Pig also supports data
manipulation functions by using SQL-like query constructs.
The Pig system uses the Pig Latin programs to describe
the data processing steps. Applications can use default Pig
functions for data manipulation or create customized tasks
called User Defined Functions (UDF) to support domain-
specific data processing requirements, such as new signal
data formats or data partitioning techniques. In this article,
we describe the NeuroPigPen toolkit that consists of several
UDFs, which were developed to process neurological signal
data with built-in data partitioning, data transformation,
and data processing functionalities. The NeuroPigPen UDFs
are converted into MapReduce jobs by the Pig compiler and
executed in a Hadoop cluster. In this article we describe
the architecture of NeuroPigPen, the functionalities of the
toolkit, and evaluate its performance using de-identified
electrophysiological signal data collected at the UH-CMC
EMU. The NeuroPigPen is available for download and use
at: https://sites.google.com/a/case.edu/neuropigpen/ with
user-friendly documentation, user manual, and licensing
information.

MATERIALS AND METHODS

In this section, we describe the data processing requirements
for neuroscience applications and functionalities supported by
the NeuroPigPen toolkit modules. The NeuroPigPen toolkit is
implemented using amodular approach, which allows them to be
used both as part of an end-to-end workflow and as standalone
tools.

Role of Electrophysiological Signal Data in
Neuroscience
Electrophysiological signal data such as EEG data, which
is recorded using surface or intracranial electrodes, play a
significant role in the evaluation of brain injuries, diagnosis of
neurological disorders, and brain connectivity research (Sanei
and Chambers, 2007). In contrast to other data modalities,
SEEG data record brain functional activities at a fine level
of granularity in both temporal and spatial scales, which is
critical for clinical diagnosis and evaluation of patients with
serious neurological disorders such as epilepsy. Epilepsy is the
most common serious neurological disorder affecting about
50 million persons worldwide Epilepsy Foundation (2015) and
signal data is used to identify the brain regions involved in

epileptic seizures and evaluate the effect of anti-epileptic drugs.
Seizure signals in epilepsy patients originate in one or more
locations and involve additional brain regions, which together
constitute a seizure network. The accurate characterization of
seizure networks is an area of active research in neuroscience that
often requires analyzing large volumes of signal data (Wendling
et al., 2016). Signal data is analyzed and classified by domain
experts to detect seizures and identify the signal features before,
during, and after occurrence of seizure, which can be used
for development of different types of devices to help epilepsy
patients.

For example, there has been extensive work in developing
signal processing techniques to automatically detect seizures,
including use of time frequency approaches together with
discrete wavelet transform and machine learning techniques
over large signal datasets (Bayliss and Ballard, 2000).
Electrophysiological signals as part of polysomnogram (PSG)
data is also used in other biomedical domains such as sleep
research (Redline et al., 2013). Therefore, there is a clear
need for development of efficient and scalable tools for signal
data that can be used in several biomedical applications.
Similar to other time series data, electrophysiological signal
data consists of discrete signal values and the associated
timestamp values. EDF is the most widely used signal data
representation and storage file format. An EDF file consists
of two categories of metadata: (a) study-specific metadata,
for example patient information, number of data records,
start date and time of recording, and duration of data
record; and (b) channel specific metadata, for example
transducer type, number of samples per data record, and
channel label.

An EDF file stores the signal data recorded from all
recording channels during specific time duration (called an
epoch) as binary values in sequential order, which is called
an EDF data record. This sequential ordering of data from all
channels in an EDF data record is not suitable for signal data
visualization either for single channel or for combination of
channels called a signal montage. Therefore, neuroinformatics
applications need to transform the default EDF files into
channel-oriented data records followed by additional data pre-
processing for use in signal visualization or analysis tools
(Figure 1 illustrates the default layout of an EDF file and
desired channel-oriented format that is required by signal
visualization applications; Jayapandian et al., 2013). The size
of an EDF file is dependent on the number of recording
channels, which may vary from few Megabytes (MB) to
Gigabytes (GB). This unpredictability in size of EDF files makes
it difficult for neuroinformatics applications, such as Web-
based signal query and visualization applications (Jayapandian
et al., 2013) to efficiently load and process EDF files. In
addition, storage and analysis of large volumes of EDF files
has become a critical challenge for the neuroscience research
community due to the inherent limitations of traditional file
systems.

Traditional file systems have several constraints, such as
limitation on total number of addressable locations that
make it difficult to store extremely large volume of data
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FIGURE 1 | European data format (EDF) files store signal data as contiguous samples recorded from all channels, which makes it difficult to easily
access channel-specific signal data used in signal visualization and analysis applications. The NeuroPigPen toolkit re-organizes the “sample-oriented”
data in EDF files into contiguous “channel-oriented” data stored in cloudwave signal format (CSF) files to support neuroscience applications, such as Web-based
signal visualization application.

(e.g., storing more than 1 TB of data), difficulty in increasing
the size of available storage as the size of data increases, and
challenges associated with efficiently retrieving large datasets.
In addition, user queries often require retrieval of specific
segments of signal data corresponding to clinical events (e.g.,
epileptic seizures), which is extremely difficult in traditional
file systems due to limitations of indexing approaches. These
limitations are effectively addressed in HDFS (Shvachko et al.,
2010). However, storing electrophysiological signal data in
HDFS and making it available for use in various types of
neuroscience applications requires additional data processing
steps, including:

1. Partitioning of signal data into smaller segments: to allow easier
storage in distributed file systems.

2. Processing raw signal data and transforming them into suitable
format: including conversion of digital values to physical
values and binary values to integer values; and

3. Supporting clinical annotation of signal data using
standardized terminology or vocabulary: such as a domain
ontology, which will reduce terminological heterogeneity
and facilitate data integration as well as data retrieval
operations.

We have developed a Javascript Object Notation (JSON)-based
signal representation format called Cloudwave Signal Format
(CSF) to support efficient partitioning and storage of signal
data in HDFS (Jayapandian et al., 2015). CSF files enable
storage of smaller sized signal data segments in self-descriptive
files using both study-specific and channel-specific metadata
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FIGURE 2 | The data processing workflow supported by the NeuroPigPen toolkit modules consists of multiple steps with EDF files as input and CSF
files as output. The Load functions in the toolkit extend the Hadoop FileInputFormat and FileInputRecordReader classes to support signal data. The Map functions
in the toolkit are automatically compiled into MapReduce tasks by the Apache Pig compiler. The intermediate and final results are stored in Hadoop Distributed File
System (HDFS), which provides a reliable and scalable storage platform for signal data.

together with ontology-based clinical annotation. CSF uses
the JSON ‘‘attribute-value’’ pair structure with arbitrary levels
of nesting (Crockford, 1999) to annotate segments of signal
data with the metadata information as well as clinical events
identified by clinicians, which are modeled in an epilepsy domain
ontology called Epilepsy and Seizure Ontology (EpSO; Sahoo
et al., 2014). In addition to epilepsy, the clinical annotations
used in other neurological disease domains (e.g., Parkinson’s
disease and Alzheimer’s disease) that are modeled in other
disease-specific ontologies can also be used to annotate data in
CSF files. A CSF file may contain arbitrary number of signal
segments, each corresponding to user-defined time duration,
for example 30 s epoch is the default duration for a signal
segment in a CSF file. A CSF file currently stores two signal
segments (each of 30 s duration) by default. We note that these
parameters can be modified according to user or application
requirements.

Each CSF file can be independently stored, accessed, and
queried by software applications; therefore they can be easily
stored in distributed file systems such as HDFS. The CSF
files are also well suited for integration and used in a variety
of neuroscience applications, including visualization tools and
signal analysis software. These software applications can directly
use the processed signal data as numeric values, which are
organized in a channel-oriented layout. In our previous work,
we developed a MapReduce program to process EDF files and
generate CSF files (Jayapandian et al., 2015), however there were
several limitations associated with our approach that constrained
its use and deployment. The MapReduce program was difficult
to deploy and required careful setup and configuration of
various parameters. In addition, the users were required to have
expertise in parallel programming to integrate the program in
external software applications and there was limited support
for composing multi-step data flows. Therefore, we developed
the NeuroPigPen toolkit using the Pig data flow language to
address these limitations. The NeuroPigPen modules support
the generation of CSF files after partitioning, annotating, and
transforming the signal data stored in an EDF file. In the

next section, we describe the functionalities of the NeuroPigPen
modules.

NeuroPigPen Modules
Figure 2 shows the complete signal data processing workflow
and the intermediate data processing steps supported by the
NeuroPigPen modules, which are implemented as Pig UDFs.
The Pig UDFs allow users to write customized load or data
processing functions that can be used in Pig scripts to manage
different types of data (Gates et al., 2009). The NeuroPigPen
modules extend the Pig UDFs Application Programming
Interface (API) to support specific functionalities required
for processing signal data. The modules use HDFS to store
the EDF files, the intermediate results, and the final CSF
files, which ensure reliable storage of the signal data through
HDFS replication feature. We describe the functionalities
of the individual NeuroPigPen modules in the following
sections:

PigSignalLoad
This module loads a set of EDF files from HDFS by
instantiating the location of the EDF files on the Hadoop
Data Nodes and extends two Hadoop APIs InputFormat
and RecordReader to implement the CustomFileFormat and
CustomFileInputRecordReader methods for reading and parsing
the EDF files. These methods support partitioning the signal
data into appropriately sized signal segments, which can be
processed by the PigSignalReader module. The load module
locates and identifies the EDF files and the associated annotation
file (annotation files are stored separately according to the EDF
specifications) using the ‘‘.edf’’ and ‘‘.txt’’ extensions for the file
name, which is used by the PigSignalReader module to process
the EDF files.

PigSignalReader
The PigSignalReader module parses, extracts, and aggregates the
metadata information and signal data from the EDF files. In
addition, it extracts the clinical annotations (e.g., occurrence of
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seizure events and spikes) together with the associated timestamp
values and aggregates them with metadata values extracted from
the EDF files. The metadata and signal data are stored in
intermediate data structures using a ‘‘key-value’’ format, which
allows the PigSignalPartitioner module to easily compute the
offset values for data recorded by specific channels within and
across EDF data records. In addition, the PigSignalProcessor
module uses the metadata values stored in these ‘‘key-value’’
data structures to convert the digital signal values into the
corresponding physical values. We note that the PigSignalReader
module can be used as a standalone software tool by other
neuroscience applications to parse and extract information from
EDF files.

PigSignalPartitioner
The monolithic structure used to store signal data in an
EDF file makes it difficult to store and process EDF files in
HDFS, therefore the signal data needs to be partitioned into
smaller segments that can be easily transferred across Hadoop
Data nodes. HDFS stores data in fixed size blocks (64 MB
by default in Apache Hadoop and 128 MB in the Cloudera
distribution of Hadoop), which are distributed across multiple
nodes in a cluster. However, there are no existing approaches
that can be used to partition signal data in an EDF file. The
PigSignalPartitioner module partitions the signal data in an EDF
file into logical segments of fixed time duration, for example 30 s
time duration (called epochs). The PigSignalPartitioner module
allows users to specify the time duration for each partition
as a configurable value based on application requirements.
This feature allows neuroscience applications to flexibly create
segments of signal data corresponding to variable time durations.
After partitioning the signal data into smaller segments, the
PigSignalPartitioner module adds the metadata and clinical
annotations (extracted by PigSignalReader) to these segments
for additional processing by the PigSignalProcessor module
and generation of CSF file by the PigSignalCSFGenerator
module.

PigSignalProcessor
The default layout for signal data in an EDF file involves
contiguous storage of data recorded from all channels (e.g.,
EEG and ECG) within a specific time period as a single EDF
data record. This data organization is not suitable for analyzing
or visualizing data from a single channel or combination of
channels. Therefore, the PigSignalProcessor module transforms
the layout of signal data in a given signal segment into a
channel-oriented layout. Data from each channel consists of
different number of samples, for example signals that change
frequently are recorded at a higher rate of sampling such as
ECG. The PigSignalProcessor module uses the channel-specific
metadata (extracted by the PigSignalReader) to compute the
number of samples corresponding to each recording channel
and then aggregates all the channel-specific data into a single
data record. This channel-oriented layout stores signal data from
each channel contiguously to support faster retrieval of data
corresponding to single channel or combine data from different
channels to compose a signal montage (Jayapandian et al., 2013).

The PigSignalProcessor module also converts the original
signal data values, which are stored as binary values, into
numeric values for use by signal visualization tools. This
pre-processing step reduces the computational load of
visualization application and supports improved response
time for rendering large volumes of signal data. In addition,
the PigSignalProcessor module converts the ‘‘digital’’ signal
values (as recorded in the original EDF file) to ‘‘physical’’
values, which can be used for analysis of applications such
as functional connectivity algorithms (Wendling et al.,
2016). The conversion process uses a standard approach
based on the digital and physical minimum as well as
maximum values and stores them in suitable data structures
for conversion into CSF file by the PigSignalCSFGenerator
module.

PigSignalCSFGenerator
The PigSignalCSFGenerator module generates CSF files using
signal data segments and aggregated metadata generated by
the PigSignalPartitioner and PigSignalProcessor modules. In
addition to the metadata values extracted from the EDF
files, the PigSignalCSFGenerator computes additional metadata
information to facilitate easier search, retrieval, and indexing of
the CSF files, for example start and end time of individual signal
segments and the sequence number of a signal segment based
on its recording time. This allows data retrieval applications
to efficiently locate signal segments corresponding to specific
recording time in CSF files. It is important to note that the CSF
format will continue to evolve to incorporate newmetadata fields
and the design of the PigSignalCSFGenerator makes it easy to
modify and maintain it. The ‘‘self-descriptive’’ property of JSON
‘‘attribute-value’’ pairs allows neuroinformatics applications
to maintain compatibility across different versions of CSF
files.

Code Listing 1 (Figure 3) shows the components of the
NeuroPigPen toolkit together with the command line scripts
used to register the NeuroPigPen UDFs, generate and execute the
Pig scripts. For brevity, the comments and header information
are not listed. The lines 1 and 2 in Section A transfer EDF files
from a local storage location (e.g., personal computer or local
server) to HDFS. The lines 3–7 in Section B register the first
two Java Archive (jar) files corresponding to the load and Map
functions. The lines 8–13 in Section B register the second set of
jar files corresponding to the second load andMap functions. The
lines 14 and 15 in Section C execute the two registered functions
to process the EDF files stored in HDFS, where the UDFs are
compiled into Map tasks by the Pig compiler. Line 16 in Section
D validates the generation of CSF files. In the following section,
we evaluate the NeuroPigPen toolkit with respect to its three
design principles.

RESULTS

The NeuroPigPen was designed to incorporate three primary
features of: (1) scalability to process and analyze large volumes
of electrophysiological signal data; (2) ease of programming
through use of high level programming constructs, which
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FIGURE 3 | Code Listing 1 shows the steps to be followed to use the NeuroPigPen modules using command line scripts for Pig. The steps (shown
using four sections) show loading the data into HDFS, creation of Pig script files, executing the Pig script files, and validating the output CSF files. Apache Pig scripts
can be embedded and invoked from other programming language, such as Java and Python.

reduces the need to address parallelization, data partitioning,
and inter-node communication challenges by developers; and
(3) adaptability to different cluster configurations in terms
of available computing nodes, which will allow research

groups with small as well as large computing clusters to
use the NeuroPigPen toolkit without the need to modify
code. The NeuroPigPen toolkit meets these three design
objectives. By leveraging the features of the MapReduce
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FIGURE 4 | The scalability and adaptability of the NeuroPigPen is demonstrated by processing five datasets with 1, 50, 100, 500, and 750 GB size
over six different configuration of Hadoop Data nodes featuring 3, 6, 12, 18, 24, and 30 nodes. The experiment results show that NeuroPigPen scales with
increasing volumes of data and can be deployed over different sizes of Hadoop clusters.

parallel programming approach and the high-level data flow
programming design of Apache Pig, NeuroPigPen can be easily
integrated in neuroinformatics software without compromising
on computing performance. Similar to Apache Hadoop and
Pig, the NeuroPigPen toolkit has been developed using Java,
which makes it easily portable across heterogeneous computing
platforms.

We systematically evaluated the scalability and adaptability of
the NeuroPigPen toolkit using de-identified electrophysiological
signal data collected at the UH-CMC EMU, which were stored
as EDF files. We removed all Protected Health Information
(PHI) data elements from the EDF files before using it to
evaluate NeuroPigPen. The EDF files were processed over a
31-node Hadoop cluster at our High Performance Computing
Cluster (HPCC) using Cloudera CDH 5.4 distribution. Each
Data node in the Hadoop cluster has a dual Xeon E5450
3.0 GHz processor with eight cores per processor, 16 GB
memory, and 2 TB disk storage. The Hadoop Name node has
a dual Xeon 2.5 GHz E5-2450 processor with 16 cores, 64
GB memory, and 1 TB disk storage. The nodes are connected
by 10 gigabits network connection. The HPCC is protected
by institutional firewall with fine-grained access control to
manage access to the de-identified signal data. We used a
HDFS replication factor of 3 to store the datasets in the
HPCC cluster. The results reported in this section are the
average value of three executions with cold cache on the HPCC
cluster.

Evaluation of the Scalability and
Adaptability of NeuroPigPen
The scalability of NeuroPigPen was tested using five datasets
with sizes: 1, 50, 100, 500, and 750 GB. The two datasets of
size 50 and 500 GB were selected to demonstrate the effect on

performance of NeuroPigPen when the size of data increases by
an order of magnitude. An EDF file is the ‘‘data input unit’’ for
NeuroPigPen, that is, each EDF file is processed individually.
The signal datasets consisted of EDF files with different sizes
ranging from 248 MB to 19.6 GB to reflect the variability in
size of individual EDF files collected in real world settings.
The EDF files were stored in a single folder and the path to
the folder was used as input for the PigSignalLoad module.
Figure 4 shows the performance of NeuroPigPen with increasing
size of data, which demonstrates the scalability of the toolkit
as the size of data increases from 1 GB to a maximum of
750 GB. It is important to note that as the size of data is
increased by an order of magnitude (50 to 500 GB), the time
required for processing the data increases by less than an order of
magnitude (from 8.57 to 49.63 min on 30 Hadoop Data nodes),
which demonstrates the efficient performance of NeuroPigPen.
In addition to scalability, the NeuroPigPen also meets it design
objective for adaptability as Figure 4 shows that it effectively
leverages available Hadoop Data nodes to reduce the time
required to process the signal data.

This adaptability allows NeuroPigPen to be used in a variety
of environments ranging from small clusters (often used by
neuroscience research groups with limited financial resources)
to large clusters. To systematically evaluate the adaptability of
NeuroPigPen, we used six different configurations of Hadoop
consisting of: 3, 6, 12, 18, 24, and 30 Data nodes. The six different
configurations were evaluated by increasing the number of
Data nodes available to NeuroPigPen in the HPCC cluster
for fixed size of signal data. The results in Figure 4 show
that the performance of NeuroPigPen improves with increasing
number of Data nodes, we specifically note the improvement
in performance as there is an order of magnitude increase in
the number of Data nodes (3–30 nodes). The improvement
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FIGURE 5 | The NeuroPigPen modules can be used as standalone applications, which will enable users to selectively use modules to support
specific applications. The Map1 function of NeuroPigPen consists of the PigSignalReader module and the Map2 function consists of the PigSignalPartitioner,
PigSignalProcessor, and the PigSignalCSFGenerator modules. The comparative evaluation of the two Map functions uses the five datasets and six Hadoop
configurations used in the first experiment. The performance evaluation shows that Map2 takes approximately twice the time to process a given dataset as
compared to Map1 and this is consistent across different datasets as well as Hadoop configurations.

in performance is more significant for larger datasets, for
example there is an order of magnitude reduction in time
performance for 100 GB dataset, as compared to smaller
dataset such as 1 GB. We note that the 500 GB and 750 GB
sized datasets could not be processed with less than 12 Data
nodes. This highlights a physical constraint on the total size
of signal data that can be processed on smaller-sized Hadoop
clusters.

Ease of Programming and Performance of
Individual Map Functions
Individual NeuroPigPen modules can be embedded into other
programming languages such as Java or Python to support
complex control flows for processing and analyzing signal
data. This allows NeuroPigPen to be used for composing
data flows with complex constructs, including recursions,
which are not directly supported by Pig. The modular feature
of NeuroPigPen makes it easier for users and developers to
integrate the whole toolkit or individual modules to process
signal data. To evaluate the performance of the two Map
functions in NeuroPigPen (as listed in the Code Listing 1,
Figure 3), we recorded the time taken to process the data
for individual Map functions using the six Hadoop Data
node configurations and five datasets used in the previous
experiment. Figure 5 shows that the Map2 function (in Code
Listing 1, Figure 3) consisting of the PigSignalPartitioner,
PigSignalProcessor, and PigSignalCSFGenerator modules
require significantly more time to complete its execution as
compared to Map1, which consists of the PigSignalReader
module. The Map2 function takes three times longer to

process 100 GB of data on three Data nodes (29.2 min)
as compared to Map 1 (89.9 min) and about two times
longer on 30 Data nodes (3.3 min as compared to 6.7 min).
These results demonstrate that applications can use the
PigSignalReader to parse EDF files without incurring the extra
computational time required for generating CSF files by the
Map2 function.

As part of our ongoing research in computing functional
connectivity measures from SEEG data in epilepsy patients, we
have integrated the NeuroPigPen modules into a computational
workflow that uses EDF files as input and generates connectivity
measures as output. The functional connectivity are computed
using non-linear correlation coefficient to quantify the degree
of co-occurrence of signal values X(t) and Y(t) recorded from
two brain locations (mapped to the recording contacts on
the intracranial electrodes) at GX and GY where t is time of
recording (Wendling et al., 2010). To support the extremely
large volume of SEEG data in our project, the EDF files
are processed using all the NeuroPigPen modules and the
resulting smaller-sized CSF files are used as input to the
module computing non-linear correlation coefficient measures.
The integration of the NeuroPigPen modules with the functional
connectivity workflow required minimal programming effort in
terms of allowing the correlation coefficient measure module
to process CSF files. The ease of using NeuroPigPen in the
functional connectivity workflow demonstrates its suitability
for use in other computational neuroscience applications. For
example, analysis involving correlations and granger causality
over small segments of EDF files storing sleep recording
can be supported by NeuroPigPen modules with minimal
modification.
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Related Work
The evaluation results for NeuroPigPen demonstrate that
it is a practical toolkit for use in neuroscience applications.
There are several initiatives to use Hadoop technologies
to process and analyze neuroscience data, including use
of Hadoop Spark for mapping brain activity (Freeman
et al., 2014), and signal data processing using Graphic
Processing Unit (GPU; Chen et al., 2011). There has been
work on use of MapReduce to process large volumes
of EEG data (Wang et al., 2012) and for signal analysis
(Wu and Huang, 2009; we refer to Nguyen et al., 2011
for an overview of using Hadoop technologies for clinical
signal data). We are not aware of an existing Apache
Pig-based neuroscience data processing library that can
be compared to the functionalities and features of the
NeuroPigPen toolkit. The scalability, adaptability, and the
ability to use individual NeuroPigPen modules to support
different types of signal processing makes this toolkit
an important resource for the growing neuroinformatics
community that uses Hadoop technologies. As part of
our ongoing work, we are extending the functionalities
supported by the NeuroPigPen modules to include several
statistical measures, such as computing correlation functions
between signal data. These statistical measures are often
used to compute functional connectivity measures from
EEG signal data as part of brain connectivity research
(Wendling et al., 2010). In the next section, we discuss the
broader impact and current limitations of the NeuroPigPen
toolkit.

DISCUSSION

The primary advantage of the NeuroPigPen toolkit as compared
to hand crafted MapReduce applications is the use of high-
level data flow programming constructs defined in Apache
Pig without compromising the performance of the toolkit in
terms of scalability. However, the generic MapReduce tasks
generated by the Apache Pig compiler are not optimized
for processing electrophysiological signal data, therefore
the NeuroPigPen may not be as efficient as hand crafted
MapReduce programs. We propose to perform a systematic
comparison of NeuroPigPen with MapReduce programs in
the future to systematically characterize the difference in
performance. This comparison will help users in making
a decision regarding the use of NeuroPigPen for easy
integration and availability or development of hand crafted
MapReduce programs. In addition, there are well-known
issues of latency associated with initialization of Hadoop
MapReduce applications (Pavlo et al., 2009), which also affect
the performance of NeuroPigPen modules. This latency is
especially noticeable for smaller datasets as compared to
large datasets as the data processing time for large datasets
tends to dominate in comparison to the initialization time
for Hadoop applications. There are several approaches that
can be used to address the issue of latency, including use
of indexes and data pre-fetching techniques. Applications
that do not perform well on MapReduce architecture

will also not perform well with NeuroPigPen. Therefore,
neuroscience applications need to consider this aspect
before making a decision regarding the use of NeuroPigPen
toolkit.

Integration of NeuroPigPen modules with scientific
workflow systems, such as Taverna (Hull et al., 2006) and
Kepler (Ludäscher et al., 2006), will allow wider adoption of
NeuroPigPen by the neuroscience research community for
processing large datasets. Scientific workflows are widely used
in the bioinformatics and medical informatics community
to automate data processing across distributed computing
resources with support for failure recovery and ability to collect
provenance metadata for scientific reproducibility (Missier
et al., 2010). Although, there is a clear synergy between the
NeuroPigPen toolkit and scientific workflow systems, we
need to address the lack of support for workflow system in
NeuroPigPen modules. For example, we need to develop
remotely accessible APIs, such as Representational State
Transfer (RESTful) Web services, to allow workflow engines
to invoke the NeuroPigPen modules. In addition, there is a
need to use CSF as the common data representation format
by workflow engines to support exchange of signal data
between the workflow systems and neuroscience applications.
Therefore, as part of our future work we plan to develop
RESTful APIs for NeuroPigPen modules. This will allow
scientific workflow systems to leverage the advantages of
Hadoop framework (e.g., scalability) to process and analyze
neuroscience data especially in the broader context of
combined multi-modal recordings. We are also developing
new NeuroPigPen modules to support imaging data used in
neuroscience application, for example, characterization of
cognitive and neural correlates of mathematics problem solving
using fMRI.

CONCLUSION

In this article, we introduced the NeuroPigPen toolkit to
address the need of the neuroinformatics community to
process large volumes of electrophysiological signal data,
which is used in several neuroscience applications. For
example, characterization of seizure networks in epilepsy
patients and computing functional connectivity network.
We demonstrated the usefulness of this toolkit and its
modularity, which enables NeuroPigPen to be used in
existing software applications and leverage the advantages
of Hadoop technologies. The toolkit was designed to
allow developers and users to use a high-level data flow
programming approach to construct signal data processing
workflows in contrast to developing hand crafted MapReduce
programs or using Message Passing Interface (MPI), which
requires developers to address the complexities associated
with parallel programming. In addition, we demonstrated
that NeuroPigPen meets its three design objectives of
scalability, adaptability, and ease of use by evaluating its
performance with 750 GB signal data over variable number
of Hadoop Data nodes. The toolkit was developed using
the Java programming language, therefore it is portable
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across heterogeneous computing environments. As part
of our ongoing work, we are adding new modules to the
NeuroPigPen toolkit to support additional features such
as computing statistical measures for brain connectivity
applications and potential integration with scientific workflow
systems.
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