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Dimensionality poses a serious challenge when making predictions from human

neuroimaging data. Across imaging modalities, large pools of potential neural features

(e.g., responses from particular voxels, electrodes, and temporal windows) have to

be related to typically limited sets of stimuli and samples. In recent years, zero-shot

prediction models have been introduced for mapping between neural signals and

semantic attributes, which allows for classification of stimulus classes not explicitly

included in the training set. While choices about feature selection can have a substantial

impact when closed-set accuracy, open-set robustness, and runtime are competing

design objectives, no systematic study of feature selection for these models has

been reported. Instead, a relatively straightforward feature stability approach has

been adopted and successfully applied across models and imaging modalities. To

characterize the tradeoffs in feature selection for zero-shot learning, we compared

correlation-based stability to several other feature selection techniques on comparable

data sets from two distinct imaging modalities: functional Magnetic Resonance Imaging

and Electrocorticography. While most of the feature selection methods resulted in similar

zero-shot prediction accuracies and spatial/spectral patterns of selected features, there

was one exception; A novel feature/attribute correlation approach was able to achieve

those accuracies with far fewer features, suggesting the potential for simpler prediction

models that yield high zero-shot classification accuracy.

Keywords: zero-shot learning, transfer learning, semantics, fMRI, electrocorticography, feature selection, BCI

1. INTRODUCTION

The curse of dimensionality is severe in neuroimaging data, and therefore prediction algorithms
trained on neural data must take this into account to avoid overfitting. Across imaging modalities,
there are often very large sets of potential neural features or dimensions, and they are often
recorded across a relatively limited set of stimuli and samples. In functional magnetic resonance
imaging (fMRI), responses from tens of thousands of voxels (or more) are commonly analyzed
over multiple time points. Magnetoencephalography (MEG), electroencephalography (EEG), and
electrocorticography (ECoG) involve only several hundred channels at most, but when combined
with high sampling rates and rapidly varying neural responses, the resulting dimensionality is often
similar to fMRI. This imbalance between features and samples is a common burden in hypothesis
testing and model estimation in neuroscience.
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A variety of statistical corrections (Nichols, 2012), feature
selection (Guyon and Elisseeff, 2003), and dimensionality
reduction techniques (Mwangi et al., 2014) are typically used
to address this ever-present issue. The most straightforward
approach involves a priori hypotheses about what spatial or
temporal features are likely to be informative. For example,
features can be selected and/or aggregated based on atlases (Chu
et al., 2012), parcellations (Desikan et al., 2006; Glasser et al.,
2016; Gordon et al., 2016), temporal windows, or frequency
bands (Hotson et al., 2016).

Unfortunately, for many studies and applications there
are no strong a priori hypotheses about feature importance.
One such area is neural-semantic prediction, which is used by
zero-shot stimulus classification algorithms (Palatucci et al.,
2009) for identifying classes lacking in training data. Various
authors have demonstrated the ability to learn mappings between
neural features and semantic attributes, mostly in fMRI studies
(Mitchell et al., 2008; Palatucci et al., 2009; Pereira et al., 2011;
Sudre et al., 2012; Wehbe et al., 2014), and more recently,
ECoG (Rupp et al., 2017). Once the neural-semantic mapping
is learned, novel stimuli can be characterized inductively using
the semantic distance. Considering the large number of potential
open set stimuli and the small amount of data available to train,
feature selection can be a path toward generalization by ensuring
that zero-shot predictors do not overfit to small data sets.

A simple approach to feature selection, termed correlation
stability, has been successfully applied by many studies of
semantic representations in the brain (Shinkareva et al., 2008;
Just et al., 2010; Chang et al., 2011; Pereira et al., 2011; Levy
and Bullinaria, 2012; Sudre et al., 2012; Wehbe et al., 2014;
Chakrabarti et al., 2015). In this approach, neural features
are ranked based on how stable their activation profiles are
across repetitions of the same class of stimuli, where stability
is measured via correlation. The most highly-ranked features
are then chosen to train the predictive model. The logical
and algorithmic simplicity, performance, and computational
efficiency have made correlation stability a popular choice for
feature selection in neuroimaging data sets, including those used
for zero-shot learning.

Although numerous studies using correlation stability have
reported positive results for zero-shot stimulus classification, no
systematic comparisons with other feature selection techniques
has been reported. In the current study, we compared
correlation-based stability to several other feature selection
techniques with particular attention to the tradeoff between
prediction accuracy and the resulting model complexity, which
may be of interest in brain-computer interface (BCI) engineering.
Four methods were compared to correlation-based stability: a
Wrapper Method, Fisher’s Method, Mutual Information-Based
Stability, and a novel Attribute/Feature Correlation technique.
Following previous uses of correlation-based stability, each
of these methods was used to select features for a neural
encoding model (i.e., predicting neural feature values from
semantic attributes) and a semantic decoding model (i.e.,
predicting semantic attributes from neural features values)
to predict classes that were not included in the training
set.

To assess how feature selection methods perform across
imaging modalities, visual stimuli were classified using two
very different modalities: voxel activity from whole-brain
fMRI data published by Mitchell et al. (2008), and spectral-
temporal features across subdural electrodes collected by our
group from ECoG patients performing object-naming with
the same stimuli (Rupp et al., 2017). Results show that a
novel attribute/feature correlation technique is an improvement
over standard correlation stability, by which maintaining high
performance while substantially reducing the number of features
required to achieve it. Further analysis seems to indicate that
this improvement might be the result of a more diverse spatial
distribution (in fMRI) or temporal distribution (in ECoG) of the
chosen features.

2. MATERIALS AND METHODS

2.1. Zero-Shot Transfer Learning Models
2.1.1. Overview
Zero-shot stimulus classification can be implemented through
encoding and decoding models which decompose of a class of
stimuli into its constituent attributes or features (i.e., visual,
acoustics, phonological, spatial, or semantic attributes). Using
this approach, models can be learned for relating a set of
attributes to the neural responses evoked by various classes
of stimuli. This process recasts the classification problem as a
transfer learning problem. This type of computational model has
been used extensively for the study of visual and semantic feature
representation in the brain, as well as other applications such as
computer vision (Burlina et al., 2015) and landmine detection
(Colwell and Collins, 2016).

In practice, zero-shot transfer learning involves the mapping
between (semantic) attributes (x ∈ R

P) and (neural) features (y ∈
R
M). Encoding consists of the mapping x 7→ y, and decoding

corresponds to y 7→ x. Zero-shot prediction is performed by a
distance-based classifier in the map output space. Since neural
data is inherently high-dimensional, it is assumed thatM≫P, so
feature selection only needs to be performed on y.

2.1.2. Encoding Model
Encoding takes the form of a linear regression of x onto each ym,
form = 1, 2, ...,M:

ŷm = xTw(en)
m (1)

The parameter vector w
(en)
m consists of the regression weights

for encoding the mth feature, and is learned from training data.
Therefore,M individual encoding regression models are learned.
In this work, ridge regression was used as a coefficient shrinkage
method to safeguard against overfitting (Hastie et al., 2001). The
optimal encoding weights are given by

w(en)
m = argmin

w
||Xw− ym||

2
2 + λ(en)||w||22

=
(

XTX+ λ(en)I
)−1

XTym, (2)

where X is the T × P matrix of semantic attributes (each row
normalized to unit length), where T is the total number of
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training samples, ym is the T×1 vector of values of themth neural
feature (normalized to zero mean, unit variance), and λ(en) is a
regularization parameter set experimentally.

2.1.3. Decoding Model
The decodingmodel is a reversal of the encodingmodel, in which
each attribute is predicted independently from the set of features.
Using the above notation, decoding takes the form of a linear
regression of y onto each xp, for p = 1, 2, ..., P:

x̂p = yTw
(de)
p (3)

The parameter vector w
(de)
p consists of the regression weights for

decoding the pth attribute, which are learned from training data.
Therefore, P individual decoding regression models are learned.
The ridge regression solution for the optimal decoding weights is
given by

w
(de)
p = argmin

w

{

||Yw− xp||
2
2 + λ(de)||w||22

}

=
(

YTY+ λ(de)I
)−1

YTxp, (4)

whereY is the T×Mmatrix of features (each column normalized
to zero mean, unit variance), xp is the T × 1 vector of values

of the pth attribute (normalized to unit length), and λ(de) is the
regularization parameter.

2.1.4. Zero-Shot Stimulus Prediction
After using regression to transfer between features and attributes,
zero-shot stimulus prediction can be performed by a distance-
based classifier. In this work, the cosine distance was used used
so that differences inmagnitude between the predicted and actual
vectors are ignored, and only relative differences between the
vector elements are taken into account (Palatucci et al., 2009;
Jelodar et al., 2010).

Let the cosine distances resulting from the encoder output be
denoted as

d
(en)
φ =

ŷ · yφ

||ŷ|| ||yφ ||
, (5)

where yφ is the average feature vector for stimulus φ. Therefore,
predicting the class (neural activation) φ via encoding takes the
form of

φ̂(en) = argmin
φ

{

d
(en)
φ

}

. (6)

Similarly, prediction via decoding takes the form of

d
(de)
φ =

x̂ · xφ

||x̂|| ||xφ ||
, (7)

φ̂(de) = argmin
φ

{

d
(de)
φ

}

, (8)

where xφ is the vector of true attribute values for stimulus φ.

2.2. Data Collection
2.2.1. Neural Stimuli and Semantic Attributes
The experiments carried out for this work utilized fMRI
data collected during a property-contemplation task originally
reported by Mitchell et al. (2008), and ECoG data collected
during a similar task using the same stimuli (Rupp et al.,
2017). The stimuli consisted of 60 line drawings of various
animals, body parts, buildings, building parts, clothing, furniture,
insects, kitchen utensils, man-made objects, tools, vegetables, and
vehicles (Figure 1). Each of the 60 stimuli was uniquely mapped
to a vector of P = 218 semantic attributes proposed by Palatucci
et al. (2009). The attributes were generated by crowdsourcing
answers to a series of 218 questions via Amazon Mechanical
Turk. All 218 questions were asked of 1,000 different objects,
including all 60 of the objects included in this study. Questions

FIGURE 1 | fMRI and ECoG data collection procedure. Stimuli were presented for tstim seconds followed by a fixation cross for tfix seconds. Images were composed

of black outlines on white backgrounds for fMRI experiments, and white outlines on black backgrounds for ECoG experiments. Reproduced from Mitchell et al. (2008)

with permission from The American Association for the Advancement of Science.
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probed a variety of semantic properties, including size, usage,
composition, and category, with answers on an ordinal scale from
1 to 5. The attribute vectors were rescaled to the range [−1, 1]
and normalized to unit length prior to training the encoding and
decoding models.

2.2.2. Functional MRI
The fMRI data set used in this work was originally cataloged
by Mitchell et al. (2008). Data was collected from nine college-
age participants who were presented with each line drawing for
tstim = 3 s, followed by a fixation period of tfix = 7 s. The stimulus
set was randomly permuted, and shown to each participant
six times. During stimulus presentations, the participants were
instructed to think about the object properties. fMRI images
were collected on a Siemens Allegra 3.0T scanner and include
seventeen 5-mm thick oblique-axial slices imaged with a 1-mm
gap between slices. The resulting images were 64 × 64 pixels
in size where a pixel corresponds to a 3.125 × 3.125 × 5-
mm voxel. Feature preprocessing steps included motion and
timing compensation, filtering, normalization to MNI space,
and resampling. Then voxel activations were calculated as the
deviation from the fixation condition for each stimulus. These
activation values served as the neural features (ym) for the fMRI
experiment. A breakdown of the total number of features for each
participant can be found in Table 1.

2.2.3. Electroencephalography
The fMRI data provided by Mitchell et al. were supplemented
by an ECoG data set collected by Rupp et al. (2017) from six
participants at Johns Hopkins Hospital. The test participants
were undergoing epilepsy monitoring for localization of seizure
focus. All participants provided informed consent, and the
procedures were approved by the Institutional Review Board
of Johns Hopkins Medicine. All six participants had different
arrangements of ECoG grids and strips that were emplaced for
clinical purposes (Figure 2). Participants 1 through 6 had 87, 36,
92, 87, 114, 97 electrodes respectively, each of which were 4 mm
in diameter and spaced 10 mm apart, center-to-center.

ECoG data was recorded using a similar collection paradigm
as Mitchell et al. (2008). White line drawings were presented
on a black background, with a centered white fixation cross

TABLE 1 | Number of features per subject and collection modality.

fMRI ECoG

Participant No. of features Participant No. of features

1 2,721 1 2,088

2 2,657 2 864

3 2,581 3 2,208

4 2,549 4 2,088

5 2,575 5 2,736

6 2,490 6 2,328

7 2,469

8 2,501

9 2,668

present during inter-stimulus intervals. Stimuli were shown
for tstim = 1 s, with a rest interval tfix varying randomly
between 3.5 and 4.5 s. Participants were instructed to name the
image as soon as possible, or pass on images when necessary.
The stimulus set consisted of the same 60 object classes as
in the fMRI experiment. Six blocks of data were collected per
patient, where all 60 objects were shown in pseudo-random
order. Picture-naming was selected for this experiment to ensure
participant compliance and to provide a means of verifying
correct object identification. ECoG signals were sampled at 1,000
Hz, digitized, and recorded using the BlackRock Neuroport
system. Experimental equipment, including a microphone and a
photodiode, were also recorded through the analog inputs of the
recording system. For participants withmore than 128 electrodes,
twoNeuroport systems were used, with analog channels recorded
separately on each recording system to aid in synchronization.
The stimulus presentation and data recording were implemented
with BCI2000 (Schalk et al., 2004).

After data collection, ECoG channels that were identified to
contain excessive noise upon visual inspection were discarded.
A common-average reference was used to spatially filter the
signals, where each electrode was referenced to the grid or strip
to which it belonged. Signals were then low-pass filtered with
a cutoff frequency of 128 Hz to prevent aliasing, resampled to
256 Hz, and time-gated to a time range from stimulus onset to
750 ms post stimulus onset. The analysis period was restricted to
minimize contamination from the participant’s spoken response.
The spectrogram of the time-gated ECoG data was computed
using the short-time fast Fourier transform (FFT) with 500 ms
time windows and 50% overlap.

Figure 3 shows a portion of a spectrogram that demonstrates
the details of specific frequency activation after stimulus onset.
In this figure, the magnitude of the recorded signal has been
normalized by the magnitude of a baseline signal recorded 1,000
ms prior to the stimulus. Time/frequency features were extracted
from the spectrogram of each ECoG signal in 24 subregions (each
indicated by a red asterisk) made up of two overlapping time
windows centered at 250 and 500 milliseconds after onset, as
well as 12 overlapping frequency windows. Because the number
of electrodes varied per subject, the number of potential ECoG
features varied as well; the number of features per participant
is detailed in Table 1. The breakdown of selected features by
frequency bin and location, as well as the performance of
those features in zero-shot decoding and encoding, was used to
evaluate various feature selection techniques.

2.3. Feature Selection Techniques
2.3.1. Overview
Feature selection methods are generally organized into two
categories, wrapper methods and filter methods (Guyon and
Elisseeff, 2003). Filter methods work by applying a ranking
criterion to each feature, independent of the regression model,
and the top-ranked features are kept in the final model design.
Wrapper methods, on the other hand, use a regression model to
continuously test combinations of features while keeping track of
the best possible combination. Although wrapper methods offer a

Frontiers in Neuroinformatics | www.frontiersin.org 4 June 2017 | Volume 11 | Article 41

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Caceres et al. Feature Selection for Zero-Shot Learning

FIGURE 2 | Electrode placement grid for the ECoG participants overlaid on a magnetic resonance imaging (MRI) scan for anatomical reference.

more systematic search of the feature space, they also require long
computation times. A mix of filter and wrapper methods were
considered in this study. To asses their ability to accommodate
zero-shot learning, leave-one-class-out (LOCO) cross-validation
was used to validate all of the feature selection techniques. Details
regarding their implementation are summarized in the following
subsections.

2.3.2. Correlation-Based Stability
Correlation-based ranking was originally proposed as a method
for ranking and down-selecting fMRI voxels according to their
stability, as measured by pair-wise correlation across blocks of
repeated trials (Shinkareva et al., 2008). Since then, many studies
have relied upon correlation-based stability selection prior to
training an encoding or decoding model (Mitchell et al., 2008;
Palatucci et al., 2009; Chang et al., 2011; Pereira et al., 2011,
2013; Levy and Bullinaria, 2012; Chakrabarti et al., 2015). The
motivation for selecting features based on stability lies in the
expectation that semantic information will be encoded in a
repeatable manner. It is implicitly assumed that any drift in
information-bearing neural signals between trials is linear.

The correlation stability measure is calculated for each feature,
where the correlation is measured by class and within pairs of
trial blocks and then averaged over all possible block pairings.
The features are then ranked according to average correlation,
in descending order. The M features with the largest average
correlation, i.e., the M most stable features across blocks, are
selected for use in the encoding and decoding models.

2.3.3. Mutual Information Based Stability
The correlationmeasure can accommodate a linear drift of neural
feature values between blocks. A more general measure that can
accommodate nonlinear relationships ismutual information. The
mutual information between two random variables Y1 and Y2 is
the amount by which uncertainty in Y1 is reduced by knowing Y2

(and vice versa) (Cover and Thomas, 2006). Mutual information
is computed by

I(Y1;Y2) =

∫ ∫

p(y1, y2) log
p(y1, y2)

p(y1)p(y2)
dy1dy2, (9)

where p(y1) and p(y2) are the marginal probability density
functions (PDFs) of Y1 and Y2, and p(y1, y2) is the joint PDF
of Y1 and Y2. It is assumed here that Y1 and Y2 are Gaussian-
distributed. Therefore, the mutual information between two
neural features is computed by

I(Y1;Y2) =
1

2
log

(

σ 2
1 σ 2

2

|6|

)

, (10)

where σ 2
1 and σ 2

2 are the estimated variances of Y1 and Y2,
respectively, and 6 is their estimated covariance matrix.

The process of computing average mutual information for
each feature and selectingM features for themodels is identical to
that described for correlation stability with the obvious exception
that mutual information is computed rather than correlation.
The marginal and joint distributions of each pair of blocks are
estimated using maximum likelihood estimates of the sample
mean and covariance.
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FIGURE 3 | Sample spectrogram, averaged over all 360 trials, for the most

postero-medial electrode on the basal temporal surface of Participant 1’s

ECoG data set. The horizontal axis corresponds to time in seconds (from

stimulus onset), the vertical axis corresponds to frequency (Hz), and the color

scale corresponds to the complex magnitude of the short-time FFT. Data from

the outlined region were averaged into 24 overlapping frequency and time

subregions centered at each red asterisk prior to use as neural features.

2.3.4. Attribute/Feature Correlation
This method supplements the basic correlation stability method
with a prior step that utilizes the attributes. First, the neural
feature with the highest correlation (over all trials and classes)
to each of the attributes is found. This process reduces the pool
of candidate features to a small number M′ ≤ P. M′ may be less
than P because some features may be the most highly-correlated
with multiple attributes. This subset of neural features are then
ranked using the standard correlation-based stability method.

2.3.5. Fisher’s Method
Fisher’s method analyzes each feature’s distribution through their
mean and standard deviation, where each feature is rated based
on its spread from the mean for each class (Duda et al., 2001;
Guyon and Elisseeff, 2003). The Fisher score for the mth feature,
SF(Ym), is computed as

SF(Ym) =

∑N
i= 1 ni(µi,m − µm)

2

∑N
i= 1 niσ

2
i,m

, (11)

where N is the number of classes, ni is the number of trials
using the ith class as stimulus, µi,m is the sample mean of
Ym conditioned on the ith class, µm is the sample mean of
Ym over all trials and classes, and σ 2

i,m is the sample variance

of Ym conditioned on the ith class. According to Equation 11,
features which cluster more tightly around their mean value per
class are given higher scores. Scores are sorted in descending
order and theM features with the highest score are chosen.

2.3.6. Ridge Regression Wrapper
Finally, a wrapper method based upon the ridge regressionmodel
was implemented as follows:

1. One hold-out class is removed from the set of all classes. (This
is not to be confused with the LOCO cross-validation class. In
the work here, we start with 59 classes in step 1 and steps 2–3
below operate on 58 classes).

2. The encoding model is trained on the remaining classes using

Equation 2 to obtain w
(en)
m form = 1, 2, ..., M.

3. The semantic vector x corresponding to the held-out class
is used to predict the neural features ym (m = 1, 2, ...,M),
resulting from that stimulus using Equation 1.

4. Repeat steps 1-3 for all classes.
5. The correlation is calculated between each of the predicted

features ŷm and the average true ym for the held-out class.
6. Select theM features with the highest average correlations.

3. RESULTS

3.1. Overview
Using the feature selection techniques described in Section 2.3,
experiments were conducted to assess performance of zero-
shot classification via semantic encoding/decoding in fMRI and
ECoG. The zero-shot problem was simulated by employing
LOCO cross-validation; feature selection and training was
performed using 59 of the 60 classes, and one class was held
out for testing. Therefore, the number of trials used to train the
models was T = 6 × 59 = 354 per subject. The efficacy
of the feature selection techniques were compared in terms of
prediction accuracy as well as in the locations (in the case of
fMRI) or the frequencies (in the case of ECoG) of the features
that were selected.

3.2. Analysis of Zero-Shot Classification
Accuracy
The performance of zero-shot classification is measured viamean
rank accuracy (MRA). The MRA represents the average rank
accuracy (RA) of the zero-shot test class, taken across the full set
of 60 classes ranked according to the cosine distance. RA is the
relative (%) rank position of the test class φ within a ranked list
of predicted class:

RAφ = 100×

(

60− rφ

59

)

(12)

where rφ is the rank of the distance to class φ computed using
Equation (6) or (8). MRA is computed by averaging RA over the
60 LOCO folds:

MRA =
1

60

60
∑

φ = 1

RAφ (13)
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For both encoding and decoding, MRA was calculated separately
for each participant using each of the feature selection methods.
Furthermore, the MRA was also calculated in a cumulative
manner as increasing numbers of neural features (M) were
incorporated into learning the encoding and decoding models,
up to a maximum of 500 features. The order in which
neural features were incorporated was based on the score
produced by each feature selection method. Five values of
λ(de) (logarithmically-spaced between 1 and 10) and λ(en)

(logarithmically-spaced between 100 and 1,000) were tested for
regularization.

Figure 4 shows one such set of results for the first fMRI
participant. Each subplot shows the MRA as a function of
the number of neural features. For all but one of the feature
selectors, the number of neural features was limited M ≤ 500.
For the Attribute/Feature Correlation method, the number of
features is practically limited to M ≤ P = 218, but due to
some neural features correlating best with multiple semantic
attributes the effective limit is less. Each colored trace represents
a different value of the regularization parameter, which is λ(en)

in the top row and λ(de) in the bottom row. In encoding,
a small amount of regularization is needed, with larger λ(en)

resulting in degraded performance. In contrast, with larger
number of features, decoding performance is improved as
λ(de) increases. These contrasting results are consistent with
expectations; because the number of possible input features is

much larger in the decoding problem, regularization plays a
larger role in preventing the decoding model from being overfit
to the training data.

The results shown in Figure 4 represent all of the results
achieved for the first fMRI participant using each feature
selection method, and the observed trends were similar
for the other fMRI and ECoG participants. All subsequent
discussions of the results are based upon the peak MRAs
achieved over all possible choices of regularization parameters.
It is clear that for most feature selection methods, MRA
increases sharply with the first 100–200 features, and then
levels off around 500 features. However, the Attribute/Feature
Correlation method allows for a similar peak MRA but
with far fewer features. This effect is analyzed further in
Section 3.4.

Figure 5 shows the consolidated encoding and decoding
results over all nine fMRI and six ECoG participants using
the values of λ(en) and λ(de) that yield the highest peak MRA.
The height of each bar represents the peak MRA that was
achieved over all regularization parameter values and numbers of
neural features. Results suggest that the best encoding/decoding
performance was typically achieved using Correlation-Based
Stability, Attribute/Feature Correlation, or the Ridge Wrapper.
Nonetheless, the difference in performance between these
methods and the Mutual Information-Based Stability and Fisher
Method is usually within 5%.

FIGURE 4 | Results of encoding (Top row) and decoding (Bottom row) for the first fMRI participant. Each sub-panel shows MRA vs. the number of neural features

for a specific feature selection method, where each trace corresponds to a different λ(en) or λ(de).
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FIGURE 5 | Peak MRA achieved for encoding (Top) and decoding (Bottom). Each group of bars corresponds to a different participant, and the vertical axis represents

MRA. Each colored bar represents a different feature selection method. Results are shown for the value of λ(en) and λ(de) that yielded the highest peak MRA.

3.3. Analysis of Selected Features
3.3.1. Number of Features to Peak MRA
Given the similarity in MRA performance, the performance of
the various feature selectors were also compared on the basis
of the number of features required to achieve peak MRA. The
number of features required for best performance is important
because a simpler model is less likely to overfit the data,
resulting in more robust zero-shot prediction. Figure 6 shows
the number of features required to achieve peak MRA through
each of the feature selection methods for all participants. The
best three performing methods based on Figure 5 (Correlation-
Based Stability, Attribute/Feature correlation, and the Ridge
Wrapper) can be further graded on this metric. Both Correlation-
Based Stability and the Ridge Wrapper required the full
limit of 500 features to achieve the peak MRA. In contrast,
the Attribute/Feature Correlation technique usually selected
around 100 features (or substantially less), while allowing for a
comparable MRA to be achieved.

3.3.2. Spatial Analysis of Selected fMRI Features
Of the best performing methods, Attribute/Feature Correlation
requires the least number of features. To further investigate
this we explore the spatial distribution of the selected features
through each selection method. While relative performance
across methods is comparable, the feature selection methods that
optimize with respect to classes produce one spatial distribution
of features, while the feature selectionmethod that optimizes with

respect to class attributes (i.e., Attribute/Feature Correlation)
produces a different distribution (Figure 7). Four of the methods
selected voxels primarily along the ventral visual pathway,
densely clustered in occipital and occipito-temporal cortex, with
fewer voxels selected in anterior temporal, parietal and frontal
cortex. This pattern of results is consistent with the literature on
class perception and semantic processing associated with visual
words and objects (classes) (Grill-Spector et al., 1999; Starrfelt
and Gerlach, 2007; Carlson et al., 2014; Grill-Spector andWeiner,
2014; Borghesani et al., 2016).

In contrast, the Attribute/Feature Correlation method results
in a set of informative voxels more distributed across cortex
(andmore variable across validation folds), including the anterior
temporal lobe. While further analysis is required to assess the
consistency of these results across patients, the pattern of results
is qualitatively consistent with reports of abstract semantic
representation in anterior temporal lobe and throughout cortex
(Binder et al., 2009; Binder and Desai, 2011; Huth et al., 2012,
2016). Furthermore, the finding that different feature selection
methods give rise to very different sets of informative voxels that
are equivalent in their explanatory power suggests that choices
about feature selection can have a substantial and unintended
impact on the results and interpretation of studies.

3.3.3. Spectral Analysis of Selected ECoG Features
The ECoG features that were selected can be analyzed with
respect to time and frequency band. Although previous work has
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FIGURE 6 | Number of features required to achieve peak MRA for encoding (Top) and decoding (Bottom). Each group of bars corresponds to a different participant,

and the vertical axis represents the number of features selected with an upper limit of 500. Each colored bar represents a different feature selection method. Results

are shown for the value of λ(en) and λ(de) that yielded the highest peak MRA.

FIGURE 7 | Voxel selection by method for the first fMRI participant. Each sub-panel shows the three-dimensional spatial scatter of voxel positions, with each voxel

colored proportionally to the number of LOCO cross-validation folds it was selected. Each sub-panel shows the result for a different feature selection method including

the peak MRA achieved in both encoding (EN) and decoding (De) modes.
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generally prioritized high gamma (> 60 Hz) frequency bands
(Crone et al., 2006; Wang et al., 2011), in this work the pool
of frequencies was expanded to include those in the range of
∼1.4–128 Hz. Figure 8 illustrates the average number of times
(over all LOCO folds) each frequency bin was selected by each
method for the first participant. Results are further divided by
the number of features selected from each method, where results
at each feature rank are an aggregation of all previous feature
ranks. These results confirm that high-gamma frequencies play
an important role in capturing semantic information, as they are
mainly the ones ranked first. However, selecting more features
until peak MRA is achieved, quickly redistributes the chosen
frequencies to a somewhat more uniform distribution, albeit with
high-gamma features still more heavily represented. These results
therefore suggest that frequencies outside the high-gamma band
contain supplemental information that may be useful in zero-
shot prediction.

3.4. Accuracy/Complexity Tradeoff
The competing objectives of maintaining high zero-shot
classification performance and keeping the number of free
parameters low typically presents an interesting design trade
for general-purpose BCIs. However, in the ECoG and fMRI
experiments presented here, no substantial trade-off exists
between the peak encoding MRA, the peak decoding MRA,
and the number of features required to achieve them. Figure 9
summarizes the results of this study for both fMRI (left column)
and ECoG (right column) over encoding (top row) and decoding

(bottom row) as an average of all patients per feature selection
method. Under this representation, the best performing features
selectors should have the largest possible peak MRA and the
lowest possible number of features. According to these criteria, all
methods have similar performance in peak MRA, while differing
mostly in the number of features used. Of these methods the
Attribute/Feature Correlation technique provides the result of a
high MRA and the lowest possible number of features.

The Attribute/Feature Correlation technique generally
requires few features to achieve a high MRA, since a few neural
features may be highly correlated with many semantic attributes.
The high degree of correlation allows for a linear decoding
model to be fit with very small error. Since encoding accuracy is
measured in terms of correlation distance, keeping the number
of predicted neural features small makes the prediction more
robust to regression errors. Thus, although the results of the
study revealed no objective reason to select one model over
another based on solely on the number of features, Occam’s
Razor suggest that the simpler Attribute/Feature Correlation
technique, which requires less features, may be preferable for
selecting features in potential BCI applications that require
trading off the objectives of accuracy and complexity.

4. CONCLUSIONS

The necessity of feature selection is important when applying
zero-shot predictive models to neuroimaging data. Furthermore,
effective zero-shot learning will be necessary for BCIs to

FIGURE 8 | Frequencies of selected ECoG features for Subject 1. Each sub-panel is a histogram of the number of times each frequency bin was selected by a

particular feature selection method. Each represents the average number of times each frequency bin was selected for this participant over all LOCO folds.
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FIGURE 9 | Average peak MRA vs. the number of features required for fMRI encoding (Top-left), ECoG encoding (Top-right), fMRI decoding (Bottom-left), and

ECoG decoding (Bottom-right). Each colored point corresponds to a different feature selection method.

transition from the laboratory and limited clinical settings to
general use. However, best practices still need to be established
for algorithm development, with feature selection being a key
component. This study compared the efficacy of traditional
stability selection with several other feature selection techniques
for encoding and decoding tasks in both fMRI and ECoG. While
results did confirm that correlation-based stability can be used
to achieve high prediction accuracy, the technique may select
redundant information and the number of features required to
achieve those performance levels can be high. However, a better
engineering solution for future BCI applications may be to utilize
a feature selection technique that attains similar performance, but
with fewer features. The Attribute/Feature Correlation technique
proposed in this study achieved that goal in both the fMRI and
ECoG modalities and successfully balance the goals of simplicity
and accuracy.
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