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Recent discoveries that astrocytes exert proactive regulatory effects on neural information

processing and that they are deeply involved in normal brain development and disease

pathology have stimulated broad interest in understanding astrocyte functional roles in

brain circuit. Measuring astrocyte functional status is now technically feasible, due to

recent advances in modern microscopy and ultrasensitive cell-type specific genetically

encoded Ca2+ indicators for chronic imaging. However, there is a big gap between

the capability of generating large dataset via calcium imaging and the availability of

sophisticated analytical tools for decoding the astrocyte function. Current practice is

essentially manual, which not only limits analysis throughput but also risks introducing

bias and missing important information latent in complex, dynamic big data. Here, we

report a suite of computational tools, called Functional AStrocyte Phenotyping (FASP),

for automatically quantifying the functional status of astrocytes. Considering the complex

nature of Ca2+ signaling in astrocytes and low signal to noise ratio, FASP is designed

with data-driven and probabilistic principles, to flexibly account for various patterns and to

perform robustly with noisy data. In particular, FASP explicitly models signal propagation,

which rules out the applicability of tools designed for other types of data. We demonstrate

the effectiveness of FASP using extensive synthetic and real data sets. The findings by

FASP were verified by manual inspection. FASP also detected signals that were missed

by purely manual analysis but could be confirmed by more careful manual examination

under the guidance of automatic analysis. All algorithms and the analysis pipeline are

packaged into a plugin for Fiji (ImageJ), with the source code freely available online at

https://github.com/VTcbil/FASP.

Keywords: astrocyte, astrocyte activity, functional phenotype, calcium dynamics, time-lapse calcium image,

signal propagation

INTRODUCTION

Astrocytes, which constitute nearly half the volume of the adult human brain, have long
been considered to play only passive roles in the central nervous system, such as supplying
trophic factors, maintaining ion homeostasis, and serving as an inert scaffold. In recent
years, active roles in regulating various aspects of neuronal function have been identified
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(Agulhon et al., 2008; Khakh and Sofroniew, 2015; Bazargani and
Attwell, 2016). Neuron-astrocyte communication at synapses
regulates synaptic transmission and plasticity, breathing,
memory formation, motor function, and sleep, and is implicated
in many neuropsychiatric disorders (Haydon, 2001; Volterra and
Meldolesi, 2005; Halassa and Haydon, 2010; Clarke and Barres,
2013). Astrocytes interact with synapses through release of
soluble factors driven by intracellular Ca2+ elevations (Agulhon
et al., 2008; Haustein et al., 2014) and, as a result, the Ca2+

dynamics are the best established correlates of the excitatory
state and functional readout of astrocytes. With the convergence
of recent advances in both modern microscopy and ultrasensitive
cell-type specific genetic encoded calcium indicators (GECI;
Knöpfel and Boyden, 2012; Broussard et al., 2014), it is now
possible to conduct chronic optical imaging to record activities
of a large number of astrocytes with high spatial and temporal
resolution (Srinivasan et al., 2015), resulting in overwhelmingly
large data sets and making manual analysis prohibitive. Note
that the term “chronic imaging” used in this paper is essentially
equivalent to “long-term imaging” which is also widely used
in literature. However, effective automatic computational tools
for analyzing functional astrocyte data have lagged far behind
the capability of generating large-volume Ca2+ imaging data.
Quantifying the functional status of astrocytes here relies on
three core analytical tasks: (1) identifying astrocytic functionally
independent units (FIUs), (2) estimating the characteristic
curves of Ca2+ dynamics, and (3) extracting functional features
of astrocytes or astrocytic FIUs. The detailed definition of FIU
and characteristic curve is referred to Section Problem Statement
and Formulation.

Analyzing functional astrocyte data is challenging due to
the complex nature of astrocyte Ca2+ signaling. First, one
single astrocyte may contain multiple FIUs due to calcium
compartmentalization, varying from large areas in soma to small
and local microdomains in processes, which have different Ca2+

activity patterns. Thus, it is infeasible to use cellular information
such as nucleus to identify FIUs. Second, Ca2+ elevations do not
occur simultaneously in an FIU, but propagate as a Ca2+ wave
within an astrocyte or between astrocytes with complex speed
and direction patterns (Fiacco and McCarthy, 2006). Examples
are shown in Figures 1B,C. The time delay between two parts
in the same FIU can be larger than the duration of an event
(Figure 1C; Fiacco and McCarthy, 2006), so it is impossible
to eliminate time lags within an FIU by downsampling. As an
intrinsic property of astrocyte Ca2+ signaling, signal propagation
is quite prevalent (Fiacco and McCarthy, 2004, 2006; Matyash
and Kettenmann, 2010). In our real data of in vitro human
astrocyte induced pluripotent stem cells (hiPSCs), we found
>90% astrocytic FIUs having discernable propagation. Thus, any
modeling effortmust explicitly take into account the propagation.
As a similar but relatively better studied type of cellular
excitation indicator, neuronal Ca2+ spikes also propagate, but the
propagation is generally so fast that the signal can be regarded as
synchronized, that is to say, any time lag between Ca2+ elevations
in two parts of a cell is shorter than the temporal resolution of
imaging. Consequently, the neuronal Ca2+ signal pattern can be
considered as homogeneous in a cell from an image analysis point

of view (Mukamel et al., 2009). Third, the morphological features
of FIUs, such as size and shape, are irregular and heterogeneous,
so morphology cannot be used for detection. Last but not least,
heterogeneous expression of protein indicators and other factors
give rise to a wide range of signal to noise ratios (SNRs) in
the same field of view (Knöpfel and Boyden, 2012); and in a
considerable proportion of FIUs, the Ca2+ signals have low SNR,
due to the fundamental limitations of living Ca2+ imaging such
as the existence of auto-fluorescence and imperfect selectivity
of the calcium indicator (Myers, 2012). The low SNR demands
sophisticated modeling to maximize information extraction and
a rigorous statistical framework to accurately control the false
positive rate. These challenges significantly increase the difficulty
in repurposing existing methods designed for other dynamic
imaging data, such as neuronal Ca2+ data, and necessitate
development of new approaches.

Since complete astrocyte Ca2+ data is new, there are very
few analytical tools specifically designed for astrocytes. The only
two scripts to our knowledge are GECIquant (Srinivasan et al.,
2015) and CaSCaDe (Agarwal et al., 2017). However, both scripts
are “semi-automated,” involving significant manual effort which
is prone to operator bias and variation. GECIquant requires
manually setting multiple parameters, adjusting thresholds, and
drawing polygons, while CaSCaDe needs manually labeling
thousands of ROIs for training. In contrast, the large-scale
data we are modeling requires a fully automated algorithm.
In addition, to identify FIUs, GECIquant projects a raw image
stack into a single map of pixel-wise temporally maximum
intensity and then binarizes it using a user-given threshold, losing
the rich information of temporal patterns and confounding
active units with silent cells that have high baseline intensity.
Similarly, CaSCaDe projects the image stack into a map by
summing up all the intensities and uses a threshold to binarize
the map. Most critically, even though both were designed for
astrocyte data, signal propagation were neither modeled nor
quantified.

More broadly, from a technical point of view, our problem
falls under the general category of time-lapse Ca2+ image
analysis. To date, a handful of algorithms have been developed
for analyzing neuronal Ca2+ imaging data (Reidl et al., 2007;
Mukamel et al., 2009; Smith and Häusser, 2010; Valmianski
et al., 2010; Andilla and Hamprecht, 2013; Diego et al., 2013;
Pachitariu et al., 2013; Kaifosh et al., 2014; Maruyama et al., 2014;
Soelter et al., 2014; Pnevmatikakis et al., 2016). However, none of
them can be applied to astrocytic Ca2+ data due to the specific
challenges mentioned above. For more detailed discussion, see
Section Necessity of Specific Tools for Analyzing Time-Lapse
Astrocyte Ca2+ Imaging Data.

Here, we formulate a statistical model for astrocyte Ca2+

dynamics imaging data, and propose an integrated suite of
algorithms, Functional AStrocyte Phenotyping (FASP), to
simultaneously identify astrocytic FIUs, extract their functional
features, and further characterize the functional status. The
flowchart of FASP is shown in Figure 2. FASP possesses several
unique features. First, recognizing that the core tasks—the
identification of FIUs, the extraction of the corresponding
characteristic curves and the estimation of propagation
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FIGURE 1 | Overview of the analytical tasks and challenges in quantifying the functional dynamics of astrocytes from time-lapse astrocyte Ca2+ imaging data. (A) The

problem in this study is to automatically quantify astrocyte functional dynamics from the input data, a time-lapse astrocyte Ca2+ image stack. It can be divided into

three core analytical tasks: (1) identifying astrocytic functionally independent units (FIUs), (2) estimating the characteristic curves of FIUs’ Ca2+ dynamics, and (3)

extracting descriptive features of the astrocytic functional status. (B) A real example of astrocytes derived from human induced pluripotent stem cells (hiPSCs) shows

the complex nature of astrocyte Ca2+ signaling which makes the computational analysis challenging. Astrocytic FIUs have heterogeneous and irregular morphological

patterns; Ca2+ transients propagate within an astrocyte with complex speed and direction patterns; signal to noise ratio (SNR) is heterogeneous and varies in a wide

range even in the same field of view. The red rectangle on the left image highlights the area shown on the right. (C) Illustrative example of slow propagation in another

FIU, where the time lag between two ends of the FIU is in the same scale as the duration of a Ca2+ elevation event. This means we cannot eliminate effect of

propagation by down-sampling, otherwise the signaling events will be removed, too.

patterns—are mutually dependent, FASP addresses them in
a unified way by building an integrated probabilistic model.
Second, FASP is data-driven, learning model parameters using
machine learning techniques without constraints on the form
of the characteristic signals, the morphological patterns of FIUs,
the spatial distribution/sparsity of FIUs, or the total number
of FIUs. Thus, it can flexibly account for various Ca2+ events
including waves and microdomain fluctuations, heterogeneous
morphology, a large range of unit sizes and spatial intensities
of FIUs, and, critically, it does not require a pre-assumed
total number of FIUs. Third, FASP models Ca2+ propagation
explicitly, dealing with cases with or without intracellular
propagation phenomena. This explicit modeling not only
contributes to faithfully identify FIU, but also enables extracting
characteristic features related to propagation patterns. Fourth,
FASP takes full advantage of spatial structural information to
facilitate learning and enhance performance. Lastly but very
importantly, it is deeply probabilistically principled. By judicious
application of various statistical theories, FASP accurately
distinguishes signals from noises and controls false positive rate,
which is essential for analyzing noisy data. FASP also confers

tuning parameters with probabilistic meaning, greatly facilitating
usability of parameter setting.

We evaluated FASP on both synthetic data simulating
Ca2+ signaling and real data of in vitro human astrocyte
induced pluripotent stem cells (hiPSCs). The quantitative
evaluation demonstrated FASP’s effectiveness, flexibility, and
robustness. Compared to a manual ROI drawing, FASP
generated more accurate contour and detected quite a few
otherwise missed activities. The experimental comparison
between FASP and a representative of neuron-targeted methods
that assume in-FIU synchronization (Mukamel et al., 2009)
validated the necessity of developing methods specifically
modeling intracellular propagation, and also showed the superior
performance of FASP for this task. To further validate our
method, we applied FASP to study agonist-induced Ca2+

activities in in vitro rat astrocytes. FASP successfully detected the
induced FIUs responding to three known agonists for astrotytic
Ca2+ signaling: ATP, glutamate and 3,5-dihydroxyphenylglycine
(3,5-DHPG). Many quantitative features and patterns of the
astrocytic activities revealed by FASP are consistent with what
have been reported in the literature.
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FIGURE 2 | Flowchart of the proposed FASP algorithm. FASP addresses the problem using three modules. The blue pipeline on the left shows the major structure of

FASP, including the relationship among the three modules. More detailed procedures are depicted in the expanded blocks of the modules. The output of each step or

procedure is given right under the procedure description.
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METHODS

Problem Statement and Formulation
For convenience of discussion, we consider time-lapse 2D
imaging data, which can be easily extended to the 3D imaging
case. We formulate the astrocyte Ca2+ data as a 3-dimensional
array Y[i, j, t], where i ∈ {1, 2, . . . ,Dh} is the horizontal spatial
index, j ∈ {1, 2, . . . ,Dv} is the vertical spatial index, and t ∈
{1, 2, . . . ,Dt} the temporal index. Define an astrocytic FIU as
a group of spatially connected pixels sharing a characteristic
Ca2+ temporal pattern with possibly different temporal phases
and noises. Define the characteristic curve of an astrocytic FIU
as the core time series of fluorescence intensity F shared by
pixels in the FIU, from which the Ca2+ dynamics quantified
as1F/F0 = (F − F0) /F0 can be obtained, where F0 is the
baseline fluorescence. We model the fluorescence microscopy
imaging data of astrocyte Ca2+ dynamics Y[i, j, t] consisting of
M FIUs as

Y
[

i, j, t
]

= β0

[

i, j
]

+
∑M

m=1
βm

[

i, j
]

Xm

[

t − τij
]

+ ε[i, j, t], (1)

s. t.















‖Xm‖2 = 1,E [Xm] = 0, form = 1, 2, . . . ,M
∑M

m=1 I
(

βm

[

i, j
]

6= 0
)

≤ 1, for i = 1, 2, . . . ,Dh,

j = 1, 2, . . . ,Dv

c (G (βm)) ≤ 1, form = 1, 2, . . . ,M

where β0

[

i, j
]

is a constant associated with each pixel
[

i, j
]

;
βm

[

i, j
]

is the coefficient for themth FIU; Xm is the characteristic
curve of the mth FIU; τij is the time lag of

[

i, j
]

’s time-intensity
curve with respect to the characteristic curve, as a result of
calcium signal propagation; and ε

[

i, j, t
]

is an independent
Gaussian noise which, given any pixel

[

i, j
]

, has zero mean
and a common variance σ 2

0

[

i, j
]

across different time points t.
Note that image noise is often non-Gaussian with intensity-
dependent variance, but we can apply variance stabilization
technique to the data to satisfy the assumption of Gaussian
noise with common variance (Starck et al., 1998; Foi et al.,
2008). The constraint ‖Xm‖2 = 1 removes the model non-
identifiability arising from multiplying Xm by a factor and
dividing βm by the same factor. I (·) is an indicator function and
the constraint

∑M
m=1 I

(

βm

[

i, j
]

6= 0
)

≤ 1 ensures that each pixel
will be associated with at most one FIU. c (G (βm)) is the number
of connected components in the graph induced by the non-zero
βm

[

i, j
]

with the edges derived from the pixel neighborhood
structure. The constraint c (G (βm)) ≤ 1 ensures all pixels
associated with the same FIU are connected. Model (1) assumes
no cell migration or deformation, or that the data is preprocessed
by migrating cell tracking and registration techniques.

We primarily concentrate upon three core tasks in analyzing
astrocyte Ca2+ data, especially the first two: (1) the identification
of FIUs and (2) the estimation of the corresponding characteristic
curves; and (3) the extraction of biologically interesting
quantitative features of astrocyte functional status. Based on
model (1), the first two tasks can be addressed by learning
the parameters βm

[

i, j
]

and Xm [t] , for m = 1, 2 . . . ,M.
The mth FIU is the collection of all pixels with non-zero βm;
the corresponding characteristic curve can be obtained directly
from Xm. Hence, in this report we focus on the model learning.
Note that automatically determining the number of FIUs, M, is

an important part of learning, and that accurate estimation of τ ′ijs
is necessary for the correct estimation of Xm. Put simply, the
problem is to learn all parameters, β0

[

i, j
]

, βm

[

i, j
]

, Xm[t], τij
andM from the observed data Y

[

i, j, t
]

. This is a mathematically
challenging problem, because the number of parameters is huge
and all parameters interact in a highly non-linear way to give
rise to the observed data. In the following, we will discuss
how a bunch of advanced probabilistic and machine learning
techniques are integrated as FASP to solve the problem.

Overview and Design Principles of FASP
Our method, FASP, addresses the problem using three major
modules (Figure 2). First, it distinguishes “active regions” from
inactive background. In this paper, we call a pixel an “active
pixel” if it has a non-zero βm[i, j] for some m in model
(1), and call a region an “active region” if it contains only
active pixels and all its neighboring pixels are “inactive,” or,
not active pixels. Second, given each active region, FASP
sequentially identifies distinct FIUs within the active region one
by one and estimates the corresponding characteristic curves.
It also automatically determines the number of FIUs. Finally,
it performs quality control by automatic post processing and
proofreading, and computes various quantitative features to
characterize the functional status of astrocytes.

Learning model (1), or jointly estimating βm, Xm, and τij with
multiple indices m, on the entire field of view simultaneously
will be very time-consuming and may be prone to severe
overfitting. As a critical part to make the whole strategy feasible,
we designed two schemes to combat this problem. Firstly, we
designed a special map of neighborhood correlation so that
FASP can, in its first module, detect active regions, without
needing to explicitly specify the unknown m for any pixel.
As outputs of the first module, we obtain a set of active
regions. Secondly, in a given active region, different pixels
may have non-zero βm

[

i, j
]

for different m: multiple FIUs may
be spatially connected and hence pixels of them may be in
the same active region, which constantly occurs in astrocyte
Ca2+ data. So we resort to a sequential approach to identify
the FIUs in the same region one by one. In this multi-
step framework, by constraining the model learning problem
to active regions only and using sequential identification,
the parameter search space becomes much smaller than the
original space. In this way, FASP successfully mitigates the
computational burden and relieves the potential overfitting
problem.

In addition, there are other two critical principles
for modeling astrocytic FIUs. First, fully utilizing spatial
neighborhood information could effectively assist the model
learning. According to the definition of FIUs, the spatial
distribution of an FIU’s pixels is localized, that is, pixels
belonging to the same FIU must be spatially connected.
Besides, neighboring pixels in an FIU should be similar
in terms of signal pattern. We expect that incorporating
neighborhood information will lead to higher statistical power
to detect active regions and FIUs, compared with inspecting
each pixel individually. Second, due to the nature of Ca2+

imaging, large noises (small signal-to-noise ratio) are typically
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observed and challenging the performance of analysis. In
such cases, probabilistic principles are needed to enable
information extraction under great uncertainty. We embrace the
probabilistic principles in all steps of algorithm development.
A set of statistical tools are exploited—maximum likelihood
estimation for characteristic curve learning, Bayesian decision
theory for distinguishing adjacent but different FIUs, Fisher’s
transformation and order statistics theory for hypotheses
testing and error control. This principle is also crucial for
practical use, as it allows end users to determine the number
of FIUs and to anticipate the false positive rate. The statistical
framework also helps to endow parameters with either physical
or probabilistic meaning, which makes parameter tuning more
objective.

Module 1: Detecting Active Regions
In order to constrain the parameter search space and thus
facilitate the model learning, we first detect active regions.
From a different point of view, in this module, FASP identifies
all background or inactive pixels, and estimates their βms to
be zero for all m, with βms of active pixels and Xms kept
unknown. This is feasible owing to the fact that any two active
pixels sharing the same characteristic curve Xm are expected
to have higher correlation than those which do not, so the
correlation between neighboring pixels alone is sufficient for
inferring active regions. Therefore, in this module, we first
build a map of neighborhood correlation in which the value
at each pixel is basically the correlation between this pixel’s
intensity time series with its neighboring pixels’. The formulation
of neighborhood correlation score is given in Section Building
a Map of Correlation between Neighboring Pixels. Then the
problem of detecting active regions is translated into a problem
of binarizing this neighborhood correlation map, distinguishing
true correlation between signals from random correlation due to
noises.

In applications with low-SNR, probabilistic models and
statistical approaches often play positive roles in suppressing
the impact of large noises. Besides, significance assessment is
often critically important for biomedical applications, as we care
much about false positives, but no existing image segmentation
method to our knowledge gives significance assessment. Thus,
we aim to build a probabilistically principled strategy for
detecting active regions, or, segmenting the neighborhood
correlation map. To this end, we construct a z-score map
from the correlation map (see Section Constructing a Z-Score
Map of Neighborhood Correlation), endowing the correlation
scores explicit probabilistic meaning. Any background pixel
should have a correlation z-score following a standard Gaussian
distribution (the null distribution), while active pixels are
expected to have statistically significantly large positive z-score.
This transformation also stabilizes the variance, which means
to make the variance of score independent from its magnitude,
assuring that all pixels will be treated equally in the following
analysis.

Having got the correlation z-score map, rather than testing
each pixel in isolation (e.g., do thresholding to the z-score),
FASP evaluates a set of connected pixels as a whole so that the

cumulative information in spatial neighborhoods is fully utilized
to enhance confidence in decisions. We develop a region growing
algorithm, starting from a singleton containing only one pixel,
known as “seed,” and iteratively growing the region, or pixel
set, until it reaches the greatest statistical significance. These
procedures are repeatedly conducted till all qualified seed pixel
singletons are labeled as searched. The main difficulty and a key
technique here lies in how to assess the statistical significance
of a region, since the operations that FASP does to enlarge the
region in each iteration introduce some dependency structure
among the pixels. Realizing that such a structure can be modeled
using order statistics, we design a region-level hypothesis test
based on the theory of order statistics, which is one of the
major innovations of our work. We will introduce this region
growing method in detail in Section Active Region Detection
on Z-Score Map by Order-Statistics Guided Hypothesis Testing,
and compare it with three other popular segmentation methods
in Section The Binarization Method Based on Order-Statistics
Theory is Effective.

Building a Map of Correlation between Neighboring

Pixels
We define the neighborhood correlation at pixel [i, j] as

rsc
[

i, j
]

= cor

(

Y[i, j, :], Ȳnb[i, j, :]

)

(2)

where cor (, ) is the Pearson correlation coefficient between
two curves; Ynb[i, j, :] is the average curve of the eight direct-
neighbor pixels of [i, j]. Inspection of real data confirmed that the
neighborhood correlation at pixel [i, j] indicates how active this
pixel is. For example, comparing Figures 3A,B, we can see that
pixels in FIUs have much higher neighborhood correlation than
the pixels out of FIUs.

One may notice that we intentionally ignore the time shifts
between neighboring pixels. Although, for two arbitrary pixels
in the same FIU the time shifts can be quite different due to
propagation, we expect that the time shifts between neighboring
pixels are minor and can be ignored in computing the average
curve and the correlation coefficient. For cases where SNR is
high while propagations are very slow (time shifts between
neighboring pixels are large), we also designed an alternative
neighborhood correlation score to explicitly model time shifts
and thus better deal with the Ca2+ propagation phenomena,
with a price of losing some power to suppress noises. More
discussion and comparison of the two definitions are given in
Section Alternative Design of Neighborhood Correlation Score.

Constructing a Z-Score Map of Neighborhood

Correlation
We make a monotonic transformation to each pixel in the
neighborhood correlation map:

zpx
[

i, j
]

= F
(

rsc
[

i, j
])

=
√
N − 3

2
ln

(

1+ rsc
[

i, j
]

1− rsc
[

i, j
]

)

, (3)
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FIGURE 3 | Properties of astrocyte time-lapse Ca2+ imaging data that served as inspirations or constraints in the development of FASP. (A) A time-lapse imaging

data sample of hiPSCs-derived astrocytes contains 7 FIUs with different Ca2+ dynamics, among which FIU1, 2, and 3 are spatially connected. (B) The neighborhood

correlation (rsc) map of the sample shown in (A). Pixels within FIUs shows obviously higher neighborhood correlation than those in the non-FIU regions.

(C) The characteristic curves of FIU1, 2, and 3 in (A). With slight time shifts, each pair of curves among the three have coincident peaks, suggesting non-zero

correlation between the curves.

where F (·) denotes the normalized Fisher transformation
(Fisher, 1915, 1921), and N is the total number of time
points.

According to the properties of the Fisher transformation,
zpx
[

i, j
]

asymptotically follows a standard Gaussian distribution
under the null hypothesis that the pixel [i, j] has zero βm for
allm, that is,

[

i, j
]

is not associated with any FIU. If the pixel
[

i, j
]

belongs to one FIU, the time curve at the pixel
[

i, j
]

will be
correlated with the ones at its neighboring pixels because of the
spatial localization property of FIU. As a consequence, rsc

[

i, j
]

is expected to be positive. Due to the monotonicity of the
normalized Fisher transformation, zpx

[

i, j
]

is thus expected to be
larger than 0. Note that the normalized Fisher transformed score
always follows Gaussian distributions with constant variance of 1,
regardless of the expected value of the score, or in other words, no
matter in the background or in FIUs. The chosen transformation
facilitates subsequent probabilistic analysis owing to its effect
of variance stabilization and the good properties of Gaussian
distributions.

Active Region Detection on Z-Score Map by

Order-Statistics Guided Hypothesis Testing
Having obtained a score map zpx computed as in Equation (3),
FASP binarizes the map into foreground (active regions) and
background (inactive regions) using a region growing strategy.
Each round of region growing process starts from a singleton{a0},
where the seed pixel a0 has the largest zpx among the remaining

pixels that have not been labeled as “searched.” Then the region
(pixel set) iteratively grows. In each iteration, from the set of
directly neighboring pixels of the current region we select a subset
and attach it to this region, such that the resulting new region’s
statistical significance (given by a hypothesis test defined in the
following paragraphs) is increased from the current region as
much as possible. The growing stops if the termination criterion
is reached, that is, the region’s statistical significance no longer
increases as this region continues to grow. It can be expected
that, being expanded from a seed pixel, the most statistically
significant region does not contain silent background pixels,
because inclusion of silent pixels moves the test statistics toward
the null. Once a round of region growing process is finished,
another round is started as long as any pixel remained not labeled
as “searched.” Finally the union of all found regions forms the
map of active regions.

Both the selection of neighboring pixels and the termination
criterion rely on the assessment of statistical significance of
regions. Given a set of pixels, the null hypothesis here states that
all pixels in this set are inactive pixels, in other words, their zpxs
all approximately follow a standard Gaussian distribution. Thus,
the alternative hypothesis is that some pixels in this region are
active pixels and their zpxs tend to be positive. Note that a pixel
set containing both active and inactive pixels is expected to have
lower significance than its subsets containing active pixels only.
As a consequence, the procedure of always finding the maximum
significance rules out such cases.
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Under the null hypothesis, the pixel-level z-scores zpx of all
pixels in a region can be considered as independently standard-
Gaussian distributed. However, the average zpx in each candidate
region in the region growing process does not follow the
Gaussian distribution suggested by the central limit theorem,
because these pixels are conditioned on the operation of region
growing and thus not independent anymore. The conditioning
causes biases in both mean and variance of the average zpx.
Indeed, if these pixels are still approximately treated as
independent standard Gaussian noises under the null hypothesis,
the significance assessment can be quite straightforward using
the central limit theorem. For comparison, we also experimented
with the same region growing procedure but assessed significance
using the central limit theorem, but it resulted in an endlessly
expanding web of thin strings in simulation studies when no
active regions were embedded.

Hence, a more sophisticated approach is needed to assess
the statistical significance for each candidate active region. One
critical innovation in the proposed framework is the realization
that the biases and dependency structure come from the ranking
and selection operation in the region growing procedure and
the significance can thus be modeled by order-statistics theory
(David and Nagaraja, 2003). Denote the current region A =
{

a1, a2, . . . , anA
}

and the surrounding set of pixels B =
{

b1, . . . , bnB
}

. A candidate region C has the form C = A ∪ B
′
,

where B′ is a subset of B. We have a score for the region C =
{

c1, c2, . . . , ck, . . . , cnC
}

as,

s (C) = 1
√
nC

∑nC

k=1
zpx [ck] (4)

where zpx [ck] is the z-score of neighborhood correlation of
pixel ck. Let us sort increasingly all pixels from A ∪ B by
their zpx scores and record the ascending orders of elements
of C as J. Thus, J

[

k
]

denotes the ascending order of pixel ck
in A ∪ B regarding zpx. Based on the asymptotic distribution
of linear combination of order statistics, known in the order-
statistics theory (David and Nagaraja, 2003), the score s (C) can
be approximated by a normal distribution with the following
mean E [S (C)] and variance Var (S (C)) ,

E [S (C)] = 1
√
nC

∑nC

k=1
Φ−1 (vk), (5)

Var (S (C)) = 2

nC (nA + nB)

∑nC

k1=1

∑nC

k2=k1

vk2
(

1− vk1
)

φ
(

Φ−1
(

vk1
))

φ
(

Φ−1
(

vk2
)) , (6)

where vk =
(

J
[

k
]

+ 0.5
)

/(nA + nB), φ (·) is the standard
Gaussian PDF andΦ−1 (·) is the standard inverse Gaussian CDF.
The essential idea behind (5) and (6) is that a linear combination
of ordered variables is asymptotically normally distributed as the
number of variables increases.

Module 2: Identifying FIUs and Extracting
Characteristic Curves
As shown in Figure 3 and Supplementary Video 1, it was
repeatedly observed that spatially-connected FIUs can have
different signal patterns, indicating that one active region can
contain multiple FIUs. Identifying FIUs from an active region
requires estimating all Xms that have non-zero βms in this
active region and assigning each pixel to the most likely Xm.
Learning all FIUs’ parameters in parallel without knowing the
number of FIUs in this active region is very time consuming,
algorithmically complex, and prone to overfitting. A feasible
alternative way is to resort to a sequential approach: in each
round we seek for one Xm with non-zero βm at some pixels
in the active region, and then determine the spatial area of
the mth FIU by finding pixels whose curves are well-explained
by Xm. Once an FIU is detected, we inspect its statistical
significance: if its p-value is smaller than a given threshold, all
pixels in this FIU are removed from the active region, and in the
remaining region FASP continues to search for more FIUs until
no significant FIU can be found. It is worth noting that, through
this sequential strategy, the number of FIUs is determined by
setting threshold for the statistical significance, which is easy and
intuitive. We leave the significance threshold as a parameter for
users to specify. Consequently, users can control the number of
FIUs by setting different significance thresholds for claiming a
significant FIU.

Thus, the three main components in this module respectively
aim to: (1) learn an Xm and its corresponding parameters βm, τ ,
and σ 2

0 at each pixel in the remaining part of the active
region (Section Learning Model Parameters βm, Xm, τ ,

and σ 2 Associated with the mth FIU); (2) create a z-
score map assessing how each pixel is likely to belong to
the mth FIU (Section Constructing a Pixel-level Z-Score
Map Associated with the mth FIU); (3) identify the mth
FIU’s pixel set on the z-score map. The third task can be
accomplished by re-applying the order statistics guided region
growing strategy as discussed previously in Section Active
Region Detection on Z-Score Map by Order-Statistics Guided
Hypothesis Testing, so here we focus on the former two in this
module.

Learning Model Parameters βm, Xm, τ , and σ 2

Associated with the mth FIU
FASP employs a sequential strategy to alleviate the burden and
drawbacks of simultaneously estimating all FIUs’ parameters.
However, even within one round of sequential model learning,
where we only deal with one FIU, model learning is still a non-
trivial problem because the parameters, Xm, βm, τ , and σ 2

0 , are
all unknown and we have to estimate them at the same time.
To tackle this problem, we developed an iterative, alternating
approach reminiscent of the expectation-maximization (EM)
algorithm (Dempster et al., 1977; Little and Rubin, 2014) to learn
the model parameters. An Xm is initialized as the time-intensity
curve of the pixel with the largest zpx in the region. Denote this
initial pixel as

[

i0, j0
]

. τ
[

i0, j0
]

is initialized as 0. In each iteration,
given a current estimate of Xm, for each pixel [i, j] we update the
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other parameters as follows:

τ̂ ∗
[

i, j
]

= τ̂
[

inb, jnb
]

+ argmax1t∈[Uτ ,Uτ ]
{

cor
(

Y
[

i, j, : + τ̂
[

inb, jnb
]

+ t
]

, X̂m

)}

(7)

β̂
∗
m

[

i, j
]

= X̂T
m Y

[

i, j, : + τ̂
∗ [
i, j
]

]

(8)

σ̂ 2∗
0

[

i, j
]

= 1

T

∑T

t=1

(

Y
[

i, j, t + τ̂
∗ [
i, j
]

]

− β̂
∗
m

[

i, j
]

X̂m

)2
(9)

where Y
[

i, j, : + τ
[

i, j
]]

means the curve Y
[

i, j, :
]

shifted by
τ
[

i, j
]

; τ̂
[

inb, jnb
]

is the estimated time shift of pixel
[

i, j
]

’s
neighbor

[

inb, jnb
]

. In Equation (7), FASP basically searches
for the best τ

[

i, j
]

that gives the highest correlation between

Y
[

i, j, : + τ
[

i, j
]]

and X̂m. Thanks to the spatial continuity
of Ca2+ propagation, the candidate range of τ̂ [i, j] can be
narrowed to a small window of size 2Uτ around the time
shift of the neighbor

[

inb, jnb
]

, thus we actually search for the
best1t ∈ [−Uτ ,Uτ ] that leads to the highest correlation between
Y
[

i, j, : + τ̂
[

inb, jnb
]

+ 1t
]

and X̂m. After scanning all pixels in

the region and having their β̂m, τ̂ and σ̂ 2
0 all updated to β̂∗

m, τ̂ ∗

and σ̂ 2∗
0 , we update Xm as a weighted summary of all n pixels

within the region:

X̂
′
m =

∑n

k=1

β̂
∗
m[ik, jk]

σ̂ 2∗
0

[

ik, jk
]Y
[

ik, jk, : + τ̂
∗ [
ik, jk

]

]

(10)

X̂
∗

m = X̂
′
m

∥

∥

∥
X̂

′
m

∥

∥

∥

2

. (11)

The parameter updating is iterated until convergence is reached.
Here we decide the convergence when the relative change of X̂m

between two iterations, defined as sd
(

X̂
∗
m − X̂m

)

/sd
(

X̂
∗
m

)

, is

less than a given threshold (sd (·) means the standard deviation

over time points, X̂
∗
m is the estimate in current iteration, and

X̂m is the estimate in last iteration). The learning algorithm
proposed here is experimentally observed to converge robustly.
Indeed, in our experiments, we have found that the updating
often converges in a dozen or fewer iterations.

Constructing a Pixel-Level Z-Score Map Associated

with themth FIU
Given the estimated parameters associated with the mth FIU,
we construct a z-score map within the active region under
inspection, where the z-score value at any active pixel indicates
how likely this pixel belongs to the mth FIU rather than other
FIUs. The goal is to design a feature (score) differentially
distributed at pixels in FIU m and at pixels of other FIUs. We
expect that pixels in FIU m should have activities that are highly
correlated with Xm. Hence, this correlation, or equivalently the
value of βm, can be used to determine which pixels belong to
FIU m. However, the characteristic curves from different FIUs
are often not mathematically orthogonal to each other, suggested
by observations from real data (Figure 3C). Consequently, the
curve of a pixel belonging to another currently unknown FIUm′

(

m
′ 6= m

)

, which is characterized by Xm
′ , can also be correlated

with Xm due to moderate but non-negligible correlation
betweenXm andXm

′ . In such a case, by simply assessing goodness
of fit to Xm, it is difficult to well-distinguish pixels in FIU m
from pixels in FIU m′. In Section Neighborhood Correlation in
Residual Signals Enables a Sequential FIU Identification, we have
more detailed discussion on this problem. To solve it, here we
propose a method to evaluate the confounding effects of other
(latent) FIUs without knowing their characteristic curves, which
is another important innovation in our work. By combining the
measure of goodness of fit toXm and thismeasure of confounding
effects of other FIUs, FASP can well tell apart FIU m and
others.

From the model learning procedure proposed in Section
Learning Model Parameters βm, Xm, τ , and σ 2 Associated
with the mth FIU, we have obtained X̂m and corresponding
β̂m, τ̂ at each pixel. We realized that, if a pixel is actually

in FIU m
′ (
m 6= m′), the residual

(

Y [t]− β̂0 − β̂mX̂m

[

t − τ̂
]

)

contains not only noise ε but also some true signal that cannot be
explained byXm but can be explained byXm

′ . We further realized

that residuals of any two pixels in the same FIU m′
(

m
′ 6= m

)

should be correlated as a result of their common correlation
to Xm

′ , while residuals of pixels in FIU m are independent.
This key observation directly leads to the conclusion that the
neighborhood correlation in residuals can be used as a measure
of confounding effects of other FIUs. More discussion can be
found in Section Neighborhood Correlation in Residual Signals
Enables a Sequential FIU Identification. Accordingly we designed
a special pixel-level score, inspired by Bayesian decision theory
and indicating the competition between FIU m and other FIUs,
as follows:

z
(fit)
px

[

i, j
]

= 1√
2
Φ−1

(

Φ2Uτ
(

F
(

rfit
[

i, j
])))

−

1√
2
F
(

rres
[

i, j
])

(12)

where rfit
[

i, j
]

is the correlation coefficient between pixel
[

i, j
]

’s

observed curve and the characteristic curve Xm; rres
[

i, j
]

is
the correlation coefficient between pixel

[

i, j
]

’s residual signal
and the average residual signal of its eight direct neighboring
pixels; Φ (·) and Φ−1 (·) respectively represent the standard
Gaussian CDF and its inverse; F (·) denotes the normalized
Fisher transformation [the same as in Equation (3); (Fisher, 1915,
1921)]; and Uτ > 0 is the half window size of the candidate pool
of τ at each pixel. Because rfit

[

i, j
]

is obtained by searching for the

optimal τ
[

i, j
]

from the candidate pool, based on the properties
of multiple tests, we introduce the transformation in the first term

to ensure that z
(fit)
px

[

i, j
]

follows a standard Gaussian distribution.
We then apply the region growing as in Section

Active Region Detection on Z-Score Map by Order-
Statistics Guided Hypothesis Testing to identify pixels
associated with the FIU and assess its statistical significance
simultaneously.
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Refining Characteristic Curves
Weneed to refineX∗

m to remove the imposed constraint of unit L2
norm and to reflect that only pixels in the FIU should contribute
to the calculation of the characteristic curve. Hence, denoting the
region mask for FIU m as Km we have the final characteristic
curve:

Cm =
∑

k∈Km

β∗
m[ik, jk]

σ 2∗
0

[

ik, jk
]Y
[

ik, jk, : + τ
∗ [
ik, jk

]

]

. (13)

Module 3: Quality Control and Quantitative
Characterization of Astrocyte Functional
Status
The accompanying software package provides users opportunity
to proof-read and edit the results. A number of informative
summary statistics are computed and presented to users for
further analysis.

Quality Control: Post-processing and Proofreading
In principle, the proposed algorithm has the power to detect
any significant Ca2+ activity, regardless of what pattern it
has. However, not all signals are biologically interesting. Prior
knowledge guided post-processing helps users control the
quality of results, by expert proofreading or computation-
based screening of detected FIUs. The automatic screening
filters out a candidate FIU if it does not meet some pre-
defined requirements regarding its features obtained from the
quantitative analysis illustrated in Quantitative Characterization
of Astrocyte Functional Status, such as smoothness of the time-
intensity curve, number of peaks or the area of the region.

Quantitative Characterization of Astrocyte Functional

Status
On the basis of the learned model of a time-lapse Ca2+

imaging data sample, various quantitative analyses can be
conducted to extract features of astrocytic FIUs, which we expect
would provide direct and interesting information for biological
researches. FASP, by itself, summarizes several basic features as
listed below.

Ca2+ signal curves
The raw time-intensity curves F (t) = Cm (t) (Equation 13) are
firstly transformed into the description of Ca2+ signals: signal-
to-baseline ratio of fluorescence (1F/F0 = (F − F0) /F0), where
the baseline fluorescence F0 is estimated as the 10th percentile of
the fluorescence levels (intensities) at all the time points during
measurement.

Amplitudes of Ca2+ events
The amplitude of a Ca2+ event is calculated as the
maximum 1F/F0 during the transient. Ca2+ events are
recognized by detecting peaks in the smoothed 1F/F0 curves.

Frequency of Ca2+ fluctuations
We define the frequency of Ca2+ fluctuations as the inverse of
the average duration between two contiguous events. Compared
with counting events in a given time period, this definition of
frequency ensures more reliable estimation especially in cases

where only one or very few events occur during observation,
just like what we often see in time-lapse Ca2+ imaging data of
astrocytes.

The half time (T0.5)
T0.5 of a Ca

2+ event is calculated using linear interpolation as the
time from peak to half amplitude of an event.

Area of FIUs
Area of each FIU is represented in both pixels and µm2.

Average spatial propagation velocity of Ca2+ transients in an

FIU
Based on the estimated time shift of each pixel’s observed curve
from the characteristic curve, we can locate all the wavefronts
of Ca2+ transients in an FIU. Then the intracellular propagation
velocity of Ca2+ transients is obtained by estimating the average
distance between wavefronts.

EXPERIMENTS AND RESULTS

Real Astrocyte Calcium Imaging Data
To validate FASP’s effectiveness in analyzing real data, we derived
astrocytes in vitro from dissociated primary rat culture and
human astrocyte induced pluripotent stem cells (hiPSCs). Cells
were infected with lentivirus expressing EF1a-GCaMP6, and
imaged under a confocal microscope 3 days after infection.
Before imaging, the culture medium was removed, and cells were
washed with HBSS (Life Tech, with 2 mM Ca2+/Mg2+) three
times. The cells were incubated with HBSS, and imaged using the
time series mode (968 ms per image, 2 s interval, for 200 images).
Several agonists known to trigger astrocytic Ca2+ signaling (Kim
et al., 1994; Pasti et al., 1997; Bowser and Khakh, 2004; Fiacco and
McCarthy, 2004; Jourdain et al., 2007; Hamilton et al., 2008) were
then respectively added to the cells, including ATP, glutamate
and metabotropic glutamate receptors (mGluRs). Agonists were
added during the first several frames, and incubated for the
remaining imaging process.

Synthetic Data
For the purpose of comprehensively and reliably assessing the
performance of FASP, we also generated synthetic data sets
that simulate Ca2+ dynamics in astrocytes but allow for large
flexibility of parameter setting (see Figure 4 and Supplementary
Video 2 for examples). A synthetic sample was constructed
by simulating a spatial distribution of FIUs and Ca2+ inactive
cells/units, a map of baseline brightness level, characteristic
temporal dynamics, intracellular Ca2+ propagation patterns of
different FIUs, a map of noise level (variance), and a map of
non-zero coefficients βm in each FIU.

The centroids of FIUs and inactive units were all uniformly
distributed in the field of view. We set the proportion of FIUs
among the overall units as 1/4 to simulate the spontaneously
active cell distribution in in vitro Down’s syndrome astrocyte iPS
cells (Figure 1B). Given the irregular morphology of astrocyte
Ca2+ FIUs, as well as the complex baseline brightness patterns
and weak edges of astrocytes, basic geometric shapes, and
artificial baseline distributions do not reflect reality. Thus, we

Frontiers in Neuroinformatics | www.frontiersin.org 10 July 2017 | Volume 11 | Article 48

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Wang et al. Automated Functional Analysis of Astrocytes

FIGURE 4 | Synthetic data and qualitative test on it. (A) One example of synthetic data mimicking time-lapse astrocyte Ca2+ imaging data. The images contain only

one channel and are represented in green pseudo color. When generating simulated data, critical properties of astrocyte Ca2+ time-lapse imaging data are carefully

taken into account, including time course pattern, Ca2+ propagation pattern, spatial distribution and morphology of FIUs, weak edges of cells, and the gradually

fading activities at the boundaries of FIUs. (A1) The first frame on which 5 ground-truth FIUs are highlighted using different colors. (A2) The ground-truth characteristic

curves of the 5 FIUs in (A1), illustrated with corresponding colors. (A3) Two image series show examples of Ca2+ propagation patterns in the simulated data.

(B) FASP successfully detected the FIUs. For each detected FIU, the area is highlighted by red color on the neighborhood correlation map for this sample (left), and

the corresponding estimated signal pattern is presented using a colored curve, with the ground-truth curve is given in gray for reference (right).

extracted more than four thousand FIU shape and baseline
intensity templates from real-world astrocyte imaging data, and,
when generating specific simulated datasets, randomly selected
from these templates and resized them randomly. Taking diverse
potential applications into consideration, we did not impose a
prior assumption on the number and density of FIUs in the
field of view, but rather tested different combinations in our
simulation experiments.

To generate astrocytic FIU characteristic signal curves, we first
randomly chose a series of onset times of Ca2+ transient events,

denoted as t
(on)
i , i = 1, 2 . . . nevt . Then the temporal dynamics

were modeled by Mukamel et al. (2009):

XM [t] =
∑nevt

i= 1

(

t − t
(on)
i

)

e
−
(

t−t
(on)
i

)

/η · I
t>t

(on)
i

(14)

where I
t>t

(on)
i

is an indicator function with value 1 for

the set
{

t| t > t
(on)
i

}

; η regulates the duration of transients

and varies from FIU to FIU. Then XM [t] was rescaled

such that the maximum fluorescence signal max
(

1F
F0

)

=
[max (XM (t)) −min (XM (t))] /min (XM (t)) is in the range
from 0.5 to 4, which is commonly seen in real astrocyte Ca2+

imaging data.
Propagation patterns were modeled by setting a distribution

on the time delay τ . In each FIU, assuming the Ca2+ elevation
wave starts from a random pixel and expands to the surrounding

pixels at a constant velocity, the time delay of the source pixel
was set to be 0 while the other pixels’ delays were set proportional
to their distances from the source pixel. The map of the noise
level was set according to the characteristic curve and the average
SNR of each FIU. Following the traditional definition in imaging,
signal-to-noise ratio (SNR) is here defined as the ratio of the
signal magnitude (maximum intensity change) to the standard
deviation of the noise, and then measured in decibels (dB) using
the industry standard 20 log rule. The average SNR can either be
different from FIU to FIU or kept the same across all FIUs in an
imaging sample, depending on different experimental objectives.
And the map of non-zero βm is designed to reflect the gradually
fading strength of activities at the boundaries of FIUs, a critical
impact factor for the binarization of z-score maps, which makes
the decision of FIU boundaries challenging.

In our simulation experiments, the overall imaging duration
was 200 s, with a between-frame time interval of 2 s. Gaussian
noises were subsequently added in, in accordance with the given
map of noise level.

Performance Metrics
In our experiments, the following metrics were employed to
assess the performance of FASP:

Recall
Recall is defined as the fraction of ground-truth FIUs that are
detected. We say a ground-truth FIU is detected, if there exists
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one output FIU reported by an algorithm covering more than
50% area of the ground-truth FIU.

Precision
Precision is defined as the fraction of reported FIUs that are true
FIUs. A reported FIU is thought of as true if it covers more than
50% area of one ground-truth FIU and does not cover more than
10% area of any other ground-truth FIUs. If any ground-truth
FIU is falsely divided into two or more parts (reported FIUs), this
definition ensures that only one reported FIU will be treated as a
correct detection.

Fidelity
As a measure of signal estimation quality, the fidelity of a
learned characteristic curve is defined as the Pearson’s correlation
coefficient between the learned curve and the ground-truth
characteristic curve.

Area Accuracy
Any reported FIU considered as true uniquely indicates one
ground-truth FIU. The detection accuracy of the reported FIU is
further evaluated by area accuracy, defined as the fraction of the
corresponding ground-truth FIU that is covered by this reported
FIU.

FASP Can Handle Datasets of
Heterogeneous and Low SNR Values
The performance of FASP was evaluated as a function of SNR
using simulated data (Figure 5A). For each SNR value, 25 videos
were generated with 40 FIUs per video. Ca2+ dynamics were
randomly simulated using Equation (14), and the propagation
speed was also uniformly sampled from the interval [1, 30]
pixels per frame. Since FIUs were independently created, we
evaluated detection performance averaging over all FIUs which
were considered as individual detection events.

As one would expect, performance improves with increasing
SNR. But it is notable that the algorithm works quite well even
when the SNR is 5 dB, getting an overall recall (in terms of all
FIUs) of 0.941, an overall precision of 0.982, and amean fidelity of
0.928 with more than 90% of learned characteristic curves having
fidelities >0.9. When the SNR is higher than 5 dB, all the three
performance scores tend asymptotically to 1. A side note is that
on the real data, the typical SNR is between 3 and 10 dB.

FASP Is Robust to Various FIU Spatial
Patterns and Temporal Activity Patterns
Astrocyte Ca2+ signaling has very complex spatial and temporal
patterns. Firstly, the morphological heterogeneity of astrocytes

FIGURE 5 | Quantitative performance evaluation under different parameter settings. (A) FASP’s performance under situations with different SNR values. (B) The

influence of density of FIUs. (C) Evaluate the robustness regarding spatial sizes of FIUs. (D) Robustness regarding temporal pattern of characteristic curves, reflected

by the temporal frequency of transients.
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are commonly observed in studies (Oberheim et al., 2012). And
since an FIU is usually only a part of an astrocyte, astrocytic
FIUs could be even more irregular in terms of shape or size
(Figure 1 and Supplementary Video 1). Secondly, though some
typical astrocytic Ca2+ transient models have been built, the
characteristic curves still heavily differ from each other in overall
pattern, especially in different experiments.

FASP makes no assumption about FIUs’ morphology,
propagation speed, or any parametric model for the characteristic
time courses. The morphology of FIUs and curves’ patterns
are learned from the data. These properties endow FASP with
excellent flexibility and stability with these complex impact
factors. As the synthetic data were generated using shape
templates from real data, good overall performance shown
in Section FASP Can Handle Datasets of Heterogeneous and
Low SNR Values already demonstrates that FASP can work
with various morphology patterns of FIUs. In addition, with
image size, SNR, and number of FIUs fixed, and with all other
impact factors randomly sampled from given distributions, we
investigated FASP’s performance as response to size of FIU and
frequency of Ca2+ transients. Figure 5C suggest the impact of
FIU size is not substantial as long as an FIU covers more than
∼ 10 pixels. And Figure 5D shows that the frequency has almost
no impact on the algorithm’s performance.

FASP Is Robust to Various FIU Density and
Total Number in the Field of View
Due to different experimental conditions and different
requirements from applications, fluorescence imaging data
of astrocyte Ca2+ signaling could exhibit considerable variation
in FIU population density and the total number of FIUs in
the field of view. Generally speaking, the more FIUs one has,
the more difficult the analysis is. However, it is a fundamental
requirement for automatic analysis of large-volume datasets
to simultaneously and accurately detect hundreds or even
more FIUs without prior knowledge of the number of FIUs.
Quantitative assessment on simulation datasets shows that FASP
has flexibility with number and density of FIUs in the field of
view and can thus successfully meet this demand.

In simulations with fixed image size, fixed SNR, random
FIU size (≥10 pixels) and random propagation speed, samples
consisting of different numbers of FIUs were tested. The impact
factor of interest here is the population density of FIUs. As
shown in Figure 5B, our algorithm’s recall mildly drops as
the population density of FIUs increases, but still retains good
performance (mean fidelity of 0.891, recall of 0.861, and precision
of 0.994) even with more than 200 FIUs in a 128∗128-pixel video
and SNR of 5 dB. Most errors were caused by adjacent FIUs
whose ground truth characteristic signals are intrinsically similar
to each other and hence difficult for algorithms or even humans
to distinguish. The denser the FIUs are in the field of view, the
more likely FIUs connect spatially to each other, and hence the
more difficult it is to distinguish them.

The second set of simulation experiments targeted the
influence of the total number of FIUs given the FIU population
density. We did simulations with fixed FIU intensity in the

field of view, fixed SNR, random FIU size (≥10 pixels) and
random propagation speed. Samples of different image sizes
were generated such that they contained 25, 100, 400, and 1,600
FIUs. The blue lines in Figure 6A show the very promising
performance of FASP on data with a large number of FIUs. No
matter the SNR is 5 or 10 dB, good performance is preserved as
the total amount of FIUs dramatically increases.

Well Modeling the Propagation of Ca2+

Transients Endows FASP with Good
Performance
One of the key challenges in astrocyte Ca2+ activity analysis is the
pervasive phenomena of slow signal propagations of intracellular
Ca2+ transients. Figures 1B,C give two real-world examples of
this phenomenon. Figure 6B shows time lags between pixels in a
real astrocyte functional unit, as a result of the slow propagation.
All these examples demonstrate the special nature of astrocyte
Ca2+ time-lapse imaging data, which, we anticipate, rules out
algorithms without specific design for the complex phenomena.
On the contrary, by explicitly modeling the propagation, we
expect that FASP gains the power to effectively eliminate the ill
effects of it and to correctly capture the actual astrocyte Ca2+

dynamic signals.
To the best of our knowledge, designed for astrocyte or any

other cell types, no existing method of time-lapse Ca2+ image
analysis has so far made any effort to tackle the problems caused
by the propagation phenomena. To validate the necessity of
explicitly modeling the propagation phenomena, we compared
FASP with “CellSort” (Mukamel et al., 2009), one of the most
popular Ca2+ dynamic detection algorithms that work quite
well on neuronal Ca2+ imaging data. Ignoring the effect of
propagation, CellSort makes a basic assumption of within-FIU
synchronization, which approximately holds true for neuronal
Ca2+ data. The violation of this basic assumption in astrocyte
time-lapse Ca2+ image data constitutes fundamental problems
for CellSort in detecting astrocytic FIUs. On the one hand,
as the possible time lags between observed signals in different
parts of an FIU are neglected, only pixels with almost the
same phase of signal are going to be clustered together. Put
differently, pixels in one ground-truth FIU (Figure 6C1) could
be falsely detected as several FIUs, as shown in Figure 6C3.
In contrast, FASP successfully detected the FIU as a whole
(Figure 6C2). On the other hand, under the assumption of
within-FIU synchronization, the learned characteristic curve
is essentially a weighted average over all pixels’ signal curves
without considering the time lags between pixels, leading
to distortion of the characteristic curve (Figure 6B), which
makes the subsequent analysis misleading. The characteristic
curve estimated by FASP, however, well matches the ground
truth (Figure 6B). For comparison between FASP and CellSort
regarding average performance, we tested them on both real
data and synthetic data. Figure 6D and Supplementary Videos
1, 3 together give a comparison on real data, supporting our
conclusion that CellSort would often falsely split one FIU into
several, due to the impact of pervasive propagation phenomena.
Because of the lack of ground-truth for real data, we decide

Frontiers in Neuroinformatics | www.frontiersin.org 13 July 2017 | Volume 11 | Article 48

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Wang et al. Automated Functional Analysis of Astrocytes

FIGURE 6 | Well modeling the propagation of intracellular Ca2+ transients endows FASP with good performance. (A) Quantitative performance comparison between

FASP and CellSort (Mukamel et al., 2009), a popular algorithm that works well on data with no propagation phenomena. FASP outperforms CellSort significantly,

suggesting the importance of modeling propagation phenomena in the analysis of astrocytes. (B) FASP resolves the negative impact of propagation phenomena on

the estimation of Ca2+ dynamic curves. The first three curves are the observed time courses at pixels in the same FIU, showing time lags due to propagation. The red

curve is the average of observed curves at all pixels in this region without considering the time lags, and hence the curve is distorted from the observed ones, with

much longer rise time and decay time of Ca2+ transients. The blue curve is the fitted signal curve given by FASP. (C1) Selected frames from a time-lapse data sample

show apparent propagation of Ca2+ elevation. (C2) The results produced by FASP, including the spatial map of one FIU and the corresponding time curve. (C3) The

sorting results produced by CellSort, related to the FIU highlighted in (C2). The connected domain was falsely split and identified as three differently functioning ROIs.

Their fitted curves are actually just the same one, if time lags are taken into account. (D) Comparison between FASP and CellSort on a real data sample of astrocytes

derived from human induced pluripotent stem cells (hiPSCs). (D1) FIUs identified by FASP highlighted by carmine boundary lines on the first frame of the original

(Continued)
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FIGURE 6 | Continued

image stack. To better check whether the detection is correct, please see Supplementary Video 1. (D2) Regions of Interest (ROIs) identified by CellSort highlighted by

boundary lines on the first frame. Different ROIs were labeled using different colors to clearly show the overlap between ROIs. Please refer to Supplementary Video 3

to check the performance of CellSort. Many FIUs were falsely separated into parts by CellSort, due to the violation of within-ROI synchronization of Ca2+ elevations.

Some FIUs were detected multiple times, as a consequence of blind decomposition of signal matrix by CellSort. (E) The impact of propagation velocity on FASP’s

performance.

one FIU should not be separated into parts if we see the
same temporal Ca2+ fluctuation pattern in all parts of this
FIU, without propagation or only with spatially continuous and
smooth propagation (see Supplementary Videos 1, 3). Differently
from CellSort, FASP correctly detected the FIUs. Quantitative
comparison was done by testing CellSort on the same synthetic
dataset generated in Section FASP is Robust to Various FIU
Density and Total Number in the Field of View, with a common
and fixed FIU density in the field of view but different image
sizes. Figure 6A clearly shows that our algorithm is superior
to CellSort. CellSort reported a lot of redundant units because
it allows for totally or partially overlapping FIUs and it falsely
separates real FIUs into sub-regions. The false separations also
give rise to a smaller area accuracy. Besides, the fidelity of curves
estimated by CellSort is lower. In cases with SNR of 5 dB,
CellSort missed a lot of FIUs, while ourmethod still found around
88% ground-truth FIUs, suggesting a much better robustness to
large noises. All these results emphasize the importance of well-
modeling the propagation phenomena in astrocyte Ca2+ image
analysis.

Then we did quantitative analysis to assess the robustness
of FASP to the severity of propagation phenomena. FASP’s
performance was evaluated as a function of Ca2+ propagation
velocity. With other parameters randomly sampled from a
given distribution, we generated synthetic data using different
propagation velocities. The performance is shown in Figure 6E.
When the intracellular calcium transients propagate at a
velocity of 1 pixel per frame or faster, the velocity generally
has little impact on the performance. A natural corollary
of this observation is that our algorithm is compatible with
fast-propagation applications such as neuronal Ca2+ dynamic
detection. When the propagation velocity is slower than 1 pixel
per frame, the precision drops a little, perhaps because the
differences between adjacent pixels are larger and hence the pixel-
wise neighborhood correlations are smaller, although we did not
observe such slow propagation in real data.

Case Study: Analyzing Agonist-Induced
Ca2+ Signaling in Rat Astrocytes
We applied FASP to analyse the calcium dynamics of rat
hippocampal astrocytes in response to agonist treatment
(Figure 7). When ground truth is absent for validation, data of
stimuli-triggered activities present an alternative way to test data
analysis methods. Astrocytic Ca2+ signaling can be triggered by
the excitatory neurotransmitter including ATP and glutamate
through P2Y1 receptors and metabotropic glutamate receptors
(mGluRs) respectively (Kim et al., 1994; Pasti et al., 1997;
Bowser and Khakh, 2004; Fiacco and McCarthy, 2004; Jourdain
et al., 2007; Hamilton et al., 2008). 3,5-dihydroxyphenylglycine
(3,5-DHPG), a potent agonist of group I mGluRs (Wisniewski

and Car, 2002), including mGluR1 and mGluR5, can evoke
astrocyte Ca2+ elevations in the astrocyte soma and fine processes
(Zur Nieden and Deitmer, 2006). We thus monitored the
calcium dynamics in response to ATP, glutamate, and DHPG on
cultured rat astrocytes, respectively, followed by FASP analysis
to detect the evoked Ca2+ activities. For each sample, the
astrocytes were imaged twice, before and after the agonist was
added in.

To assess the accuracy of automatic analysis, we first
manually labeled FIUs in all the control/case samples, and
compared them with the outputs of FASP. It turned out
that the FIUs automatically detected by FASP were very
consistent to those manually labeled, but had more complex
and accurate contours. FASP was able to successfully detect
some FIUs that have low basal fluorescence and therefore
were neglected by manual labeling. We confirmed those
neglected FIUs by double-checking those areas by purposefully
applying transformations which facilitate human vision. The
detected FIUs included whole somas, long processes, and
smaller sub-regions within cells (probably microdomains;
Figures 7A–C,E). Connected FIUs were successfully detected as
separate units.

The control samples for all the three agonists showed almost
no spontaneous activity before the application of the agonists,
but a large number of FIUs were activated with the agonists
applied separately (Figures 7A–C). One hundred and twenty-
nine induced FIUs were detected after glutamate was applied,
covering 28.45% of the area of all astrocytes (active/silent) in the
sample, while ATP alone induced 88 FIUs that covered 57.27%
of the area. These observations suggest strong effects of these
agonists. DHPG showed a relatively milder effect, activating
33 FIUs, 18.50% of the area of overall astrocytes. Agonist-
evoked Ca2+ was well-captured by the algorithm. The agonists
were added in during the first several frames of imaging, and
an obvious burst of Ca2+ elevations can be seen in all the
three samples with agonists. Accordingly, characteristic curves
reported by FASP show a common Ca2+ increase shared by
the majority of FIUs at about the 6th frame (Figures 7A–C).
The estimated half-rise time ranges 1–6 s and half-decay time
ranges 4–10 s, which is consistent with what was previously
reported about Ca2+ dynamics in response to ATP stimuli (De
Pitta et al., 2012). The response to ATP is asynchronous. From
the curves of induced Ca2+ signals (Figure 7D), we can recognize
FIUs that responded only once right after the agonist was added,
FIUs with evoked oscillations of generally constant frequency
and constant amplitude, and FIUs with evoked oscillations of
decreasing frequency or decreasing amplitude. Similar patterns
were also observed in other studies, suggesting that ATP is a
modulator for both frequency and amplitude (Cornell-Bell et al.,
1990).
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FIGURE 7 | Case study: analyzing agonist-induced Ca2+ signaling in in vitro rat astrocytes. (A) 129 FIUs with glutamate-evoked Ca2+ signals, identified by FASP.

Left: the FIUs’ spatial positions were highlighted with carmine edges. Right: the learned characteristic signal curves of the FIUs shown on the left. Each curve in the

control group is the average time course over pixels in the corresponding glutamate-induced FIU detected in the case sample. (B) 33 FIUs with DHPG-evoked Ca2+

signals identified by FASP. (C) 88 FIUs with ATP-evoked Ca2+ signals identified by FASP. (D) The ATP-evoked Ca2+ signals in (C) listed individually in (D), from which

different patterns can be recognized: (D1) FIUs that responded only once after the agonist was added, (D2) FIUs with evoked oscillations of decreasing frequency or

decreasing amplitude, and (D3) FIUs with evoked oscillations of generally constant frequency and constant amplitude. (E) FASP captured the correlation between ATP

dose and the number of responding FIUs. The FIUs detected by FASP are highlighted using carmine contours on each sample. (F) The relationship between ATP dose

and the histogram of Ca2+ activity amplitudes (maximum 1F/F0 ).

We next test the accuracy of FASP’s outputs in detecting dose
response to agonists. When ATP of different doses is added, the
number of FIUs responding to the agonist stimuli is supposed
to increase as the dose increases. Figure 7E and Supplementary
Videos 4–7 gives a comparison among the detected responses to
no ATP (control), 1, 10, and 100 uM ATP. The control sample
only contained one FIU with spontaneous activity; 1 uM ATP
induced 9 FIUs; 10 uM stimulated 136 FIUs; while the field
of view was full of responding FIUs (182 FIUs) after 100 uM
ATP was applied. The peak response to different doses is also
reflected in the histogram of estimated Ca2+ activity amplitude

(maximum1F/F0; Figure 7F). The higher the dose is, the higher
the histogram is (because more FIUs responded), and the more
large-amplitude activities are observed. These results suggest that
FASP successfully captured the association between the strength
of stimulated activities and agonist dose.

The Binarization Method Based on
Order-Statistics Theory Is Effective
The z-score maps generated from astrocyte Ca2+ time-
lapse images usually possess the following characteristics
which make the binarization task difficult: (1) large noises
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and small foreground/background contrast due to low-SNR
in input image stack data; (2) weak and blurred edges of
foreground areas; and (3) uneven intensity distributions
across different foreground regions. Taking advantage of the
statistical nature of z-score maps, we based our method for
binarizing z-score maps on order-statistics guided hypothesis
testing (Section Active Region Detection on Z-Score Map
by Order-Statistics Guided Hypothesis Testing). It was
demonstrated by experiments that our method has strong
power to binarize z-score maps and outperforms many other
binarization techniques especially in low-SNR cases (Table 1 and
Figure 8A).

Literature shows several methods that are most often applied
to binarize grayscale microscopy images of cells (Meijering,
2012): thresholding, watershed transformation, active contour
methods, and graph cuts based algorithms. Unfortunately,
due to the special characteristics and difficulties of our
data, some key assumptions explicitly or implicitly required
by these methods are not satisfied, such as assumptions
of separable foreground/background intensity distributions,
intensity homogeneity within foreground/background regions,
and sharp intensity change at the boundaries between foreground
and background. Experimental results on synthetic data
confirmed the concern that the violation of these strong
assumptions makes existing methods intrinsically problematic
to solve our problem. Watershed approach typically relies on
predefined markers of foreground and background areas which
are unavailable in our problem. For the other three categories of
techniques, we selected one representative automatic algorithm
from each of them and quantitatively evaluate their performance:
Kittler-Illingworth thresholding (Kittler and Illingworth, 1986),
the best among 40 thresholding methods according to a survey
given by Sezgin (Sezgin, 2004); Distance Regularized Level
Set Evolution (DRLSE) (Li et al., 2010), which has been
applied to cell segmentation problems (Dzyubachyk et al.,
2010); and Al-Kofahi’s method (Al-Kofahi et al., 2010), a
well-accepted graph cuts based algorithm with fully automatic
initialization. Parameters were tuned by experiments, with the
best performance achievable reported here. According to the
experimental results (Table 1 and Figure 8A), our hypothesis
testing based region growing method (“FASP-bin”) has the best
overall binarization performance among the four, in terms of
both misclassification rate and F-measure. Though the precision
of our method is slightly lower than that of Kittler-Illingworth

thresholding and Al-Kofahi’s, the difference is quite small
(<0.015) and their recall scores are much lower than ours
(>0.160). Figure 8A further reveals that our method shows
strength and superiority mainly in low-SNR cases. The missing
pixel rates of the other three methods increase tremendously as
SNR decreases from 5 to 0 dB.

One key design in our method that makes a critical
contribution to this promising performance is the utilization
of neighborhood pixels’ relationships in hypothesis testing.
Specifically, instead of testing each pixel in isolation, we designed
a region-level z-score (Equation 4) and tested one candidate
region as a whole. In this way the statistical power of test is much
enhanced, since information from connected pixels can confirm
each other and thus jointly provide us with higher confidence
in decisions. On both real data (Figure 8B) and synthetic data
(Figure 8C), we compared two hypothesis testing based methods
for binarization: (1) a right-tailed test on each pixel using
the pixel-level z-score; (2) a right-tailed test on any possible
connected domain using the region-wide z-score (accelerated by
our heuristic region search process without loss of information).
In both methods, pixels (groups of pixels) of interest were
claimed positives using a significance level of 0.05. Commonly
seen in bioimaging data, the z-score is not homogeneous even
within a single FIU. Pixel-level tests discard low scoring pixels,
resulting in a coarse and incomplete map, while region-level tests
retain these pixels because of their neighbors. More importantly,
because of low expression level of fluorescence protein, it is
common that some FIUs’ signals are too weak that in-FIU pixels
can hardly be distinguished from random noise pixels in terms of
intensity. But weak signals in a group of connected pixels together
reveal the non-randomness, which allows region-wide tests to
detect them.

Neighborhood Correlation in Residual
Signals Enables a Sequential FIU
Identification
In the sequential process of identifying FIUs in an active
region, as discussed in Section Module 2: Identifying FIUs and
Extracting Characteristic Curves, at each step only one FIU m
(with characteristic curve Xm) is modeled and all the remaining

FIUs are “hidden.” We designed a score z
(fit)
px (Equation 12),

aiming to distinguish pixels in FIU m from pixels in other FIUs.
One important innovation in our framework is the realization

TABLE 1 | Comparison of binarization methods on the z-score map.

Misclassification rate Recall Precision F-measure

FASP-bin 0.0291 ± 0.0096 0.8257 ± 0.0487 0.9847 ± 0.0061 0.8976 ± 0.0306

Kittler-Illingworth thresholding 0.0551 ± 0.0163 0.6480 ± 0.1053 0.9879 ± 0.0052 0.7779 ± 0.0821

Al-Kofahi’s (Graph Cuts based) 0.0517 ± 0.0146 0.6652 ± 0.0943 0.9963 ± 0.0028 0.7940 ± 0.0705

DRLSE (Level Sets based) 0.1233 ± 0.0579 0.5390 ± 0.1272 0.7212 ± 0.2255 0.5853 ± 0.1013

Each pixel is classified/labeled as either a foreground pixel or background pixel, and the four metrics are based on the proportion of correctly classified pixels or misclassified pixels in an

image. The evaluation scores in the table are presented in the format “average ± SD,” where SD is the standard deviation calculated over multiple runs of simulation. Bold fonts indicate

the best result in terms of each performance measure. FASP-bin is the method developed in this study. The synthetic data here were generated with all parameters randomly sampled

from given distributions that reflect typical parameter values in real data. All methods were tested on the same datasets.
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FIGURE 8 | Effectiveness of z-score map binarization method based on order-statistics guided hypothesis testing. (A) Comparison of missing pixel rate, as a function

of SNR, among peer binarization algorithms. Except for SNR, all parameters were randomly sampled to generate the simulated data. Our method has strong power to

binarize z-score maps and outperforms others especially in low-SNR cases. (B) A real data sample of in vitro astrocytes shows that accumulated information in a

region helps to enhance the statistical power of tests and, consequently, the performance of identifying FIUs. Two hypothesis testing based binarization methods were

compared: (1) a right-tailed test on each pixel using the pixel-level z-score; (2) a right-tailed test on any possible connected domain using the region-level z-score

(accelerated by our heuristic region search process without loss of information). Colored circles highlight a portion of weak regions which are completely neglected by

the pixel-level tests but well-identified by the region-level method. (C) An example of the same comparing experiments on synthetic data. Data samples were

generated with SNR being 5 or10 dB, respectively, and the two binarization methods were compared in both cases. The region-level tests gave much better detection

performance. Panels (B,C) provide one explanation for the good performance of our z-score map binarizatoin method.

that correlation between neighboring pixels’ residual signals
can be used as a measure of signals that cannot be explained
by Xm and thus an indicator of the existence of other FIUs.
Neglecting this information may lead to inaccurate boundaries
between FIUs, or even to total failure in separating different
FIUs.

We verify the important role that neighborhood correlation
of residual signals plays by inspecting the difference between
Equation (12) and the following fitness definition:

z
(fit)∗
px

[

i, j
]

= Φ−1
(

Φ2Uτ
(

F
(

rfit
[

i, j
])))

, (15)

which is linearly related to the first term of z
(fit)
px and does

not include the information about residual signals. Figure 9
provides an indicative example comparing the two scores. Given
two simulated FIUs whose characteristic curves are different
but correlated (correlation coefficient = 0.4), the ground truth
characteristic curve of one FIU is used to calculate the scores at all

pixels. The results support our expectation that z
(fit)
px yields better

contrast than z
(fit)∗
px . After applying our z-score map binarization

method to both maps, the FIU of interest was correctly identified

from z
(fit)
px map but falsely merged with the confounding FIU

using z
(fit)∗
px map. Generally, the lower the correlation between
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FIGURE 9 | Investigate the role of neighborhood correlation of residual signals in score z
(fit)
px . (A) The ground-truth FIU map of a synthetic data sample. (B) Given SNR

= 5 dB and correlation coefficient between two FIUs’ characteristic curves as 0.4, the color map shows the spatial distribution of z
(fit)
px (Equation 12—with penalty term

for neighborhood correlation in residuals) and z
(fit)*
px (Equation 15—without the penalty term). (C) The normalized histograms of z

(fit)
px and z

(fit)*
px , where z

(fit)
px shows a

better contrast between the FIU of interest and the confounding FIU. (D) The results of binarization on z
(fit)
px and z

(fit)*
px maps. In the up-subfigure of (D), z

(fit)*
px , ignoring

the neighborhood correlation in residual signals, leads to false merging of two distinct FIUs.

the two curves, the better the contrast. But in all cases, z
(fit)
px

performs better. The specific design of z
(fit)
px (Equation 12) is one

of the keys to the good performance of FASP.

Alternative Design of Neighborhood
Correlation Score
When calculating the neighborhood correlation score using
Equation (2), we focused more on controlling the damaging
effects of noises in low-SNR cases and ignored the potential
time lags between adjacent pixels. To examine the impact of
this ignorance and investigate FASP’s applicability to various
situations, we have also considered an alternative neighborhood
correlation score, taking propagation phenomena into account.
Based on the fact that the signals are always synchronized along
the surface orthogonal to the propagation direction, we calculate
the neighborhood correlation at pixel [i, j] as

rsc
[

i, j
]

= maxd=1,2,3,4 cor
(

Y[i, j, :],
Y[id1 , jd1 , :]+ Y[id2 , jd2 , :]

2

)

, (16)

where cor (, ) is the Pearson correlation coefficient, d1 and
d2 are the first and second pixels along the direction d. For
each pixel, there are four directions to search as shown in
Figure 10A. Though we do not know the propagation direction
a priori, the maximum value among the four approximately
represents the correlation between the pixel and its synchronized
neighbors. Accordingly we adjust the definition of the z score of

the neighborhood correlation. Considering that the correlation
map was obtained by taking the maximum value among four
directions, we make a transformation

zpx
[

i, j
]

= 8−1
(

84
(

F
(

rsc
[

i, j
])))

, (17)

where 8(·) denotes the standard Gaussian CDF and F (·) is
the normalized Fisher transformation defined in Equation (3).
Based on the properties of the Fisher transformation and of
extreme order statistics, it can be shown that zpx

[

i, j
]

defined in
Equation (17) also follows a standard Gaussian under the null
hypothesis that the pixel [i, j] has zero βm for allm. This design is
expected to be better to cope with propagation but less powerful
to suppress noises, as a result of not taking full use of the eight
neighboring pixels but only utilizing two of them in calculating
the correlation.

Simulation experiments were conducted to compare
Equations (2) and (16) under different ground-truth SNR
settings (Figure 10B). Propagation velocities were randomly
sampled from a wide range, mimicking real data. The results
show that, when SNR is high, Equation (16) leads to better
contrast between active and silent pixels than Equations (2) and
(3) (p < 2.2×10−16 byWilcoxon signed rank test). This suggests
that the special design in Equation (16) successfully works to
suppress the effect of Ca2+ propagation. On the other hand,
when the SNR is low, the opposite is observed: Equations (2)
and (3) assign larger zpx to active pixels than Equations (16) and
(17) do (p < 2.2 × 10−16 by Wilcoxon signed rank test). This
supports the notion that, in low-SNR cases, though Equation
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FIGURE 10 | Discussion on the design of neighborhood correlation z-score. (A) The four directions used to calculate the alternative neighborhood correlation at a

pixel (Equation 16). (B) The comparison between two definitions of neighborhood correlation score, showing the histograms of z-scores at active pixels. Since our

design guarantees that both scores follows standard Gaussian distribution at silent pixels, the higher a z-score is at active pixels, the better the contrast between

active/silent (foreground/background) pixels, and the better the score definition is. “8 neighbors_average” in the legend indicates definition given by Equations 2, 3;

while “4 directions_max” corresponds to Equation (16), (17). These results demonstrate that when the SNR is large, “max” is better, while when the SNR is low,

“averaging” is better.

(16) still models the propagation better, the benefit of restraining
noises dominates. Since astrocyte Ca2+ imaging data typically
has low SNR, we decided to adopt Equation (2). In applications
where SNR is basically high while the propagations are extremely
slow, Equation (16) can be applied instead.

DISCUSSION

Necessity of Specific Tools for Analyzing
Time-Lapse Astrocyte Ca2+ Imaging Data
To the best of our knowledge, no tool has been developed
for fully automatic analysis of astrocytic signaling from time-
lapse Ca2+ images. However, many analytical tools have been
proposed to analyse similar imaging data of other types of
cells, especially neurons. Is it necessary to design new analytical
tools specifically for astrocytes? In addition to the discussion
about CellSort in Section Well Modeling the Propagation of
Ca2+ Transients Endows FASP with Good Performance, our
survey also shows that neuron-targeted algorithms can hardly
be directly generalized to work on astrocyte Ca2+ imaging data,
demonstrating the needs for new designs.

The earliest and most elementary types of neuron-targeted
methods are manual (Dombeck et al., 2007; Göbel et al., 2007)
and semi-automated approaches (Junek et al., 2009; Peters et al.,
2014) that cannot be applied to large-scale data sets and which
are also biased by subjective judgments. Another group of early
stage methods is based on detecting a region of interest (ROI)
on temporally averaged intensity images without considering the
time course information (Pachitariu et al., 2013; Kaifosh et al.,
2014), and thus can neither distinguish functionally active cells
from silent ones nor separate spatially connected but functionally
different units. Somemethods rely on priors aboutmorphological
properties such as size and shape patterns (Valmianski et al.,
2010), and thus are very likely to fail for the astrocyte problem
due to the irregular and heterogeneous morphologies of FIUs.
The most well-accepted set of sophisticated tools is grounded
on matrix decomposition techniques such as independent
component analysis (Reidl et al., 2007; Mukamel et al., 2009),

sparse dictionary learning (Diego et al., 2013), multilevel sparse
matrix factorization (Andilla and Hamprecht, 2013), non-
negative matrix factorization (Maruyama et al., 2014; Soelter
et al., 2014), and constrained non-negative matrix factorization
(Pnevmatikakis et al., 2016). However, just like CellSort, all these
neuron-targeted algorithms make either an explicit or implicit
assumption that pixels in an FIU are synchronized under the
given imaging resolution. The violation of this assumption in
astrocyte data leads both to false splits of a single FIU and
to inaccurate estimates of characteristic curves of FIUs. Being
blind source separation strategies, they also have difficulties
in pre-determining the number of sources and in interpreting
resultant overlapped components. Additionally, many of these
methods make assumptions of spatial sparsity, temporal sparsity
or mutual independence of Ca2+ signals, which are often
not satisfied by astrocyte data. Last but not the least, matrix
decomposition methods basically treat pixels as independent,
leaving out the information embedded in spatial relationships
among neighboring pixels.

General Applicability and Limitations
Though designed for time-lapse imaging data of astrocytic Ca2+

dynamics, FASP is also potentially applicable to many other
types of imaging data that have similar properties, which can be
captured by the proposed model (1). Many of FASP’s advantages
still hold in such cases, including flexibility, outstanding
performance on large-scale data, and probabilistically controlled
parameter tuning.

Particularly, it is interesting to see how FASP can be applied to
model neuronal Ca2+ dynamics (Mukamel et al., 2009). Recent
advances in high-throughput time-lapse Ca2+ imaging of large
populations of neurons (Ahrens et al., 2013; Prevedel et al.,
2014) have generated a tremendous amount of data and hold
the potential to understand the neuronal ensemble activities
and coding. There are two possible routes to apply FASP to
neuronal data. (1) When the Ca2+ imaging is focused on soma
and hence the analysis is of cellular level, the somatic intracellular
propagation of Ca2+ transients is so fast that the signals can be
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regarded as synchronized among pixels in a single neuron. So,
we do not need to explicitly model the signal propagation within
cell. However, the simplified version of FASP with an intracellular
synchronization assumption can still help us to automate the
analysis, ease the parameter setting and reduce false positive
discoveries, due to the machine-learning and probabilistic nature
of the FASP framework. (2) When the Ca2+ imaging is focused
on dendrites, the neuronal Ca2+ signals look more like the ones
in astrocytes than the somatic signals, because of the existence
of calcium compartmentalization and signal propagation in
dendrites (Yuste et al., 2000; Higley and Sabatini, 2008). In this
case, we expect the application of FASP will be especially useful
to extract information that is otherwise missed, because of its
data-driven and unbiased nature. However, caution needs to be
exercised. Dendritic calcium signaling may be very different from
astrocytic calcium signaling, such as the frequency of events, the
size and the density of regions of interest, and the signal-to-noise
ratio.

More broadly, although FASP was motivated by a specific
biological problem, some of the technical innovations that we
developed during the process are quite generic and can be
applied to other problems. For example, the order-statistics-
based binarization is one of the key innovations in this paper.
Due to the prevalence of segmentation problem in imaging
analysis, we expect this new segmentation method may find
broad applications, especially when the pixel values can be
assigned statistical meaning.

One possible limitation of FASP arises from its assumption
of fixed spatial positions of FIUs. Cells sometimes migrate in
the field of view, and their shapes sometimes change as well.
This problem can be entirely or partially solved by either
pre-processing, which registers cells, or post-processing, which
eliminates abnormal output FIUs.

Another concern may be about the assumption that a single
pixel is associated with at most one FIU. Due to limited resolution
along the z-axis or other reasons, the signals at some pixels are
actually mixtures of multiple biological signals. However, without
ground truth, results of blind decomposition are often difficult
to explain, or turn out to be wrong in simulation experiments.
Instead, FASP does not make an attempt to decompose the
mixed underlying biological signals but sticks to the objective
presentation of observed signal patterns. On the basis of FASP’s
outputs, downstream analysis can still be performed to unmix the
true sources.

CONCLUSIONS

We developed a data-driven and probabilistically principled
algorithm to automatically quantify the functional status
of astrocytes from astrocyte time-lapse Ca2+ imaging
data. Integrated with a series of statistical machine learning
techniques, FASP was demonstrated to be able to successfully
decode complex spatiotemporal patterns of calcium signaling
and control the false positive rate. We expect that broad
applications of this tool would greatly facilitate analyzing
astrocyte function to uncover its complicated roles in neuronal
circuits.
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