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Perception and action are the result of an integration of various sources of information,
such as current sensory input, prior experience, or the context in which a stimulus occurs.
Often, the interpretation is not trivial hence needs to be learned from the co-occurrence
of stimuli. Yet, how do we combine such diverse information to guide our action? Here
we use a distance production-reproduction task to investigate the influence of auxiliary,
symbolic cues, sensory input, and prior experience on human performance under three
different conditions that vary in the information provided. Our results indicate that subjects
can (1) learn the mapping of a verbal, symbolic cue onto the stimulus dimension and (2)
integrate symbolic information and prior experience into their estimate of displacements.
The behavioral results are explained by to two distinct generative models that represent
different structural approaches of how a Bayesian observer would combine prior experi-
ence, sensory input, and symbolic cue information into a single estimate of displacement.
The first model interprets the symbolic cue in the context of categorization, assuming
that it reflects information about a distinct underlying stimulus range (categorical model).
The second model applies a multi-modal integration approach and treats the symbolic cue
as additional sensory input to the system, which is combined with the current sensory
measurement and the subjects’ prior experience (cue-combination model). Notably, both
models account equally well for the observed behavior despite their different structural
assumptions.The present work thus provides evidence that humans can interpret abstract
symbolic information and combine it with other types of information such as sensory input
and prior experience. The similar explanatory power of the two models further suggest
that issues such as categorization and cue-combination could be explained by alternative
probabilistic approaches.

Keywords: pre-cueing, path integration, cue-combination, multi-modal, categorization, experience-dependent prior,
magnitude reproduction, iterative Bayes

INTRODUCTION
Because the demands in natural tasks are highly complex but sen-
sory information is corrupted by noise, humans are versed in
exploiting contextual information. To improve efficiency, reduce
the amount of computational costs, and allow fast adaption to the
outside world, we infer existing dependencies and combine rele-
vant information to guide our perception and action. The sources
of information can vary from the simultaneous input coming from
different senses (Ernst and Bülthoff, 2004; Angelaki et al., 2009)
or distinct input from one sensory modality (Jacobs, 1999; Stone
et al., 2009), over short and long-term experience (Adams et al.,
2004; Stocker and Simoncelli, 2006; Verstynen and Sabes, 2011),
to abstract expectations and contextual cues in the environment
(Langer and Bülthoff, 2001).

A possible framework for combining these diverse sources of
uncertain information is offered by Bayesian probability theory,
which has proven applicable to several of the mentioned issues.
It provides a normative, mathematical description of how various

sources of information can be merged to obtain a statistically opti-
mal estimate of their cause in the presence of uncertainty. One of
the most common applications of the Bayesian approach is multi-
modal cue integration, where the provided information about a
stimulus results from different sensory modalities, such as vision,
audition, or proprioception (Ernst and Banks, 2002; Battaglia et al.,
2003; Körding et al., 2007).

Senses, however, are not the only source of information that
determines our perception. Contextual and symbolic cues can also
contribute as a new source of information. In visual search par-
adigms, contextual cues are known to influence reaction times
(e.g., Müller et al., 2003; Vincent, 2011). The context can also lead
to an internal organization of stimuli into distinct categories that
influence perception by leading to an increased ability to discrim-
inate between categories at the expense of discriminability within
categories. Examples for category effects range from the percep-
tion of speech sounds (Liberman et al., 1957) or colors (Davidoff
et al., 1999) to facial expressions (Etcoff and Magee, 1992). A
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Bayesian explanation for category effects in speech perception was
offered by Feldman et al. (2009). However, their solution only
treats implicit predefined categories, not auxiliary contextual cues
providing information about these categories, e.g., pre-cueing.

Another type of contextual information comes from the pre-
ceding occurrence of a stimulus in the form of prior experience.
Bayesian probability theory has been successfully applied to a
broad spectrum of studies exploring the effect of short or long-
term experience on our current percept (Adams et al., 2004;
Stocker and Simoncelli, 2006; Verstynen and Sabes, 2011). For
human estimation of distances and turning angles in a production-
reproduction task, we have recently shown that the effect of prior
experience results in a varying bias depending on the underlying
sample range (Petzschner and Glasauer, 2011). The participants’
behavior was best explained by an iterative Bayesian estimate
derived from the current noisy measurement merged with infor-
mation from short-term prior experience, which is updated on a
trial by trial basis.

Sensory input is often embedded not just in the temporal con-
text of prior experience, but occurs together with other indirect
cues that provide a contextual environment helping to interpret
the sensory input. These indirect or symbolic cues join together
with sensory input and experience to yield a uniform percept.
While there is a considerable body of research on multi-modal
sensory fusion, the mechanisms of integration of symbolic cues
into sensory perception are less well understood.

The present work aims to clarify the role of auxiliary contextual
cues on behavior that is known to be influenced by prior expe-
rience. We extended our distance production-reproduction task
(Petzschner and Glasauer, 2011) to include a symbolic cue that
supplied additional, but initially uncertain information about the
stimulus value. The symbolic cue values were provided as a written
instruction prior to each trial and indicated whether the distance
to be reproduced would be “short” or “long.” The cue values cor-
responded to two ranges of distances. We investigated whether (1)
subjects could use such a symbolic cue that provided reliable but
imprecise information about the sample distances and (2) how this
abstract information influenced their estimation process. To eval-
uate the behavioral results in the cue condition we used two control
conditions that mimicked the extreme cases of cue usage. In the
first control condition, we presented participants with exactly the
same distances in the same order, but without the symbolic cue.
In the second control condition the “short” and “long” ranges of
displacements were presented in a separate order. Thus, if subjects
ignored the symbolic cue, we expected that the performance in
the cue condition would resemble that of the first control condi-
tion. If subjects however separated their estimates based on the
symbolic cue, the behavior should be similar to the second control
condition.

We then compare the behavioral data to predictions of two
distinct Bayesian observer models, the categorical and the cue-
combination model, which are founded on qualitatively different
assumptions about the causal relationship between the sensory
stimulus and the symbolic cue and consequently, about how the
mapping of the symbolic cue to the stimulus dimension is learned
during the experiment. Both models are based on our previously
published basic iterative model (Petzschner and Glasauer, 2011, see

Figure 1A) and generate a combined estimate of the distance to
be reproduced given the observed stimulus, the symbolic cue, and
prior experience. In addition, in both models Kalman filters are
used to dynamically update the prior experience and to learn the
relation between sensory stimulus and symbolic cue.

The two models differ in how the symbolic cue is merged with
prior experience and sensory input into a distance estimate. This
difference corresponds to different assumptions about the causal
outside world structures between the stimulus, the measurement,
and the symbolic cue (see Figure 1). In the categorical model,
the idea is that the symbolic cue helps to identify an underly-
ing stimulus category (Feldman et al., 2009). The model is based
on the assumption that in the outside world, in each trial one
of two categories is chosen, which determines the range of test
distances. The test distance, which is drawn randomly from the
respective category, leads to a noisy distance measurement. In
addition, the symbolic cue signifies the chosen category with a
certain reliability (Figure 1B). In the cue-combination model, it
is assumed that the symbolic cue provides additional informa-
tion similar to a sensory signal from a different modality (e.g.,
Ernst and Banks, 2002). The cue-combination model has a dif-
ferent view on the outside world. As our previous basic iterative
model (Petzschner and Glasauer, 2011), it assumes the test dis-
tances are drawn from a single range, instead of distinct categories.
The chosen test distance leads to a noisy distance measurement
and to a noisy cue signal, which determines the symbolic cue
(Figure 1C).

MATERIALS AND METHODS
PARTICIPANTS
Twenty volunteers (nine female) aged 20–29, who had all normal
or corrected-to-normal vision and were naive to the purpose of
the experiments, took part in the study. Participation was mone-
tarily compensated. The experiments were approved by the local
ethics committee and conducted in accordance with Declaration
of Helsinki.

EXPERIMENTAL SETUP
Stimuli were viewed binocularly on a PnP monitor driven by an
NVIDIA GeForce 8800 GTX graphics card at a frame rate of 60 Hz
and with a monitor resolution of 1920× 1200. All experiments
were carried out in complete darkness except for the illumina-
tion by the monitor. The real-time virtual reality (VR) was cre-
ated using Vizard 3.0 (Worldviz, http://www.worldviz.com/ and
depicted the same artificial stone desert as described in Petzschner
and Glasauer (2011), consisting of a textured ground plane, 200
scattered stones that served as pictorial depth cues, and a tex-
tured sky (Figure 2). The orientation of the ground plane texture,
the position of the stones, and the starting position of the par-
ticipant within the VR were randomized in each trial to prevent
participants from using landmark cues to calibrate their estimate
of displacement. The sky was simulated as a 3D dome centered
on the participant’s current position and thus the distance to the
horizon was kept constant. In the VR each participant’s eye height
was adjusted individually to his/her true eye height. A multi-
directional movable joystick (SPEEDLINK) was used to change
the position with a constant speed.
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FIGURE 1 | Bayesian networks of the generative probabilistic models
corresponding to the estimation part (i.e., dependence on previous trials
not shown). The assumed probabilistic dependencies are shown as arrows.
(A) Basic iterative model as described in Petzschner and Glasauer (2011). The
stimulus S is a noisy measurement of the target distance T that is drawn
from a single underlying category A. (B) Categorical model: the target
distance T and the discrete symbolic cue C depend on the choice of the

underlying category A. Again, the stimulus S is a noisy measurement of the
target distance T. (C) Cue-combination model: The stimulus S and cue signal
Cmp represent both independent noisy measurements of the target distance T
that is drawn from a single underlying category A. The cue signal Cmp is
mapped to the symbolic cue C. The striped background in (A,C) indicates that
T is assumed to be drawn from a single category A in contrast to (B) were
target distance and cue depend on the choice of the underlying category.

FIGURE 2 | Schematic time course of a single trial. Subjects had to
subsequently produce and reproduce a sample distance in a virtual reality
using the joystick to change their position with a constant speed. The final
position was indicated via button press. In the IR-C condition each
production-reproduction block was preceded by a symbolic cue that
declared the upcoming sample displacement to be either “short” or “long.”
No symbolic cue was displayed in the IR-NC and BR-NC conditions.

EXPERIMENTAL PROCEDURE
Subjects had to estimate traveled distances in a production-
reproduction task in three different experimental conditions,
“blocked-ranges, no cue” (BR-NC), “interleaved-ranges, no cue”
(IR-NC), and “interleaved-ranges, cue” (IR-C). The task remained
the same for all three conditions.

Task
In each trial subjects were asked to “produce” a certain sample
distance, by using a joystick to move forward through the virtual
environment on a linear path toward the direction of a visual object
at the horizon of the virtual world until they were automatically
stopped for 2.25 s. During that time they received an instruction to
subsequently “reproduce” the same amount of displacement that
they had experienced during the production phase. Throughout
the reproduction phase subjects continued moving in the same

direction as in the production phase and indicated via button
press when they thought they had covered the same distance as
in the production phase. In the condition with cues the symbolic
cue was presented before the production phase. Figure 2 displays
a schematic overview of the time course of events in a single trial.
In all trials velocity was kept constant during one movement, but
changed randomly up to ±60% (scaling factors between joystick
output and constant VR velocity were drawn from a normal dis-
tribution) between production and reproduction phase to exclude
time estimation strategies to solve the task.

Experimental conditions
Each experimental condition consisted of 110 trials. The first 10
trials per condition were training trials and served to familiarize
participants with the task and VR. During these 10 trials, feedback
on the performance was given after the reproduction phase by ask-
ing subjects to navigate toward an object that was displayed at the
correct distance in the VR. The following 100 trials were test trials
without any feedback. Only test trials were used for data analysis.
After 50 trials subjects had a short break of 100 s to relax their
hands. During that time the subjects did not leave their position
and the room remained dark. Different experimental conditions
were separated by a break for no less than 15 min outside the room
of the experiment. In all three conditions the overall number of
repetitions for each sample distance remained the same, thus the
overall distribution of samples was the same for all three condi-
tions. The same trial order within one condition as well as the
same order of cues in the cued condition was maintained for all
participants. The three experimental conditions were performed
in a randomized order.

“Blocked-ranges, no cue” condition. In the BR-NC condition
the 100 test distances were drawn in two blocks from two differ-
ent underlying uniform sample distributions referred to as “short”
range ([5, 7, 9, 11, 13] m) and “long” range ([11, 13, 15, 17, 19] m).
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In the first block of 50 trials the sample distances were randomly
drawn from the“short”range distribution; sample distances for the
second block of 50 trials were randomly drawn from the “long”
range distribution. The two blocks were separated by a short break
of 100 s. Within each range each sample distance was repeated 10
times in a randomized order. Note that the 11 and 13-m dis-
tances appeared in both the “short” and “long” range distribution,
and were thus repeated 20 times in the overall condition. Thus,
we refer to these displacements as overlapping samples. Subjects
received no additional information about the underlying sample
distribution (Figure 3A).

“Interleaved-ranges, no cue” condition. In the IR-NC condition
the same sample distances of the two distributions were tested as in
the BR-NC condition, however in a interleaved order resulting in
one randomized, non-uniform sample distribution [5, 7, 9, 11, 13,
15, 17, 19] m. All samples were repeated 10 times during the over-
all condition, except the 11 and 13-m distance, which were again
repeated 20 times. As above subjects received no additional infor-
mation about the underlying sample distribution (Figure 3B).

“Interleaved-ranges, cue” condition. In the IR-C condition sam-
ple distances were tested in the exact same order as in the

FIGURE 3 | Overview of the three experimental conditions. Left: time
course of one trial in the distance production-reproduction task. Middle:
distribution and trial sequence for the blocked and interleaved-ranges.
Right: Potential behavioral response. (A) BR-NC condition: the two sample
ranges were tested in a blocked order. In the first half of the trials a range
of “short” displacements was tested, in the second half of the condition a
range of “long” distances was tested. Both ranges were overlapping for
two distances (11 and 13 m) (B) IR-NC condition: The same displacements

as in (A) where tested in the production-reproduction task, but in a
interleaved order resulting in one non-uniform range of randomized sample
displacements. (C) IR-C condition: displacements were tested in the exact
same order as in (B), but each trial started with a symbolic cue that
indicated either a “short” or “long” displacement. No further information
was provided. Depending on the influence of the symbolic cue the
resulting behavior could range between the extreme cases mimicked
in (A,B).
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IR-NC condition based on one non-uniform sample distribution
(Figure 3C). However this time subjects were told that there are
two different types of samples referred to as “short” and “long”
distances and that, in order to improve their performance, they
would receive a written, symbolic cue that indicated which type
the upcoming distance would belong to. No further information
on the meaning of “short” and “long” was provided. At the begin-
ning of each trial the sample distance was assigned on the screen
to belong to one of the two types (“The next test distance will
be short” or “The next test distance will be long”). All distances
ranging from 5 to 9 m and one half of the 11 and 13-m distance
samples were announced as being “short,” all distances ranging
from 15 to 19 m and the other half of the 11 and 13-m distances
were announced as being“long.”Thus the symbolic cue was always
valid, except for distances 11 and 13 m, where the same distance
could either be referred to as “short” or “long.” Consequently, the
separation provided by the symbolic cue is comparable to the two
temporally separate ranges in the BR-NC condition.

DATA ANALYSIS
Participants’ position and orientation within the VR were sampled
at 20 Hz. The reproduced displacement was calculated as the dif-
ference between the position at the time of the button press and
the produced displacement.

To test for differences in the behavior that are due to
the use of the underlying sample range or the written sym-
bolic cue, trials in all three conditions were split into two
groups, the ranges “short” and “long.” For the BR-NC condi-
tion, where the two distributions were tested consecutively, this
was achieved by splitting the trials into two halves (“short”:
trials 1–50; “long”: trials 51–100). In both the IR-NC and
IR-C condition trials were split according to the symbolic
cue (“short” and “long”) given in the IR-C condition. Note
that we also split the IR-NC condition in order to provide a
direct comparison of the same trials with and without sym-
bolic cue.

Differences in the behavioral data for the two ranges can be eas-
ily examined by comparing across those displacements that were
tested in both ranges (11 and 13 m). Thus we refer to the com-
parison of 11 and 13 m between the “short” and “long” range as
“overlapping samples comparison.”

Data analysis was conducted in MATLAB R2010b (Math-
Works). Statistical differences were assessed using repeated-
measures analysis of variance (rm-ANOVA). A probability level
of p < 0.05 was considered significant for all statistical analy-
sis. To assess differences between conditions and ranges we used
rm-ANOVA for the “overlapping samples comparison” with the
within-subjects factors condition (BR-NC, IR-NC, IR-C), range
(“short” vs. “long”) and distance (two distances, 11 and 13 m).
Since the use of the symbolic cue should have an effect not
just on the “overlapping samples,” but also on the whole set
of presented distances, we tested the difference between condi-
tions by a second rm-ANOVA for the mean reproduction error
with the within-subject factors condition (BR-NC, IR-NC, IR-
C) and distance (10 distances, see “Blocked-Ranges, No Cue”
Condition).

MODELING
In our previous study we proposed a model of iterative Bayesian
estimation that explained subjects performance in a distance
production-reproduction task by the incorporation of prior expe-
rience into the estimation process (Petzschner and Glasauer,2011).
This basic iterative model is applied to explain the data for the
two conditions without symbolic cue (BR-NC and IR-NC) in the
present work (Figure 1A). For the symbolic cue condition (IR-C)
the model must be extended to incorporate information that is not
only driven by prior experience but the symbolic cue itself. Impor-
tant for such an extension is the interpretation of the symbolic cue.
Neither the symbolic cue itself nor the experimental instruction
specified (1) the value or range of values in the stimulus dimen-
sion it corresponds to, and (2) the proportion of trials in which
the symbolic cue is actually valid.

As mentioned in the Introduction, we propose two qualitatively
different ideas how the symbolic cue could be interpreted, how the
mapping of the symbolic cue to the stimulus dimension is learned,
and how it is finally integrated into the estimation process. The first
interpretation, referred to as categorical model, assumes that the
symbolic cue C is an indicator for a category A that determines the
distribution from which the target distance T, that is the distance
to be reproduced, is being drawn (Figure 1B). This interpretation
corresponds largely to the categorical model proposed by Feldman
et al. (2009), except that in their model there is no symbolic cue
provided to the observer. The second interpretation, referred to as
cue-combination model, assumes that the target T is drawn from
one single distribution and the symbolic cue C provides additional
evidence about T just like a sensory cue from another modality
(Figure 1C). Thus, this second interpretation leads to a multi-
modal fusion model in which one sensory input S, the stimulus
measurement, is continuous and the other sensory input C, the
symbolic cue, is discrete.

In the following, the two models are described in detail. Each
model has three free parameters, which are explained in the respec-
tive section. We first describe the estimation part that fuses sensory
measurement, symbolic cue, and prior experience. We then sepa-
rately describe the update part that implements a discrete Kalman
Filter as iterative Bayesian algorithm to update cue-related pri-
ors (categorical model) or calibrate likelihoods (cue-combination
model).

The estimation part of the two models is also illustrated in
Figure 4 by displaying how the prior information, the sym-
bolic cue, and the sensory likelihood function are transformed
into a posterior distribution, which determines the reproduced
distance.

We use a mathematical notation where we refer to random vari-
ables with upper case letters (e.g., A,S,T,C), to values for discrete
variables such as cue and category with indexed lower case letters
(e.g., ci), and to values for continuous variables such as the sensory
input with lower case letters (e.g., s). Furthermore, we abbreviate
notations such as P(T,A= ai | S,C) to P(T,ai | S,C).

Categorical model
The categorical model follows Feldman et al. (2009) for the defin-
ition of the distributions. We assume that the target distance T is
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FIGURE 4 | Schematic illustration of the Bayesian fusion in the symbolic
cue models. Only the estimation step is shown, which does not include
updating based on information from previous trials. (A) Categorical model: the
category priors are merged after weighting each prior with the conditional
probability of the respective category given the sensory input and the

symbolic cue. Then the resulting Gaussian mixture distribution (combined
prior) is fused with the stimulus measurement to derive the posterior. (B)
Cue-combination model: first the stimulus likelihood and the likelihood
corresponding to the current symbolic cue signal are fused. Then this fused
signal (cue+ stimulus) is combined with the prior, yielding the posterior.

drawn from a normally distributed category

T |A ∼ N
(
µA , σ2

A

)
(1)

and that categories A= ai have individual means µai , but share
the same variance σ2

A . Our generative model assumes that cate-
gories ai themselves are drawn uniformly from one of n possible
categories (n= 2 in the present experiment, see Figure 4 top
left). Due to measurement noise, T cannot be sensed directly,
but only the noisy measurement S with the conditional Gaussian
distribution

S|T ∼ N
(
T , σ2

S

)
. (2)

In addition to the direct stimulus measurement S, participants
are presented with a symbolic cue value cj, which provides infor-
mation about the underlying category. Nevertheless there is some
uncertainty associated with the symbolic cue. Accordingly the
cue reliability, that is, the probability of the correct symbolic cue
value being presented, given a certain category aj, is specified as
pC= P(cj | aj) and assumed to be constant over trials. Accordingly
the probability of being presented with a wrong symbolic cue out
of n−1 remaining cues, is

P
(
cj |ai

)
=

1− pC

n − 1
. (3)

To reproduce the target distance T, we are interested in the pos-
terior distribution P(T | S,C). To infer this posterior distribution,

we first calculate the probability P(T,A | S,C), which can be
derived by applying Bayes’ law to the complete joint distribution
P(T,A,S,C), and then marginalize over the category A:

P (T |S, C) =

n∑
i

P (T , ai |S, C) . (4)

We show in the Appendix that, with the conditional depen-
dency assumptions for this model (see Figure 1B), we can rewrite
the posterior as

P (T |S, C) =

n∑
i

P (T |S, ai) · P (ai |S, C). (5)

The category-dependent posteriors P(T | S,ai), which now are
independent of the symbolic cue C, are weighted by the poste-
rior probabilities P(ai | S,C) of the categories given stimulus S and
symbolic cue C.

To infer the target distance we compute the mean of the poste-
rior P(T | S,C). Analogous to the equation above, the mean of the
posterior can be computed as weighted sum of conditional expec-
tations of the category-dependent posteriors, where the weights
are again the posteriors of the categories.

E
[
T |s, cj

]
=

n∑
i

P
(
ai |s, cj

)
E [T |s, ai]. (6)
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We show in the Appendix that this can be reformulated as

E
[
T |s, cj

]
= wms + (1− wm)

n∑
i

P
(
ai |s, cj

)
· µai . (7)

That is, a weighted sum of the category means µai forms the
mean of a Gaussian mixture distribution (see Figure 4A middle),
and this mean is summed with measurement s weighted by wm.
The measurement weight wm is determined by the measurement
and category variances:

wm =
σ2

A

σ2
A + σ2

S

1− wm =
σ2

S

σ2
A + σ2

S

. (8)

Thus, wm is solely determined by the ratio σ2
A/σ2

S , which is one
of the free parameters of the model. In the Appendix we show that
the posteriors of the categories can be rewritten to

P
(
ai |s, cj

)
= P

(
cj |ai

)
· αi,j (s) (9)

and thus depend on cue reliability and a measurement-dependent
factor αi,j(s):

αi,j (s) =
P (s|ai)

pCP
(
s|aj

)
+

1−pC
n−1

n∑
k 6=j

P (s|ak)

. (10)

Here we exploit the specific form of the cue reliability and
assume the categories to be uniformly distributed. The margin-
alization over T results in a normal distribution P(S | A) with

S|A ∼ N
(
µA , σ2

S + σ2
A

)
. (11)

Applying the assumption for the cue reliability to the posterior
expectation, we finally have

E
[
T |s, cj

]
= wms + (1− wm)

×

pC · αj ,j (s) · µaj +
1− pC

n − 1

n∑
i 6=j

αi,j (s) ·µai

 .

(12)

The term within the large brackets is composed of the mean
of the correct category weighted by the cue reliability and the
weighted sum of all other category means.

The effect of this weighting is to select or suppress the correct
category, depending on the cue reliability parameter pC. The lat-
ter would correspond to a deliberately misleading symbolic cue.
Furthermore, the influence of the symbolic cue is balanced by the
probability of the measurement depending on the category, which
appears in αi,j(s).

In Feldman et al. (2009), the symbolic cue indicating the cate-
gory is not provided, which corresponds to an uninformative sym-
bolic cue. We can reflect this in our model by setting P(cj | ai)= 1/n

for any i,j. We show in the Appendix that this indeed removes the
dependency of the category posterior on the symbolic cue,yielding

E [T |s] = wms + (1− wm)

n∑
i

P (ai |s) ·µai . (13)

This corresponds to Eqs 10 and 11 in Feldman et al. (2009) for
equal category variance.

The posterior of T is a Gaussian mixture distribution, whose
mean is not necessarily equal to its mode. However, the Gauss-
ian measurement likelihood typically dominates the posterior,
because its variance is small compared to the combined variance
of the prior distributions corresponding to the categories. This
yields a near Gaussian posterior as illustrated in Figure 4.

Cue-combination model
Instead of assuming that the symbolic cue signifies a category of
sensory stimuli, it can also be conceived as providing additional
information about the location of the stimulus in the sensory
dimension. Under this assumption, the target distance T is drawn
from a single distribution

T ∼ N
(
µT , σ2

T

)
(14)

with the stimulus S being a noisy reading of T

S|T ∼ N
(
T , σ2

S

)
. (15)

The intuition behind the cue-combination model is that the
same mechanism of multi-modal sensory fusion (e.g., Ernst and
Banks, 2002), which the brain might use to combine different
sensory modalities, is used to merge sensory and symbolic infor-
mation. From an observer point of view, this requires an inference
mechanism that maps the symbolic cue C to a continuous cue
signal Cmp. We call this signal the mapped cue. This signal is
then merged with the sensory signal S and prior T in the usual
Bayesian fashion. From a generative point of view, this inference
inverts the causal relationships assumed for the outside world (see
Figure 1C). In particular, Cmp is discretized by a step function to
yield C. Our update mechanism, described further below, learns
to map each cue value ci to a cue signal value cmp that falls into
the corresponding range. This corresponds to learning the thresh-
olds of the step function. This mapping is deterministic, thus the
cue signal becomes a known quantity, similar to actual observa-
tions. We can therefore derive the estimation step using Cmp only,
leaving out C.

The cue signal Cmp has a likelihood function that corresponds
to the average location and dispersion associated with the symbolic
cue (see Figure 4B)

Cmp|T ∼ N
(
µC (T ) , σ2

C

)
. (16)

Note that Cmp depends on T in a more complex way than S,
reflected by the non-linear mapping µC(T ) We treat the cue sig-
nal Cmp the same way as the observation S. The mapping of the
symbolic cue to the cue signal depends on the value of C and is
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updated iteratively. This updating can be understood as learning
or calibration of the symbolic cue values (see Iterative update).

The optimal estimate of the target distance T is provided by a
sensory fusion of the stimulus, the cue signal, and the prior

P
(
T |S, Cmp

)
∝ P (S|T ) · P

(
Cmp|T

)
· P (T ) . (17)

With wm as weight for the measurement s and w fu as weight for
the fused signal composed of mapped cue cmp and measurement
s, the mean for the posterior is computed as follows:

E
[
T |s, cmp

]
= (1− wfu) · µT + wfu ·

(
(1− wm) · cmp + wm · s

)
.

(18)

The weights w fu and wm result from the variances of target,
stimulus, and symbolic cue:

wfu =
σ2

T

σ2
T + σ2

CS

wm =
σ2

C

σ2
S + σ2

C

. (19)

The combined variance σ2
CS of symbolic cue and stimulus is

σ2
CS =

σ2
Cσ2

S

σ2
C + σ2

S

. (20)

Note that in the indicies we wrote C instead of Cmp for brevity.
A more detailed derivation of the expectation of the posterior is
provided in the Appendix. In short, since prior, combined likeli-
hood, and their product are Gaussians, the mean of the posterior
is given by a weighted sum of prior mean and the weighted sum
of mapped cue and measurement (see Figure 4 right).

Iterative update
Prior experience as well as cue mapping are not available at the
start of the experiment but need to be acquired and updated over
the course of the trials. Such updating on a trial by trial basis can
be achieved by a discrete Kalman filter updating internal states at
each time step. In our case, the states correspond to the means of
the two categories in case of the categorical model, to the means of
the two symbolic cue likelihoods for the cue-combination model,
and to the distance prior in case of the previously published basic
iterative model (see Petzschner and Glasauer, 2011).

In both models, the symbolic cue is used to decide which cate-
gory mean will be updated or which symbolic cue likelihood will
be learned. The updating of the category means is an extension
of our basic iterative model from one single category to multiple
categories (see also Feldman et al., 2009). The iterative updating
of the mean of the symbolic cue likelihood can be interpreted as
learning the non-linear mapping of the symbolic cue to the stim-
ulus dimension or as calibration of the symbolic cue in terms of a
distance.

For Gaussian noise and linear dynamics, the Kalman filter yields
an estimate of the current state. The current state is estimated
based on the current observation and the estimate of the state at

the previous time step, taking into account a deterministic tempo-
ral evolution of the state. The state x to be updated and the current
measurement y at trial i are described by the system equations

xi = xi−1 + nq

yi = xi + nr .
(21)

The random variables nq and nr represent the process and mea-
surement noise, which are assumed to be independent with Gauss-
ian probability distributions P(nq)≈N (0, q) and P(nr)≈N (0, r).
The temporal evolution of the state x defined by these equations
can be seen as a random walk governed by the process noise. The
measurement y is a noisy version of x.

For such a simple system, it can be shown that the difference
equation system of the Kalman filter reduces to

ki =
pi−1 + q

pi−1 + q + r

pi = ki · r

x̂i = (1− ki) · x̂i−1 + ki · yi

(22)

with ki being the Kalman gain, x̂i−1 and x̂i being the a priori and
a posteriori estimate of the state (e.g., a category mean) at trial i,
and pi−1 the corresponding variance of that quantity. Note that it
is evident from this equation that the Kalman gain ki can be inter-
preted as weight of the measurement depending on measurement
noise and the assumed random change of the estimated quantity,
such as a category mean. The new estimate is thus a weighted sum
of the previous estimate and the current measurement.

The update for the categorical model employs a Kalman filter
for each category mean to be estimated, yielding equations indexed
by j :

µaj ,i =

(
1− k

j
i

)
· µaj ,i−1 + k

j
i · si . (23)

For two categories we consequently have two Kalman filters,
one for each category mean. The variances σ2

A and σ2
S correspond

to quantities pi and r, respectively. Note that the ratio of the two
variances only depends on the ratio q/r, which is one of the free
model parameters.

The cue-combination model uses three Kalman filters to cal-
ibrate the two symbolic cue likelihoods and to update the prior
for the target distance T using the same general form of update
equations as described above.

c
j
mp,i =

(
1− k

j
i

)
· c

j
mp,i−1 + k

j
i · si (24)

µT ,i =

(
1− kT

i

)
· µT ,i−1 + kT

i · si . (25)

The calibration of the symbolic cue likelihoods yields the
mapped cues used in the estimation.

Logarithmic stimulus representation
There is some indication that magnitudes are internally repre-
sented in the brain on a log-scale (Fechner, 1860; Dehaene, 2003;
Jürgens and Becker, 2006; Stocker and Simoncelli, 2006; Durgin
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et al., 2009). In Petzschner and Glasauer (2011) we showed that
defining a Bayes-optimal observer on log-scales leads to an elegant
combination of Steven’s power law with the Weber–Fechner law
(Fechner, 1860; Stevens, 1961). The estimates in our models in the
present work are again computed based on simplified logarith-
mic representations of the presented stimuli. In conjunction with
that stands an additional parameter that can represent different
optimal decision strategies in subjects. We shortly recap the idea
here and refer to Petzschner and Glasauer (2011) for a detailed
treatment. The logarithmic representation is given as

s = ln

(
dm

d0

)
+ nm. (26)

The internal representation of the measurement s is computed
as the natural logarithm of the measurement on linear scales, dm.
In the present work, dm is given in virtual meters. To achieve
a unit-less representation, dm is normalized with the small con-
stant d0� 1. The random variable nm represents the normally
distributed measurement noise P(nm) ≈ N (0, σ2

S).
The estimate xest, corresponding to E[T | s,cj] for the categor-

ical model and E[T | s,cmp] for the cue-combination model, is a
log-scale value. It is transformed back to a linear scale with

dr = exest+∆x
· d0. (27)

The result is the linear scale reproduction dr in virtual meters.
We assume here that, apart from this transformation and possibly
additional noise, the reproduction in subjects corresponds to the
estimate.

The value ∆x accounts for different decision strategies of the
subjects. A decision strategy collapses the posterior distribution
into a single value, the estimate, which is optimal in the sense
that it minimizes the expected loss due to the deviation from
the real value (the real distance in our case). Typical decision
strategies use the mean, median, or mode of a distribution as
optimal (loss-minimal) estimate, which correspond to three typi-
cal loss functions (Körding and Wolpert, 2004). While these values
are equal for normal distributions, they are different in our case,
since the normal distribution transfers into a log-normal distrib-
ution after back-transformation. For the log-normal distribution
mean, median, and mode differ by a linear shift of xest. Therefore,
by introducing an additional parameter ∆x in our models, we
account for different types of loss functions. We call this parameter
the shift term.

Model fit
To analyze how well our models explain the experimental results,
we fitted their free parameters such that the difference between
model output and subject responses was minimized.

The free parameters in the categorical model are the cue relia-
bility pC, the ratio σ2

A/σ2
S of the noise in the target distances and

the measurement noise, and the shift term ∆x reflecting the loss
function of the Bayesian estimator. The ratio σ2

A/σ2
S determines

the weight of the measurement wm relative to the category priors.
This weighting schema reflects how subjects may put more weight
on whichever quantity has less variance.

The free parameters of the cue-combination model are the shift
term ∆x and two ratios. The first is the ratio of target distance
noise to the combined noise in measurement and continuous cue
signal, σ2

T /σ2
S . The second is the ratio of the noise in the cue signal

to the measurement noise, σ2
C/σ2

S . Analogous to the categorical
model, these ratios determine the relative weights w fu and wm,
respectively. The first is the weight of the combined measurement
and cue signal relative to the prior, the second the measurement
weight relative to the cue signal.

The basic iterative model has two free parameters, the shift term
∆x and the ratio of target distance noise to measurement noise,
σ2

T /σ2
S . This ratio determines the measurement weight wm of this

model.
For the IR-C condition we fitted the category and cue-

combination models to the responses of each single subject. That
is, for each subject two sets of parameters were generated, corre-
sponding to the two models. For the other two conditions, our
models reduce to the iterative Bayesian estimation model (Pet-
zschner and Glasauer, 2011), which we fitted in these cases. All
models were fitted by minimizing the squared differences of model
output and subject response in each trial using the Matlab function
lsqnonlin.

The correct order of sample displacements over all trials in one
condition was used as input to the models. Kalman filters in the
models were initialized with the first observation, that is the first
produced distance of the subject in the given condition.

To assess the precision of the fitted parameters, we estimated
95% confidence intervals of all parameters that were determined
from the Jacobian of the parameter surface at the minimum using
the Matlab function nlparci.

Model comparison
We compared the models’ goodness of fit by comparing their
coefficients of determination R2. The coefficient of determina-
tion assesses the proportion of variability in the mean data that
is accounted for by the respective model. To test for a significant
difference in the R2 of the two model fits across subjects we used
the non-parametric Wilcoxon signed rank test (Matlab procedure
signrank).

RESULTS
BEHAVIORAL DATA
In order to test the effect of an additional symbolic cue on the
estimation of distances we used three experimental conditions.
One condition tested the cue influence directly (IR-C condition)
while the other two served as reference conditions for the extreme
cases of the cue effect, i.e., ignoring the cue (IR-NC) or using the
symbolic cue as perfectly reliable indicator for the stimulus range
(BR-NC). The average results of all three conditions are presented
in Figure 5 (left side).

Differences between conditions can be assessed by compar-
ing the estimation of overlapping samples, that is, displacements
that were assigned to the “short” as well as to the “long” distribu-
tion. However, assigning distances to a short or long range should
not only affect the overlapping distances, but the estimation and
consequently the reproduction errors for all distances presented.
Condition-dependent differences in distance reproduction should
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occur either due to the influence of short-term prior experience
or induced by the symbolic cue.

Comparison of distance errors
The comparison of the distance reproduction error shows a
main effect of distance [F(9,38)= 136.2, p < 0.0001] together

FIGURE 5 | Group mean of all subjects (left) and respective model
predictions (right). The group mean corresponds to the mean taken over
all subjects for the whole trial sequence. Models were accordingly fitted to
the resulting “mean trial sequence.” The rows (A–C) show the results for
the three conditions BR-NC, IR-NC, and IR-C respectively. The IR-NC and
BR-NC were fitted with the basic iterative model introduced in Petzschner
and Glasauer (2011). Predictions for the cue condition IR-C were generated
with the categorical as well as cue-combination model. Error bars depict
the standard deviation of the reproduced distances across trials.

with a highly significant interaction of condition and distance
[F(18,342)= 3.45, p < 0.0001]. This interaction is due to a clear
separation of error patterns between conditions, which can be seen
in Figure 6 where the differences between errors in the interleaved
condition (IR-NC) to the other two conditions are shown. Note
that in both conditions where the ranges were separated either
temporally (BR-NC) or by the symbolic cue (IR-C), the errors in
the low range correspond on average to overshoots,while the errors
in the high range correspond to undershoots with respect to those
in the interleaved condition without cue (IR-NC). This correspon-
dence of error patterns also confirms that the symbolic cue causes
changes in distance estimation analogous to those found during
temporal dissociation of the two ranges. However the effect in the
IR-C condition is not as strong as in the BR-NC condition. Sep-
arate post hoc rm-ANOVAS with only two conditions shows that
for IR-C versus BR-NC this interaction vanishes [F(9,171)= 1.82,
p= 0.068 n.s.], while it remains highly significant for IR-C and
IR-NC [F(9,171)= 3.36, p= 0.0008]. Thus, while in IR-C and IR-
NC all distance stimuli were the same in magnitude and order,
the reproduced distances are clearly different, which shows that
the symbolic cue was used by the subjects in a way very similar to
exploiting the temporal separation of the two ranges in the BR-NC
condition.

Overlapping samples
The results for the whole range of distances are also supported
by the overlapping samples comparison, which reveals a signif-
icant interaction of condition× range (short/long) for all exper-
imental conditions [F(2,38)= 11.9, p= 0.0001]. This implies a
significant difference in the estimation of the two overlapping
distances depending on the experimental condition (see also,
Figure 5).

Separate ANOVAS with only two conditions revealed the indi-
vidual relationships between the conditions. Differences in sub-
jects’ behavior based solely on temporal order were determined
based on the comparison of the IR-NC and BR-NC condi-
tions (for a detailed description, see Materials and Methods).

FIGURE 6 | Mean behavioral differences between conditions. (A)
Difference between the IR-NC and the BR-NC conditions for the mean
reproduced distances. (B) Difference between the IR-NC and the IR-C

conditions for mean reproduced distances. The only difference between the
two conditions was the symbolic cue. Colors code the “short” and “long”
range of displacements respectively.
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In analogy with previous results, we find a significant interac-
tion of condition× range in the overlapping samples compar-
ison [F(1,19)= 26.5, p < 0.001], which confirms that temporal
order affects distance reproduction. By testing for the interaction
between the IR-C and IR-NC condition, we assessed exclusively
cue-based differences in subjects’ behavior. Again we find a sig-
nificant condition× range interaction for the overlapping samples
comparison [F(1,19)= 8.8, p < 0.01]. To compare performance
when the sample ranges were either separated by time or sym-
bolic cue, we performed an rm-ANOVA for the IR-C and BR-NC
condition. In this case we find no significant difference between
conditions in the overlapping samples comparison [interaction:
condition× range; F(1,19)= 3.6, p > 0.05 n.s]. Thus, as found
above, the symbolic cue leads to a behavior that resembles the per-
formance exhibited for presenting the stimuli in ranges separated
by time as in the BR-NC condition.

The post hoc analysis of the individual conditions supports
the results of the condition comparison. The rm-ANOVA of
the overlapping samples comparison reveals a significant differ-
ence for the estimation of the overlapping samples comparison
in the BR-NC condition [main effect: range (“short” vs. “long”)
F(1,19)= 25.7,p < 0.001] but no significant difference of the over-
lapping samples comparison in the IR-NC condition where no
separation between the ranges was provided [main effect: range
(“short” vs. “long”) F(1,19)= 1.3, p > 0.05]. Finally, the sym-
bolic cue in the IR-C condition caused a significant difference
in behavior based on the assigned range [overlapping samples
comparison: main effect: range (“short” vs. “long”); F(1,19)= 9.3,
p < 0.01].

MODELING
Our results show that the symbolic cue significantly affects the
reproduction of the stimuli in a way that is more similar to the
behavior in the BR-NC condition than to the one in the IR-C
condition. This raises the question how the knowledge about the
symbolic cue is incorporated into the estimation process. We com-
pare our two models by fitting them to the responses of each single
subject and also to the mean responses over all subjects computed
for the overall time course of trials, which we refer to as “group
mean.” Figure 5 depicts this group mean and the group mean fits
of our models.

Categorical model for condition IR-C
The categorical model assumes that the target distances presented
in each trial stem from one of two categories, and that the sym-
bolic cue informs about the given category in that trial. The
three free parameters of this model, the cue reliability, the mea-
surement weight, and the shift term, were estimated by a least
squared fit (group mean fit, R2

= 0.92: pC= 0.74, CI95%= [0.70
0.78]; wm= 0.33; ∆x =−0.04, CI95%= [−0.05 −0.03]; individ-
ual participants fit: pC = 0.76 ± 0.13, range = [0.57 1.00];
wm = 0.32 ± 0.11, range = [0.06 0.48]; ∆x = −0.06 ± 0.19,
range = [−0.67 0.26]). The shift terms were not normally distrib-
uted over all subjects (Lillifors test, p= 0.02). Yet they show a
unimodal distribution with a peak close to the shift correspond-
ing to choosing the median of the posterior distribution as an
estimate.

Cue-combination model for condition IR-C
In contrast to the categorical model, the cue-combination model
assumes that target distances are drawn from one underlying
distribution and treats the symbolic cue as a second sensory
input to the system. Its three free parameters are the measure-
ment weight, the fusion weight, and the shift term. Analogous to
the categorical model they were fit using a least squares method
(group mean fit, R2

= 0.91: wm= 0.38; w fu= 0.55; ∆x =−0.05,
CI95%= [−0.07 −0.03]; individual participants fit: wm = 0.39±
0.10, range = [0.18 0.50]; wfu = 0.54 ± 0.16, range = [0.25 0.81];
∆x =−0.07± 0.19, range = [−0.67 0.25]). As in the case of the
categorical model, shift terms fitted for the cue-combination
model were not normally distributed over all subjects (Lillifors
test, p= 0.03), yet showed a unimodal distribution with a peak
near the shift corresponding to the median.

Basic iterative model for conditions IR-NC and BR-NC
If the symbolic cue is abandoned, the two new models reduce
to the basic iterative model. For comparison, we fitted this
model on the two non-cue conditions IR-NC and BR-NC. The
model has two free parameters, which have been fitted for each
of these two conditions individually (IR-NC group mean fit:
wm= 0.33; ∆x =−0.05, CI95%= [−0.07 −0.03]; IR-NC indi-
vidual participants fit: wm = 0.33 ± 0.13, range = [0.03 0.48];
∆x = −0.07 ± 0.22, range = [−0.67 0.37]; BR-NC group mean
fit: wm= 0.34; ∆x =−0.04, CI95%= [−0.06−0.02]; BR-NC indi-
vidual participants fit: wm = 0.33 ± 0.09, range = [0.14 0.49];
∆x = −0.04± 0.12, range = [−0.29 0.26]).

Model comparison
To compare the categorical and cue-combination model, we com-
puted R2 values for individual participant fits (see Figure 7)

in the IR-C condition (categorical model: R2 = 0.54 ± 0.15,

range = [0.31 0.88]; cue-combination model: R2 = 0.54 ± 0.15,
range = [0.24 0.88]) as well as for the group mean fits (categori-
cal model: R2

= 0.92; cue-combination model: R2
= 0.91). In the

other two conditions without a symbolic cue, our existing Bayesian
estimator model shows similar goodness of the individual partic-

ipant fits (IR-NC: R2 = 0.45± 0.18, range = [0.05 0.72]; BR-NC:

R2 = 0.51± 0.27, range = [−0.40 0.85]). And as in the IR-C con-
dition the group mean fit turns out to be better (IR-NC: R2

= 0.87;
BR-NC: R2

= 0.88) than the individual estimates.
In comparing the goodness of fit of the categorical and the

cue-combination model (non-parametric Wilcoxon signed rank
test), no significant difference between the two models could be
found (p > 0.45). We also tested whether the small differences of
the subject-by-subject R2 values that can be seen in Figure 7 are
related to the subjects’ response biases and variances. However, we
could not find any significant correlations (Spearman ranks test,
p > 0.13).

DISCUSSION
The context in which a stimulus occurs can contain additional rel-
evant information about the stimulus itself. It is thus advantageous
to combine all types of available information, in order to use the
composite as an estimate of the stimulus. Here we demonstrate
that this fusion of information takes place in distance estimation
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FIGURE 7 | Model Comparison. Bar plot of individual R2 values of the model fit for the categorical (gray) and cue-combination model (black) to each subjects’
behavior (1–20) in the IR-C condition. A comparison of the goodness of fit of the categorical and the cue-combination model revealed no significant difference
between the two models.

by path integration, where subjects incorporated prior experience
and abstract information provided by a symbolic cue into their
current estimate of displacement. We proposed two generative
Bayesian models that describe this fusion of information based on
two distinct assumptions – categorization and cue-combination.

CUE-BASED RANGE AND REGRESSION EFFECTS
The influence of the symbolic cue on distance estimation behavior
was assessed by comparing the cue condition (IR-C) to two ref-
erence conditions. Both mimicked the two possible extreme cases
of cue usage. The no cue condition BR-NC tested two overlapping
ranges of stimuli that were blocked in time, in order to change the
respective prior experience of subjects and mimicked the case in
which the pre-cueing by the words “short” or “long” would lead to
a full separation of stimuli into two groups of events or categories.
The IR-NC condition combined these two ranges to a single dis-
tribution of distances. The order and magnitude of stimuli was
exactly the same as in the IR-C condition, thus replicating the
cue condition for the case where the symbolic cue would be fully
ignored.

In all three experimental conditions we observed a tendency to
bias toward certain displacements, also referred to as regression
effect (Hollingworth, 1910). In the no-cue conditions BR-NC and
IR-NC the bias depended on the respective underlying sample
distribution and could be explained by incorporation of short-
term prior experience into the current estimate of displacements,
as shown in our previous study (Petzschner and Glasauer, 2011).
The behavior in the cue condition IR-C did not resemble that of
the IR-NC condition although the order and size of sample dis-
placements was the same. It was rather reflecting the behavior
observed for two distinct sample ranges in the BR-NC condition,
even though the effect was smaller.

Thus, the bias in the cue condition cannot be explained exclu-
sively by the use of prior experience. This led to the question of
how the additional symbolic cue information is processed. One
possible explanation comes from the studies on categorization
effects (Huttenlocher et al., 1991; Cheng et al., 2010). If there is
uncertainty in the stimulus metric, then information about stim-
ulus categories can be incorporated into the estimation process

(Huttenlocher et al., 1991; Feldman et al., 2009). In our case, the
symbolic cue could cause a sorting of stimuli into categories such
that the expectation about the upcoming stimulus varies depend-
ing on whether subjects assume the stimulus to be drawn from
the “short” or “long” category. We elaborated on this idea in the
categorical model.

Another possible explanation, which we pursued in our cue-
combination model, comes from a different field of research –
multi-modal sensory cue-combination (Ernst and Banks, 2002;
Ernst and Bülthoff,2004). Similar to our findings,von Hopffgarten
and Bremmer (2011) showed in a recent study on self-motion
reproduction that subjects are capable of learning an abstract
relationship between a novel cue and the stimulus and exploit
that information to improve their performance. In their study,
the frequency of a simultaneous auditory signal indicated move-
ment speed and was used by the subjects to improve self-motion
reproduction. Their study provides evidence that subjects learned
the initially unknown frequency-velocity mapping provided by
the auditory cue, comparable to the mapping of the symbolic
cue to distance in our present experiment. Von Hopffgarten and
Bremmer argued that the observed behavior could be interpreted
by “sensory combination” (Ernst and Bülthoff, 2004), where the
auditory input served as an additional, non-redundant cue.

CATEGORICAL MODEL
The categorical model is based on the assumption that the stim-
ulus comes from one of two distinct, but perhaps overlapping,
categories of stimuli, each represented by its own probability dis-
tribution (Feldman et al., 2009). Accordingly the symbolic cue
provides information about the respective category. The order of
events in this generative model is as follows (Figure 1B): (1) the
category is chosen, (2) the information about the category is pro-
vided as symbolic cue, and (3) the stimulus is drawn from the
distribution corresponding to the category. Note that the symbolic
cue does not necessarily provide reliable information about the
category. Hence, the prediction of the symbolic cue for a respective
category is not always correct. The model represents this uncer-
tainty with a trial-independent probability that we refer to as cue
reliability.
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Since the categories are unknown, they have to be learned from
the symbolic cue values (“short” and “long” in the present exper-
iment) and the stimulus presentation. Note that the semantic
interpretation of the cue values is not sufficient to determine the
categories, since the cue values do not specify the ranges; they
only denote an order within the presented stimuli, i.e., that a
“short” distance probably is shorter than a “long” one. Learning is
achieved by iterative Bayesian estimation analogous to Petzschner
and Glasauer (2011). Our categorical model is thus an extension of
the model of Feldman et al. (2009) to explain the so-called percep-
tual magnet effect in speech perception. In contrast to their model,
where no pre-cueing was done and the categories were assumed to
be fixed, our model provides the symbolic cue values as additional
uncertain information about the category and allows learning of
the category means during the course of the experiment. The vari-
ance of the prior distributions could also be learned during the
experiment (Berniker et al., 2010). However, in the present study
we assume that it is, apart from an initialization phase, constant
throughout the experiment. For other categorization tasks, such
as understanding of speech, it has been proposed that the learning
of weighting of acoustic cues for categorization might take place
during development (Toscano and McMurray, 2010).

The combination of categorical information with the measured
stimulus value was also proposed in a model by Huttenlocher et al.
(1991) for estimating spatial location. In their model categorical
information is used in two distinct ways. First the remembered
stimulus measurement is weighted with categorical prototype
information and second the resulting estimates are constrained
to fall within the category boundaries. In our model estimates
are not artificially restricted to certain boundaries, even though
the weighting with the learned mean of the respective category
will bias them toward this mean. Hence, our estimation process
explains the tendency to bias toward the category means, which is
reported in a variety of psychophysical studies. This central ten-
dency bias, schema, or range effect, causes a tendency of estimates
to be biased toward the category they where assigned to (Holling-
worth, 1910; Johnson and Vickers, 1987; Cheng et al., 2010).

The category model can be extended to an arbitrary number of
categories. However, introducing new categories or new cue val-
ues during the experiment would not only require learning of that
category, but also re-computing of the relative weights of the other
categories. In other words, a new category or new cue value should
directly affect the other categories.

In the present work the number of categories is predefined and
given by the number of cue values, but under many other circum-
stances this is not the case. Recent work (e.g., Lucas and Griffiths,
2010) addresses the question of how we determine the number of
categories in the context of learning of causal structures. While this
is not required in the present study, our cue-combination model,
which is independent of the number of cues, may well be capa-
ble of dynamically adapting to new cue values added during the
course of the experiment. This could be considered as a weaker
form of structural learning.

CUE-COMBINATION MODEL
In contrast to the categorical model, the cue-combination model
assumes that the stimulus comes from one continuous range of

stimuli and the pre-cueing provides additional evidence about
where in this range the current stimulus can be found. This idea is
similar to common models in sensory cue-combination, where
the sensory inputs from a common source are fused in order
to build a unified percept of its origin (Ernst and Banks, 2002;
Körding et al., 2007). In terms of a generative model, the order of
events in the cue-combination model is as follows (Figure 1C): (1)
the stimulus is drawn from the underlying distribution, and (2)
the symbolic cue is determined from this stimulus by some map-
ping. In our current implementation, this mapping is assumed
to be probabilistic. Therefore, a large stimulus is assumed to
cause the respective symbolic cue value in most of the cases,
but at some occasions it can also lead to the other cue value.
Since the mapping between stimulus and cue value is not pre-
specified, it has to be learned over the course of the experiment.
This is achieved by iteratively adapting the mean of the likeli-
hood function associated to each symbolic cue value. In addition
to the unknown mapping, the underlying stimulus distribution
is learned during the experiment (as in Petzschner and Glasauer,
2011).

A more intuitive explanation of the cue-combination model
is provided from the observer point of view. Given the stimu-
lus and an additional corresponding cue one aims to combine
these two sources of information in an optimal manner. This
would require that the cue can be related to a certain displace-
ment value. This can be achieved by learning the relation between
the current stimulus distance and the respective cue on a trial
by trial basis. We refer to this process as mapping in the present
model.

The mapping of the symbolic cue values to the stimulus dimen-
sion does not require knowledge about the possible number of
cue values. Rather, the adaptation is similar to cue calibration, e.g.,
learning the transformation between one stimulus dimension and
another (Burge et al., 2010; Zaidel et al., 2011). Thus, in contrast
to the category model, adding another symbolic cue value during
the experiment would not require a change in the mapping of the
previously presented cues. This makes the model more flexible to
changes than the categorical model.

MODEL COMPARISON
Interestingly, the results of the categorical and cue-combination
model are very similar, although the underlying assumptions are
substantially different. The categorical model is based on an intu-
itive assumption about how the stimuli presented to the subjects
are generated: it assumes that there are two distinct categories,
from which the stimuli are drawn. This corresponds, for example,
to the categories in speech production, where a certain syllable
is produced or understood based on a distinct category. The cue-
combination model does not assume such an underlying structure,
but rather treats the symbolic cue as additional modality. Conse-
quently, the cue-combination model is more flexible to changes
in cueing while, at least for our experiment, being equally power-
ful in explaining the data compared to the categorical model. The
main reason for the similar performance of both models is, apart
from the experimental setting, the iterative updating of the“mean-
ing” associated with the symbolic cue, which leads to very similar
sources of information regarding the range of stimuli denoted by
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the cues. This information is, in both models, weighted by reliabil-
ity either in form of a variance associated with the symbolic cue or
a probability that the symbolic cue is accurate. Thus, both models
can fairly well describe the behavior observed in our experiments:
our participants used the symbolic cue, they were able to associate
them with the stimulus magnitude, but they did not completely
trust them, as evidenced by the difference between the IR-C and
BR-NC conditions.

Similarly, both models would also have performed equally well
in predicting the two outcomes of cue usage mimicked in the IR-
NC and BR-NC condition (Figure 3). If the information provided
by the cue would not be incorporated into the estimate of the
displacements this would have resulted in a cue weighting close
to zero reflected by either a cue reliability that is close to 0.5 in
the categorical model or a very high cue variability in the cue-
combination model. An extreme cue usage, as mimicked by the
BR-NC condition, would have an opposite effect on the respective
parameters.

This raises the question under which circumstances the two
models would make different predictions. One major difference
between the two estimation processes lies in the different means
of incorporating prior knowledge. Consider Figures 4A,B. While
the categorical model uses a combined prior that is driven by
the occurrence of all respective cues, the cue-combination incor-
porates a global prior that only depends on short-term prior
experience of the stimuli independently of the corresponding cues.
We used the parameters derived from the fit of the experimental
data in this paper to test how these differences could lead to dif-
fering predictions of the cue-combination model and categorical
model under specific circumstances.

Imagine the case where the two ranges are clearly separated.
Due to the influence of the experience driven prior the cue-
combination model would be biased by the full range of all
displacements causing a global underestimation in the high range
and an overestimation of the short range of stimuli. In contrary,
the combined prior in the categorical model would show two dis-
crete peaks at the center of the respective categories and thus lead
to an estimate that is, for both ranges, centered closer to the single
category means. However, this strong bias in the cue-combination
model would only become evident if we assume a constant vari-
ance of the prior. If the variance of the prior is also updated on
a trial by trial basis (Berniker et al., 2010; Verstynen and Sabes,
2011), both models would again become similar.

Yet another case in which both models differ should become
obvious when omitting the cue in some catch trials. The cue-
combination model would then reduce to the basic model and rely
on the global unimodal prior, thus resulting in a global tendency
to the mean (Petzschner and Glasauer, 2011). In contrast, the cat-
egorical model works with two prior distributions even when the
cue is missing. In that case, our categorical model reduces to the
category model of Feldman et al. (2009) and would exhibit the
perceptual magnet effect, which biases the reproduction toward
the category means.

Another difference should be observable in cases where the
presentation of the cue and stimulus is not fully randomized.
Consider a case where the “long” cue is repeatedly presented in
a block with a long displacement. The cue-combination model

would show a quick adaption of the global prior to these long
displacements, which would result in reproduction values biased
toward the long displacements. The categorical model would pre-
dict a much weaker adaption to the block as it still incorporates
all potential cues, the long as well as the short ones. In that respect
the categorical model seems to have a longer memory and less
flexibility for fast changes.

Finally, both models become mathematically equivalent for a
specific parameter combination. This is the case if the variance
of the global prior in the cue-combination model becomes large
enough and the cue reliability in the categorical model is set to
unity. That is, for the categorical model we have to set pC= 1 in
Eqs 10 and 12. For the cue-combination model, we set σ2

T = ∞ in
Eq. 20 so that w fu= 1. Then the conditional expectations for both
models (Eqs 12 and 19) become equivalent.

ITERATIVE LEARNING AND CALIBRATION
The no cue conditions demonstrated that subjects incorporated
knowledge about the stimulus history into their current estimate
of displacement. We model this iterative learning of prior knowl-
edge by a discrete Kalman filter. In our previous work we showed
that this online update of prior experience explains small varia-
tion in the data that a fixed prior could not account for (Petzschner
and Glasauer, 2011). That humans are indeed capable of learning
not only the mean but also the variance of an experience driven
prior distribution was also recently shown (Berniker et al., 2010;
Verstynen and Sabes, 2011).

The significant influence of the symbolic cue on the behav-
ioral performance in the cue condition further shows that most
subjects also included this information into their estimate of dis-
placement. As mentioned above, the semantic interpretation of the
cue values was not sufficient to allow such a fusion of cue values
and sensory stimulus. Thus, subjects had to learn how to asso-
ciate both. The cue-combination model interprets this learning as
a mapping of the cue values onto the stimulus dimension. That
an abstract, even arbitrary, mapping of different types of informa-
tion can be acquired during the course of an experiment was also
shown by Ernst (2007). In his study subjects were trained with
stimuli that usually are unrelated in the world, such as the lumi-
nance of an object and its stiffness, but which in the experiment
had a fixed mapping. He showed that subjects learned to inte-
grate the two formerly unrelated signals, similar to the mapping in
our models. Calibration is, however, not only necessary between
unrelated stimulus dimensions, but also between those which are
normally related, such as visual and vestibular signals indicating
self-motion. A recent study could show that such a calibration
is independent of the reliability of the cue (Zaidel et al., 2011),
which corresponds to the learning or calibration implemented in
our models.

CONCLUSION
Natural human action and perception profits from the incorpo-
ration of contextual information. We show that in addition to
the previously found influence of prior experience, humans are
also capable of using non-metric information, in the form of
a symbolic cue, for their estimate of displacement, even if the
mapping of the symbolic cue onto the stimulus dimension has
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to be acquired during the experiment. Two substantially differ-
ent models of how this information enters the estimation process
led to equally good fits to the experimental data. This result
sheds new light on the modeling of behavioral problems such as
categorization, cue-combination, and trial-to-trial dependencies.
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APPENDIX
CATEGORICAL MODEL
Our categorical model shall infer the target distance T from given measurement s and cue cj. Here we derive the posterior distribution
over T from known distributions, along with its conditional expectation. The posterior is given as

P (T |S, C) =

n∑
i

P (T , ai |S, C). (A1)

We have to marginalize over the categories because they are unknown. The key idea is now to express the posterior as a weighted
sum over distributions of which we can easily compute the expectation.

We first factorize the posterior within the sum to obtain a distribution of which we can easily compute its expectation. As it turns
out, it is the posterior of T given S and the category.

P (T , ai |S, C) = P (T |ai , S, C) · P (ai |S, C) . (A2)

Due to model assumptions concerning the factorization, the posterior of T does not depend on C once the category A is given. The
full joint distribution for our model, according to our assumptions (Figure 1B), factorizes as follows:

P (T , A, S, C) = P (S|T ) P (T |A) P (C |A) P (A) . (A3)

We use this factorization of the full joint marginalize out T.

P (A, S, C) =

∫
P (C |A) P (S|t ) P (t |A) P (A) dt = P (C |A) P (A)

∫
P (S, t |A) dt = P (C |A) P (A) P (S|A). (A4)

Then, by applying Bayes’ theorem we, see

P (T |ai , S, C) =
P (T , ai , S, C)

P (ai , S, C)
=

P (S|T ) P (C |ai) P (T |ai) P (ai)

P (C |ai) P (ai) P (S|ai)
=

P (S|T ) P (T |ai) P (ai)

P (S|ai) P (ai)
=

P (S|T , ai) P (T , ai)

P (S, ai)
= P (T |S, ai) .

(A5)

We, see that all factors depending on C cancel each other out. The posterior thus does not depend on C, given A. Following the definition
of the expectation, we now have

E
[
T |s, cj

]
=

∫
t

n∑
i

P
(
t , ai |s, cj

)
dt =

∫
t

n∑
i

P (t |s, ai) · P
(
ai |s, cj

)
dt (A6)

with s and cj being the known distance measurement and the known cue. We, see that the posterior of the category P(ai | s,cj) does not
depend on t, which means we can do the following reordering. We pull t into the sum, exchange sum and integral and pull out the
posterior of the category:

E
[
T |s, cj

]
=

n∑
i

P
(
ai |s, cj

) ∫
t P (t |s, ai) dt . (A7)

The integral expresses the expectation of the category-dependent posterior of T. Thus we have

E
[
T |s, cj

]
=

n∑
i

P
(
ai |s, cj

)
E [T |s, ai]. (A8)

We will now express the posterior of the category, the weights in the above sum, through known distributions.

P (A|S, C) =
P (A, S, C)

P (S, C)
=

P (C |A) P (A) P (S|A)

P (S, C)
=

P (C |A) P (A) P (S|A)∑
k

P (C |ak) P (S|ak) P (ak)
. (A9)

Frontiers in Integrative Neuroscience www.frontiersin.org August 2012 | Volume 6 | Article 58 | 16

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Petzschner et al. Sensory input, symbolic cues, and priors

We reused the factorization of P(A,S,C) derived above. In the denominator we use it to marginalize out A. All distributions appearing
in the result are known from our model assumptions, except P(S | A). It results from integrating over t :

P (S|A) =

∫
P (S, t |A) dt =

∫
P (S|t ) P (t |A) dt . (A10)

Since both P(S | t ) and P(t | A) are normally distributed, integrating over t yield the following distribution:

S|A ∼ N
(
µA , σ2

S + σ2
A

)
. (A11)

Remember that we assume equal variances for all categories.
A special case of this model is if no cue is present. This corresponds to a case where all cues appear with equal probability inde-

pendently of the given category, P(cj | ai)= 1/n, and thus tell us nothing about the category. This leads to the posterior of A becoming
independent of C :

P (A|S, C) =
1/nP (A) P (S|A)∑

k
1/nP (S|ak) P (ak)

=
P (A) P (S|A)

P (S)
= P (A|S) . (A12)

With the posterior of the category now being independent of C, the expectation for T given measurement and cue in Eq. 33 above
reduces to Eq. 29 in Feldman et al. (2009). The Feldman model is thus a special case of our model.

It remains to compute the expectations of the category-dependent posteriors, E[T | s,ai]. These posteriors result from standard
Bayesian fusion of the likelihood for S and the prior P(T | A), as we have shown above:

P (T |S, A) =
P (S|T ) P (T |A)

P (S|A)
=

P (S|T , A) P (T |A)

P (S|A)
. (A13)

Since both the likelihood P(S | T ) and the prior P(T | A) are normally distributed, the posterior is normally distributed with mean and
variance

µi =
sσ2

A + µai σ
2
S

σ2
S + σ2

A

σ2
i =

σ2
Sσ

2
A

σ2
S + σ2

A

. (A14)

That allows us to write the expectation as

E
[
T |s, cj

]
=

n∑
i

P
(
ai |s, cj

) sσ2
A + µai σ

2
S

σ2
S + σ2

A

=

n∑
i

P
(
ai |s, cj

) ( σ2
A

σ2
S + σ2

A

s +
σ2

S

σ2
S + σ2

A

µai

)

=

n∑
i

P
(
ai |s, cj

)
wms +

n∑
i

P
(
ai |s, cj

)
(1− wm)µai = wms + (1− wm)

n∑
i

P
(
ai |s, cj

)
µai .

(A15)

This can be further simplified using another two of our model assumptions. First, we assume that, a priori, categories are uniformly
distributed, that is P(ai)= 1/n. Second, we assume that the correct cue appears with some probability P(cj | ai)= pC, j = i, while the
remaining wrong cues appear with equal probabilities P(cj | ai)= (1− pC)/(n–1). First we rewrite the posterior of the category:

P
(
ai |s, cj

)
=

P
(
cj |ai

)
· P (ai) P (s|ai)∑

k
P
(
cj |ak

)
P (s|ak) P (ak)

= P
(
cj |ai

)
·

1/nP (s|ai)

pCP
(
s|aj

)
1/n +

1−pC
n−1

∑
k 6=j

P (s|ak) 1/n

= P
(
cj |ai

)
·

P (s|ai)

pCP
(
s|aj

)
+

1−pC
n−1

∑
k 6=j

P (s|ak)
= P

(
cj |ai

)
· αi,j (s) .

(A16)

This results in

E
[
T |s, cj

]
= wms + (1− wm)

n∑
i

P
(
cj |ai

)
αi,j (s)µAi . (A17)
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Then we can further rewrite by again replacing P(cj | ai) to get

E
[
T |s, cj

]
= wms + (1− wm)

pCαj ,j(s)µaj +

n∑
i 6=j

1− pC

n − 1
αi,j (s)µai


= wms + (1− wm)

pCαj ,j (s) µaj +
1− pC

n − 1

n∑
i 6=j

αi,j (s)µai

 .

(A18)

CUE-COMBINATION MODEL
Our assumptions about the (conditional) distributions of target distance T, stimulus S and mapped cue Cmp (the cue signal) lead to
the following factorization of the model’s full joint probability:

P
(
T , S, Cmp

)
= P (S|T ) P

(
Cmp|T

)
P (T ) . (A19)

From this, the posterior follows immediately:

P
(
T |S, Cmp

)
=

P
(
T , S, Cmp

)
P
(
S, Cmp

) = αP (S|T ) P
(
Cmp|T

)
P (T ) ∝ P (S|T ) P

(
Cmp|T

)
P (T ) . (A20)

We can, see that the posterior density function is, apart from the proportionality factor α= 1/P(S,Cmp), a product of Gaussians.
First, we combine the two likelihood density functions. Following the product rule for Gaussians, this product yields a Gaussian with
the following parameters:

µCS =
sσ2

C + cσ2
S

σ2
S + σ2

C

σ2
CS =

σ2
Sσ

2
C

σ2
S + σ2

C

. (A21)

In the indices we write C instead of Cmp for brevity and better readability, e.g., µCS instead of µCmpS . A problem is that the
(unknown) mean of the symbolic cue likelihood, µC(T ), depends non-linearly on T. However, we may assume that this dependence
is approximately linear. Remember that our model receives as input a discrete cue, which steers a calibration process (implemented
by a Kalman filter), whose output in each trial is then interpreted as additional measurement cmp of the mapped cue. This output of
the calibration process closely follows the stimuli from either the long or the short range, depending on the discrete cue. The ranges
themselves do not change and therefore a normal distribution with fixed µC(T ) (after a short calibration period) can approximate the
dispersion of the cmp values.

The product of the combined likelihood density function with the density of the prior P(T ) is again a product of Gaussians resulting
in a Gaussian. The density of the posterior is thus Gaussian with parameters

µposterior =
µT σ2

CS + µCSσ
2
T

σ2
CS + σ2

T

σ2
posterior =

σ2
CSσ

2
T

σ2
CS + σ2

T

. (A22)

According to standard probability theory, the expectation of the posterior is then given as

E
[
T |s, cmp

]
= µposterior =

σ2
CS

σ2
CS + σ2

T

µT +
σ2

T

σ2
CS + σ2

T

µCS = (1− wfu) µT + wfuµCS

= (1− wfu) µT + wfu
sσ2

C + cmpσ
2
S

σ2
S + σ2

C

= (1− wfu) µT + wfu

(
σ2

C

σ2
S + σ2

C

s +
σ2

S

σ2
S + σ2

C

cmp

)
= (1− wfu) µT + wfu

(
wms + (1− wm) cmp

)
= (1− wfu) µT + wfu

(
(1− wm) cmp + wms

)
(A23)

with the weights

wfu =
σ2

T

σ2
CS + σ2

T

1− wfu = 1−
σ2

T

σ2
CS + σ2

T

=
σ2

CS + σ2
T − σ2

T

σ2
CS + σ2

T

=
σ2

CS

σ2
CS + σ2

T

wm =
σ2

C

σ2
S + σ2

C

1− wm = 1−
σ2

C

σ2
S + σ2

C

=
σ2

S + σ2
C − σ2

C

σ2
S + σ2

C

=
σ2

S

σ2
S + σ2

C

(A24)
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