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A large literature has demonstrated that neuropeptide Y (NPY) regulates many emotional
and reward-related behaviors via its primary receptors, Y1R and Y2R. Classically, NPY
actions at postsynaptic Y1R decrease anxiety, depression, and alcohol drinking, while
its actions at presynaptic Y2R produce the opposite behavioral phenotypes. However,
emerging evidence suggests that activation of Y2R can also produce anxiolysis in a brain
region and neurotransmitter system-dependent fashion. Further, numerous human and
rodent studies have reported that females display higher levels of anxiety, depression,
and alcohol drinking. In this study, we evaluated sex differences and the role of Y2R on
GABAergic transmission in these behaviors using a novel transgenic mouse that lacks
Y2R specifically in VGAT-expressing neurons (VGAT-Y2R knockout). First, we confirmed our
genetic manipulation by demonstrating thatY2R protein expression was decreased and that
a Y2R agonist could not alter GABAergic transmission in the extended amygdala, a limbic
brain region critically implicated in the regulation of anxiety and alcohol drinking behaviors,
using immunofluorescence and slice electrophysiology. Then, we tested male and female
VGAT-Y2R knockout mice on a series of behavioral assays for anxiety, depression, fear,
anhedonia, and alcohol drinking. We found that females displayed greater basal anxiety,
higher levels of ethanol consumption, and faster fear conditioning than males, and that
knockout mice exhibited enhanced depressive-like behavior in the forced swim test.
Together, these results confirm previous studies that demonstrate higher expression of
negative affective and alcohol drinking behaviors in females than males, and they highlight
the importance ofY2R function in GABAergic systems in the expression of depressive-like
behavior.
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INTRODUCTION
Neuropeptide Y (NPY) is an endogenous “anti-stress” neuropep-
tide involved in the regulation of several affective and reward-
related behaviors. Genetic and pharmacological manipulations of
central NPY have shown that this peptide plays an important role
in anxiety, depression, and alcohol drinking behavior (Heilig et al.,
1989; Bannon et al., 2000; Lindell et al., 2010; Tasan et al., 2010;
Sparrow et al., 2012). NPY’s primary receptors, Y1R and Y2R, are
highly expressed throughout the brain (Parker and Herzog, 1999)
and NPY signaling via these two G protein-coupled receptors are
thought to produce diverging behavioral phenotypes. While Y1R
has generally been shown to mediate many of the anxiolytic and
anti-drinking effects of NPY (Schroeder et al., 2003; Karlsson et al.,
2008; Bertocchi et al., 2011; Sparrow et al., 2012), Y2R has been
shown to increase anxiety and alcohol consumption (Tschenett

et al., 2003; Bacchi et al., 2006; Tasan et al., 2010; Sparrow et al.,
2012). However, there are several reports indicating that NPY’s
Y2R-mediated behavioral effects are much more complex (Kask
et al., 1998; Thiele et al., 2004; Fendt et al., 2009; Zambello et al.,
2010; Trent and Menard, 2013). For example, Y2R mediates the
anxiolytic effects of NPY in the lateral septum and locus coeruleus
(Kask et al., 1998; Trent and Menard, 2013).

Several lines of evidence suggest that the varying behavioral
outcomes of Y2R manipulations may depend on the neuro-
transmitter systems that Y2R modulate in these regions. Y2R
has been described as having an inhibitory role in the release
of several neurotransmitters, including glutamate, GABA, nore-
pinephrine, and dopamine, among others (Silva et al., 2005;
Zambello et al., 2010). Presynaptic Y2R decreases glutamate
release in the hippocampus and decreases GABA release in the
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central nucleus of the amygdala (CeA), and the bed nucleus
of the stria terminalis (BNST; Kash and Winder, 2006; Gilpin
et al., 2011; Ledri et al., 2011; Pleil et al., 2012), extended amyg-
dala structures particularly implicated in a host of anxiety,
depression, and alcohol drinking behaviors (Schroeder et al.,
2003; Tasan et al., 2010; Zhang et al., 2010; Gilpin et al., 2011).
For example, we have recently shown that stress alters Y2R-
mediated modulation of GABAergic transmission in the BNST
of stress-susceptible DBA/2J, but not stress-resilient C57BL/6J,
mice (Mozhui et al., 2010; Pleil et al., 2012). In the present
study, we evaluated the role of Y2R modulation of GABAer-
gic transmission in anxiety, depression, and alcohol drinking
behaviors using a transgenic mouse lacking Y2R in GABAergic
neurons.

A robust human literature has shown that females display
greater propensity for these affective and drinking behaviors than
males (Kessler et al., 1994, 1995; Gater et al., 1998; Lewinsohn
et al., 1998a,b; Bekker and van Mens-Verhulst, 2007; Ohrmann
et al., 2010). While many rodent studies reveal similar results,
particularly in mice on a C57BL/6J background (Kennett et al.,
1986; Johnston and File, 1991; Middaugh et al., 1999; Frye
et al., 2000; Adamec et al., 2006; Dalla and Shors, 2009; Stack
et al., 2010; ter Horst et al., 2012b; Melon et al., 2013), a
number of studies report that male rodents exhibit greater
anxiety-related behavior, depending on the strain and behav-
ioral assay used (Johnston and File, 1991; Rodgers and Cole,
1993; Zimmerberg and Farley, 1993; Leret et al., 1994; Voikar
et al., 2001; Adamec et al., 2006; ter Horst et al., 2012a). There-
fore, we used both male and female mice to investigate potential
sex differences in these behaviors and the role of GABAergic
Y2R.

MATERIALS AND METHODS
SUBJECTS
We generated mice that lack Y2R specifically in GABAergic
neurons (VGAT-Y2R knockout) by breeding heterozygous VGAT-
ires-Cre mice (Vong et al., 2011) with homozygous Y2R-floxed
mice. Y2R-floxed mice were generated using the targeting protocol
described in the following section. Female offspring heterozygous
for Y2R-flox and vGAT-ires-Cre were bred with male homozy-
gous Y2R-floxed mice. Homozygous Y2R-floxed offspring from
this breeding scheme were used in this study; VGAT-ires-Cre +/−,
Y2R-floxed +/+ mice had Y2R knocked out from VGAT neurons
(VGAT-Y2R KO) and VGAT-ires-Cre −/−, Y2R-floxed +/+ mice
did not have altered Y2R expression (VGAT-Y2R control). Mice
were group-housed in our colony room with a 12:12-h light–dark
cycle with lights on at 7 a.m. Mice had ad libitum access to stan-
dard rodent chow and water. All procedures were approved by the
Institutional Animal Care and Use Committee of the University of
North Carolina at Chapel Hill and performed in accordance with
the National Institutes of Health guide for the care and use of lab-
oratory animals. Mice were at least 6 weeks of age at the beginning
of the study.

NPY Y2R TARGETING
Using recombineering, a 2.1 kb genomic fragment was dropped
from BAC clone bMQ-343H17 (Geneservice, Ltd, UK) upstream

of a loxP site located in modified pBSK+ vector. This fragment
constitutes the left arm of recombination (Figure 1A). Simi-
larly, a 6.3 kb fragment was dropped from the same BAC clone
downstream of a loxP site located in a separate pBSK+ vector
containing a neomycin-resistance gene cassette flanked by two
FRT and loxP sites. This fragment contains the right arm of
recombination. Finally, a 3.1 kb fragment consisting of exon 2
was dropped to a third pBSK+ vector. The targeting vector was
then created by adding the fragment containing the left arm of
recombination and the fragment containing the exon to the vector
containing the neomycin resistance gene cassette and the right arm
of recombination using unique restrictions sites. The construct
was linearized with NotI and electroporated in TL-1 embryonic
stem (ES) cells. The cells were the plated and grown on fibrob-
last feeder cells in Dulbecco’s modified Eagle medium (DMEM)
supplemented with 15% fetal bovine serum [Life Technologies
(formerly Invitrogen), Carlsbad, CA, USA], 50 μg ml−1 gen-
tamycin (Invitrogen), 1,000 U ml–1 murine leukemia inhibitory
factor [Millipore Biosciences (formerly Chemicon), Temecula, CA,
USA], 90 μM 2-mercaptoethanol (Sigma-Aldrich, St. Louis, MO,
USA) and 0.2 mg ml−1 G418 (Invitrogen). We picked 494 indepen-
dent neomycin-resistant colonies and grew them in 96-well plates
on a feeder layer, and then expanded the colonies and analyzed
them for the presence of the mutated gene. Southern-blot analysis
was done using genomic DNA digested with SpeII and hybridized
with a 32P-labeled probe consisting of a 409-bp PCR fragment
located upstream of the left arm of recombination (Figure 1A).
Eight clones contained a 6.5-kb SpeI fragment characteristic of the
mutated gene (Figure 1B). After further characterization using
internal and 5′-end probes, PCR amplification ES cell genomic
DNA was then used to assess the presence of the first loxP site.
Indeed, as the targeted exon is large, it is likely to participate in
the recombination in lieu of the left arm resulting in failure to
incorporate the loxP site. In fact, only one clone demonstrated
the presence of the loxP site (Figure 1C). This properly recom-
bined ES cell clone was injected into C57BL/6J blastocysts and
three chimeric mice with ∼90% brown fur were generated. After
confirmation of germline transmission, mice carrying the three
loxP allele were mated with FlpE mice to eliminate the neomycin-
resistance gene cassette. As seen in Figure 1D, mice positive for
the FlpE transgene demonstrated presence of the two loxP allele.
Homozygous Y2R-floxed mice were then successfully generated by
mating heterozygous two loxP mice (Figure 1E). Out of six breed-
ing cages, 55 pups were generated, including 15 homozygotes, 10
controls, and 30 heterozygotes. The distribution was Mendelian
as it corresponded to 27 (∼25%), 18 (∼25%), and 55% (∼50%),
respectively. To ensure that the exon could be excised by CRE
recombination, females carrying one copy of the two loxP allele
were crossed to E2a-CRE mice. Out of 17 pups produced, about
½ carried the E2a-CRE transgene and three demonstrated loss of
the exon (data not shown).

FUNCTIONAL AND ANATOMICAL CONFIRMATION OF GENETIC
MANIPULATION
Slice electrophysiology
To examine the effects of NPY on evoked GABAergic trans-
mission in the BNST, we performed whole-cell voltage-clamp

Frontiers in Integrative Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 100 | 2

http://www.frontiersin.org/Integrative_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Integrative_Neuroscience/archive


“fnint-07-00100” — 2013/12/24 — 15:35 — page 3 — #3

McCall et al. Behavioral characterization of vGAT x Y2R KO mice

FIGURE 1 | Disruption of mouse NPYY2R. (A) Structure of the NPY Y2R
control and mutant alleles around exon 2. The entire Open Reading frame
(ORF) of the receptor is contained within the exon. Position of the 5′ probe, of
the short and long arms of recombination (thick black bars), of loxP and FRT
sites, and of SpeI restriction sites are indicated. The first loxP site, which is at
risk of not being included during recombination, is highlighted by a red circle.
Presence of this loxP site is verified by PCR amplification of ES cell genomic
DNA (PCR1 and PCR2). (B) Portion of the Southern blot analysis of ES-cell
genomic DNA digested with SpeI and probed with the 5′ probe. Signals are
from clones 7B12 to 7C8. The wild-type gene shows across as a band of

∼10 kb whereas a 6.5 kb additional band is observed in clone 7C7. (C) Pre-
sence of the loxP site is confirmed in ES cell clone 7C7. The construct serves
as positive control. (D) Elimination of the neomycin resistance gene cassette
is illustrated in two mice by the presence of the FlpE transgene (stars) and
the presence of a larger band in samples 4 and 6 (also indicated by stars).
(E) PCR genotyping of 21-day old pups demonstrating that viable Y2R-floxed
mice were successfully generated. PCR yielded two samples with a single
small band (wild-type mice), seven samples with two bands (heterozygous
two loxP mice) and three samples with a single large band (stars,
homozygous two loxP mice).

electrophysiological recordings in dorsal BNST neurons from
acutely prepared coronal brain slices, as previously described
(Li et al., 2012; Pleil et al., 2012), of VGAT-Y2R mice. Briefly, mice
were decapitated under isoflurane anesthesia, and their brains
were rapidly removed and placed in ice-cold sucrose-artificial
cerebrospinal fluid (ACSF) containing: (in mM) 194 sucrose, 20
NaCl, 4.4 KCl, 2 CaCl2, 1 MgCl2, 1.2 NaH2PO4, 10.0 glucose,
and 26.0 NaHCO3 saturated with 95% O2/5% CO2. Coronal
slices 300 μm in thickness containing the dorsal BNST (Bregma
0.26–0.02 mm) were sectioned on a Leica VT1200 vibratome and
stored in a holding chamber with 28–30◦C, oxygenated ACSF
containing [(in mM) 124 NaCl, 4.4 KCl, 2 CaCl2, 1.2 MgSO4,
1 NaH2PO4, 10.0 glucose, and 26.0 NaHCO3]. Slices were trans-
ferred to a submerged recording chamber (Warner Instruments,
Hamden, CT, USA), where they were perfused with heated, oxy-
genated ACSF (28–30◦C) at a rate of approximately 2 ml/min
and allowed to equilibrate for 30 min before electrophysiological
recordings.

Recording electrodes (3–5 M�) were pulled with a Flaming–
Brown Micropipette Puller (Sutter Instruments, Novato, CA,
USA) using thin-walled borosilicate glass capillaries. Electrodes
were filled with (in mM) 70 KCl, 65 K+-gluconate, 5 NaCl, 10
HEPES, 0.6 EGTA, 4 ATP, 0.4 GTP, pH 7.2, 290–295 mOsmol.
To block postsynaptic sodium spikes, lidocaine N-ethyl bromide
(1 mg/ml) was included in the intracellular recording solution.
Neurons were held at −70 mV and electrically evoked GABAA

receptor (GABAAR)-mediated inhibitory postsynaptic currents
(eIPSCs) were pharmacologically isolated during recordings by
adding 3 mM kynurenic acid (Abcam, Cambridge, UK) to the
bath solution to block AMPA and NMDA receptor-dependent
postsynaptic currents.

Twisted nichrome wire stimulating electrodes were placed dor-
sal to the recording electrode, 100–500 μm medial from the
recorded neuron. eIPSCs were evoked at 0.1 Hz by local fiber
stimulation with bipolar electrodes (5–50 V with a 100–150 μs
duration) once every 10 s. Signals were acquired via a Multiclamp
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700B amplifier and analyzed using Clampfit 10.3 software (Molec-
ular Devices, Sunnyvale, CA, USA). After at least 5 min in which
mean peak eIPSC amplitude was stable (“baseline period”), NPY
(Abcam, Cambridge, UK), stocked in distilled water was diluted
to 300 nM in the bath solution and applied to the bath for 10 min,
followed by a washout period of at least 5 min. This concentration
of NPY has previously been demonstrated to be maximally effec-
tive in slices from naïve mice in our lab and other labs (Kash and
Winder, 2006; Chee et al., 2010; Pleil et al., 2012). Experiments
were analyzed by measuring the peak amplitude of the synap-
tic response, which was normalized to the baseline period. Input
resistance and access resistance were continuously monitored dur-
ing all experiments, and those in which changes in access resistance
were greater than 20% were not included in the data analysis.

Fluorescence immunohistochemistry
Mice were anesthetized with Avertin and perfused intracardially
with 0.01 M phosphate buffer saline (PBS) followed by 4%
paraformaldehyde (PFA) in PBS. Brains were extracted and post-
fixed for 24 h in 4% PFA, then rinsed twice with PBS and immersed
in 30% sucrose until saturated. Brains were hemisected and coro-
nal slices 45 μm in thickness containing the BNST and CeA were
prepared using a Leica VT1200 vibratome (Leica Microsystems,
Nussloch, Germany).

All steps were performed at room temperature unless stated
otherwise, using protocols included in the TSA amplification kit
(Perkin Elmer, Waltham, MA, USA). Slices containing BNST and
CeA were incubated in primary solution containing 0.3% Triton
X-100, 0.5% bovine serum albumin, and an anti-Y2R antibody
(1:3000; Neuromics, Edina, MN, USA) for 24 h at 4◦C. Slices
were washed in TNT buffer solution containing Tris/HCl, NaCl,
and Tween20 for 10 min followed by TNB blocking solution con-
taining TNT buffer with 0.5% blocking reagent provided in the
TSA kit for 30 min. Slices were washed in TNB solution contain-
ing horseradish peroxidase (1:200) for 30 min and rinsed in TNT
buffer. Sections were incubated in Cy3 (1:50) in amplification dilu-
ents provided in the TSA kit for 10 min and then rinsed in TNT
buffer. All slices were mounted onto glass slides, allowed to dry,
coverslipped with VectaShield (Vector Laboratories, Burlingame,
CA, USA), and stored in the dark at 4◦C.

Images of Y2R-IR in the BNST and CeA were obtained with
an Olympus FV1000 inverted confocal microscope with a 10×
objective and Olympus FluoView software. All serial sections
throughout the BNST and CeA were used for quantification
of Y2R-IR using ImageJ Software (National Institute of Health,
Bethesda, MD). A contour was drawn around the dorsal BNST or
CeA section to be analyzed; intensity values for all serial sections
for each mouse were averaged to obtain one value per mouse for
the BNST and CeA.

BEHAVIOR
Behavioral assays for anxiety-like and depressive-like behaviors, as
well as behavioral reactivity, were conducted at the UNC Mouse
Behavioral Phenotyping Core during the lights-on phase of the
day. Binge-like ethanol drinking was conducted in the home cage
during the lights-off phase of the day using the standard Drinking-
in-the-Dark (DID) paradigm, and ethanol and sucrose preference

tests were conducted in the home cage across both phases of the
light cycle.

Elevated plus maze
We used a standard elevated plus maze to assess anxiety-like behav-
ior. Mice were placed in the center section facing an open arm and
were allowed to freely explore the maze for 5 min. The number
of entries into and time spent in open and closed arms of the
apparatus was hand-scored by the experimenter.

Open field test
The open field test was used to assess general locomotor activ-
ity and anxiety-like behavior. Mice were placed in the corner of
a 40 cm × 40 cm × 30 cm open field box (Versamax system,
AccuScan Instruments) and allowed to freely explore the arena
for 30 min. Behavioral testing boxes were contained inside sound-
attenuating boxes with house lights and fans. Activity and position
were tracked using beam breaks in the AccuScan Fusion Activity
System and used to calculate distance traveled and time spent in
the center of the field.

Light/dark box
The light/dark box was used to assess anxiety-like behavior. Mice
were placed in the dark side of a 40 cm × 40 cm × 30 cm box
containing light–dark box inserts (Versamax system, AccuScan
Instruments) and allowed to freely explore the chamber for 15 min.
Behavioral testing boxes were contained inside sound-attenuating
boxes with houselights and fans. Activity and location were tracked
using beam breaks in the AccuScan VersaMax240 Activity System
and VersaMap programs and used to calculate time spent in each
side of the chamber.

Forced swim test
We used the standard forced swim test to measure depressive-like
behavior. Mice were placed in clear plexiglass cylinders containing
23◦C water for 6 min. Video was recorded using EthoVision XT
7 and immobility during the last 4 min was hand-scored by the
experimenter using Ethovision’s The Observer XT 10.

Acoustic startle response
Mice were assessed for basal behavioral reactivity by testing their
startle response to an auditory stimulus, as previously described
(Brunssen et al., 2013) using a San Diego Instruments SR-Lab sys-
tem. Mice were placed into restraint tubes and given 5 min to
habituate to the tubes and background noise of 70 dB, followed by
six trials of a 40 ms auditory cue of 120 dB, separated by 80 ms.
Startle amplitude was collected across a 65 ms sampling window
for each trial.

Contextual and cued fear conditioning and memory
Mice were assessed for learning and memory of conditioned fear,
as previously described (Huang et al., 2013), using the Near-
Infrared image tracking system (MED Associates, Burlington, VT,
USA). On the first day of this three-day test, mice were placed
in a sound-attenuating box and allowed to explore for 2 min
before three exposures to a 30-s tone of 90 dB (conditioned
stimulus; CS), followed by a two-sec scrambled foot shock of
0.6 mA (unconditioned stimulus; US) separated by a random
interval. Freezing behavior during the tone was quantified by
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the Near-Infrared image tracking system. On the second test day,
mice were placed back in the original test chamber and freez-
ing to the context in the absence of the tone presentation was
assessed for 5 min. On the third test day, the chambers were mod-
ified using a novel odor and inserts to change the surface of the
chamber’s walls and floors. After 2 min of habituation, the mice
were presented with the CS for 3 min to assess freezing to the
cue.

Drinking in the dark procedure
We used the standard 4-day DID, a well-established animal model
of human binge drinking that generates high blood ethanol con-
centrations (BECs; ≥80 mg/dl) and has been used to characterize
neuromodulators of binge-like ethanol consumption (Sparta et al.,
2008; Lowery-Gionta et al., 2012; Sparrow et al., 2012). Three
hours into the dark cycle, home cage water bottles were replaced
with bottles containing a 20% (v/v) ethanol solution for 2 h on
Days 1–3 and 4 h on Day 4 (binge test day). Tail blood was col-
lected immediately following ethanol access on Day 4 to evaluate
BECs.

Sucrose and ethanol preference tests
We conducted a sucrose preference test to assess whether deletion
of Y2R from GABA neurons induced anhedonia in mice. At the
beginning of the dark cycle, mice were presented with two bottles,
one containing water and the other containing a 1% (w/v) sucrose
solution, for 24 h. Volume of each bottle’s contents was used to
evaluate the degree to which mice preferred sucrose to water. We
also conducted a 24-h ethanol preference test in the same manner,
except that 20% ethanol (v/v) was used instead of sucrose and the
two-bottle choice began 3 h into the dark cycle.

STATISTICAL ANALYSIS
Appropriate statistical analyses were used to evaluate the effects
of sex and Y2R deletion from GABA neurons, including two-way
(sex x genotype) ANOVAs. Post hoc t-tests with Bonferroni cor-
rections for multiple comparisons to protect against Type 1 error
were conducted to make direct comparisons between groups when
ANOVAs revealed significant interactions.

RESULTS
ELECTROPHYSIOLOGY AND FLUORESCENCE
IMMUNOHISTOCHEMISTRY
We performed analyses of NPY and Y2R content and function to
evaluate the effects of deletion of Y2R from GABA neurons on the
function of extended amygdala brain regions critical for anxiety,
depression, alcohol drinking, and fear behaviors studied here. We
found that in the BNST, the ability of NPY to decrease evoked
GABAergic transmission, which we have previously demonstrated
occurs via Y2R (Kash and Winder, 2006; Pleil et al., 2012), was
present in control Y2R-floxed mice [Figures 2A,B; t(7) = 9.01,
p < 0.0001] but completely absent in KO mice [Figures 2A,C;
p > 0.55], producing a significant difference between control
and KO mice [t(12) = 2.97, p = 0.012]. Interestingly, Y2R-IR
was decreased in the CeA in KO mice compared to controls
[Figures 3A,B; t(6) = 3.17, p = 0.019] but not altered in the
BNST (Figures 3A,C; p > 0.50), even though Y2R function was
ablated in KO mice (Figure 2).

BEHAVIOR
Elevated plus maze
Two-way ANOVAs revealed that neither sex, genotype, nor their
interaction affected any measure of anxiety or locomotion in the
EPM (Figure 4), including entries to open arms, closed arms,
and total arms (p’s > 0.05), or percent time spent in open arms
(p’s > 0.35).

Open field test
In the open field test, females displayed more anxiety-like behavior
than males (Figure 5). While groups did not differ in the total dis-
tance traveled during the open field test (Figures 5A,B; p’s > 0.35),
males spent a significantly greater percent of time in the center of
the arena than females (Figures 5C,D), revealed by a main effect
of sex [F(1,38) = 7.25, p = 0.011)] but no effect of genotype or
interaction (p’s > 0.10). This sex difference in anxiety-like behav-
ior was recapitulated in the analysis of percent distance traveled
in the center of the arena, which also revealed a main effect of sex
[F(1,38) = 4.67, p = 0.037; data not shown] but no other effects
(p’s > 0.15).

FIGURE 2 | Inhibitory synaptic transmission. (A) Bath application of NPY (300 nM) decreased the amplitude of electrically evoked IPSCs in control mice
(n = 8) but not KO (n = 13) mice. (B,C) Representative traces of eIPSCs from control (B) and KO (C) mice before and after bath application of NPY.
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FIGURE 3 |Y2R-immunoreactivity in the CeA and BNST. (A,B) Y2R-IR is decreased in the CeA (A) but not BNST (B) of KO mice compared to controls
(*p < 0.05, n’s = 4 per group). (C) Representative images taken with a 10× objective of Y2R-IR in the CeA and BNST in control and KO mice, with a border
highlighting the quantified regions.

FIGURE 4 | Elevated plus maze. There were no effects of sex or genotype on any measures of locomotion or anxiety in the elevated plus maze, including
number of closed arm entries (A), number of open arm entries (B), and the percent time spent in the open arms (C; n’s: CON male = 6, KO male = 6, CON
female = 11, KO female = 10).

Light/dark box
Similar to the open field test, analyses of light/dark box mea-
sures showed that females displayed more anxiety-like behavior
than males (Figure 6). Males displayed more locomotor activ-
ity in the light side [F(1,38) = 13.29, p = 0.0008] but not
the dark side (Figure 6A; p > 0.35) than females, leading to a

greater percentage of their total locomotion [F(1,38) = 13.39,
p = 0.0008] and time in the light side than females [Figure 6B;
F(1,38) = 17.36, p = 0.0002]. Males also had a greater num-
ber of entries to the light side [Figure 6C; F(1,38) = 7.71,
p = 0.009] and a shorter latency to enter the light side for the
first time during the test [Figure 6D; F(1,38) = 5.06, p = 0.030]
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FIGURE 5 | Open field test. (A) Distance traveled across 5-min time bins in
the open field. (B) There were no effects of sex or genotype on the total
distance traveled in the open field. (C) Percent of time spent in the center
of the open field across 5-min time bins. (D) Females spent less time in

the center of the open field than males (*p < 0.05), suggesting that
females display higher basal anxiety than males but do not differ in basal
locomotion (n’s: CON male = 11, KO male = 10, CON female = 11, KO
female = 10).

than females, while there were no effects of genotype or inter-
actions between sex and genotype for any of these measures
(p’s > 0.25).

Forced swim test
KO mice displayed greater depressive-like behavior in the forced
swim test, demonstrated by a larger percent time immobile dur-
ing the test in KO mice than controls [Figure 7; F(1,38) = 7.04,
p = 0.013] but no effect of sex or interaction (p’s > 0.60), sug-
gesting that Y2Rs on GABA neurons may play a role in regulating
depressive-like behavior.

Acoustic startle response
There were no effects of sex, genotype, or their interaction in
startle response to the acoustic stimulus (p’s > 0.15; data not

shown), suggesting that neither sex nor Y2R deletion from GABA
neurons affects basal behavioral reactivity.

Contextual and cued fear conditioning and memory
Females learned to associate the context/cue to the foot shock
more rapidly than males (Figures 8A,B), as demonstrated by
a main effect of sex [F(1,27) = 4.71, p = 0.039] but no
effect of genotype or interaction between sex and genotype
(p’s > 0.55) on the average freezing during the second and
third shock during conditioning. There were no effects found in
the average freezing time during the context test the day after
fear conditioning (Figures 8C,D; p’s > 0.40). On the cue test
1 day later, there was a trend toward a main effect of geno-
type [Figures 8E,F; F(1,27) = 3.61, p = 0.068] but no other
effects (p’s > 0.25). These results suggest that females have
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FIGURE 6 | Light/dark box. (A) Mice in all groups traveled similar distances
in the dark side of the chamber (A). (B–D) Females spent less time in the
light side of the chamber (B; *p’s < 0.001), and made fewer entries into

(C; *p < 0.001) and had a longer latency to first enter (D; *p < 0.05) the light
side of the chamber than males, demonstrating greater anxiety-like behavior
(n’s: CON male = 11, KO male = 10, CON female = 11, KO female = 10).

faster fear learning and that Y2R deletion from GABA neurons
modestly impairs cued fear memory but not contextual fear
memory.

Drinking in the dark procedure
Analyses of ethanol consumption across the 4-day DID proce-
dure showed that a sex difference emerged on Day 3 (Figure 9A),
demonstrated by a main effect of sex [F(1,24) = 7.25, p = 0.013]
but no effect of genotype or interaction (p’s > 0.80). This
effect persisted on the binge test day (Figures 9A,B), shown
by a main effect of sex [F(1,24) = 19.56, p = 0.0002]
but no other effects (p’s > 0.50). An effect of sex on BEC
after the binge ethanol session [Figure 9C; F(1,25) = 6.40,
p = 0.018], but no other effects (p’s > 0.70), supports this
finding.

Sucrose and ethanol preference tests
Analysis of total sucrose consumption during the 24-h sucrose
preference test revealed a main effect of sex [F(1,25) = 15.89,
p = 0.0005] and an interaction between sex and genotype
[F(1,25) = 6.31, p = 0.019], but no main effect of genotype
(p > 0.10). Post hoc t-tests with Bonferroni corrections showed
that control females and KO males drank significantly more
sucrose than control males [Figure 10A; t(13) = 5.14, p = 0.0002
and (t(8) = 2.87, p = 0.021, respectively], while there was no differ-
ence between female control and KO groups (p > 0.50). A similar
analysis on water consumption revealed no effects (Figure 10B;
p’s > 0.05). In addition, analysis of sucrose preference revealed
main effects of sex [F(1,25) = 7.14, p = 0.013] and genotype
[F(1,25) = 6.24, p = 0.019], as well as an interaction between the
two [F(1,25) = 11.55, p = 0.002]. Post hoc tests with Bonferroni
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FIGURE 7 | Forced swim test. KO mice had increased immobility in the
forced swim test compared to control mice (*p < 0.05) but there was no
effect of sex, suggesting that deletion of Y2R from GABA neurons
increases depressive-like behavior (n’s: CON male = 11, KO male = 10,
CON female = 11, KO female = 10).

corrections were also similar to those for sucrose consumption,
revealing increased sucrose preference in control females and KO
males compared to control males [Figure 10C; t(13) = 4.68,
p = 0.0004 and t(8) = 3.40, p = 0.009, respectively], with no dif-
ference between control and KO females (p > 0.40). These effects
were primarily attributed to very low sucrose consumption and
preference in control males.

We performed the same analyses for the ethanol preference
test. Similar to results from the DID experiment, females con-
sumed more ethanol than males, demonstrated by a main effect
of sex [Figure 10D; F(1,25) = 6.39, p = 0.018] but no other
effects (p’s > 0.30). There was also a non-significant trend
toward increased water intake in females (Figure 10E; p = 0.069,
other p’s > 0.55). Together, these consumption levels led to no
differences in ethanol preference (Figure 10F; p’s > 0.45).

DISCUSSION
In this study, we examined the effects of sex and deletion of the
primary NPY receptor, Y2R, from GABA neurons on several mea-
sures of anxiety, depression, anhedonia, fear, and ethanol drinking
behavior in mice on a C57BL/6J background. We found strik-
ing sex differences in these behaviors, with females displaying
greater basal anxiety/fear and ethanol consumption in females
than males, as observed in the light/dark box, open field test,
fear conditioning, DID, and ethanol preference test. Many prior
studies in rodents have also found that females display higher lev-
els of basal anxiety, especially those using mice on a C57BL/6J
background (Kennett et al., 1986; Johnston and File, 1991; Frye

FIGURE 8 | Contextual and cued fear conditioning and memory.

(A) Percent time freezing during the 2-min baseline and tone presentations
during fear conditioning. (B) Females froze more during tones 2 and 3 than
males during fear conditioning (*p < 0.05). (C) Percent time freezing during
a 5-min exposure to the same context the day after fear conditioning. (D)

Neither sex nor genotype altered average percent time freezing during the
context test. (E) Percent time freezing in a novel context during a 2-min
baseline period and three presentations of the conditioning auditory cue.
(F) KO mice trended toward freezing less to the auditory cue than control
mice (p = 0.068), while there was no effect of sex (n’s: CON male = 5, KO
male = 5, CON female = 11, KO female = 10).

et al., 2000; Frye and Wawrzycki, 2003; Adamec et al., 2006; Dalla
and Shors, 2009; Stack et al., 2010; ter Horst et al., 2012b). Notably,
heightened stress reactivity, such as anxiety-like behavior on assays
used in this study, and faster fear conditioning are two hallmark
phenotypes in mouse models of generalized/sustained anxiety
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FIGURE 9 | Drinking in the Dark (DID) binge ethanol drinking test.

(A) Ethanol consumption across the 4-day DID procedure, with 2 h of access
to 20% ethanol during the first 3 days and 4 h of access on Day 4 (binge test

day). (B,C) Females drank significantly more than males on the binge test day
(B) and had corresponding greater BECs (C; *p’s < 0.05; n’s: CON male = 4,
KO male = 5, CON female = 9, KO female = 9).

(Charney et al., 1993; Cryan and Holmes, 2005; Brinks et al., 2008;
ter Horst et al., 2012a,b; Andero et al., 2013; Cacciaglia et al., 2013;
Griebel and Holmes, 2013). As women have a higher prevalence of
these types of anxiety disorders than men, including generalized
anxiety disorder and post-traumatic stress disorder (Kessler et al.,
1994, 1995; Gater et al., 1998; Lewinsohn et al., 1998a,b; Bekker
and van Mens-Verhulst, 2007), our data are consistent with the
current human and mouse literature and suggest that mice on a
C57BL/6J background may be good models for sex differences in
anxiety in humans.

Interestingly, while we found that females displayed more
anxiety-like behavior on the open field test and light/dark box
than males, we found no sex differences in the elevated plus maze.
While this is a standard assay for anxiety in rodents, there are sev-
eral previous reports that results in the elevated plus maze were
inconsistent with or less sensitive than other tests of anxiety (John-
ston and File, 1991; Adamec et al., 2006). Further, evaluation of
mouse behavior on a combined apparatus (elevated plus maze,
open field test, and light/dark box) showed that mice spent a
majority of their time in the elevated plus maze portion of the
apparatus, suggesting that it is the least aversive of the three appa-
ratuses (Fraser et al., 2010). Therefore, we and others may not have
found a sex difference in anxiety on the elevated plus maze because
it is not particularly anxiety-provoking.

As we observed here, other studies have also found greater binge
ethanol consumption in female than male mice on a C57BL/6J
background (Middaugh and Kelley, 1999; Middaugh et al., 1999;
Hall et al., 2003; Rhodes et al., 2007; Agrawal et al., 2013; Melon
et al., 2013). Interestingly, there is evidence suggesting that female
C57 mice may drink more than males because they are less sensi-
tive to the stimulant and sedative effects of ethanol, independent
of BEC (Middaugh et al., 1999). This may be due to modulation
of critical circuitry by ovarian hormones, as removal of these sex
hormones via ovariectomy has been shown to decrease ethanol
consumption in female C57BL/6 mice (Becker et al., 1985). In

contrast, in humans, men binge drink more often and in greater
excess than women. However, women have smaller gastric ethanol
metabolism and less body water volume than men (Marshall et al.,
1983; Baraona et al., 2001), leading to higher BECs and greater
behavioral effects from the same dose of acute ethanol (Avant,
1990; Frezza et al., 1990; Ammon et al., 1996). As such, women
are far more likely to become impaired, suffer greater organ and
morphological brain changes, and develop comorbid medical con-
ditions from ethanol consumption (Krasner et al., 1977; Eckardt
et al., 1981; Urbano-Marquez et al., 1995; Key et al., 2006; Medina
et al., 2008; Squeglia et al., 2012). Therefore, divergent sex differ-
ences in ethanol sensitivity in mice and humans may explain why
sex differences in ethanol consumption are not consistent between
these species.

Surprisingly, we found only one interaction between Y2R dele-
tion and sex, which was observed in the sucrose preference test,
a measure of anhedonia. Interestingly, this finding was due to
the very low sucrose preference in control (VGAT-ires-Cre −/−,
Y2R-floxed +/+) male mice, which may reflect a sex-specific back-
ground strain effect on anhedonia, hunger/thirst, or taste, as KO
males and both female groups showed high sucrose consumption
and preference over water. Given that ethanol and water con-
sumption were not otherwise different between control and KO
males, it is most likely that the hedonic value of sucrose is low
in Y2R-floxed males. Interestingly, we did not observe any effect
of Y2R deletion from GABA neurons on anxiety in either sex.
While this was somewhat surprising given the established role of
Y2R in these behaviors, we have previously demonstrated that the
effects of stress on anxiety-like behavior and on Y2R modulation
of GABAergic transmission in the BNST are background strain-
dependent (Mozhui et al., 2010; Pleil et al., 2012). These studies
demonstrated the stress-resilience of C57BL/6J mice compared
to stress-susceptible DBA/2J mice. Similarly, several other stud-
ies have found diverging behavioral phenotypes after complete,
global Y2R knockout in mice depending on the background of the
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FIGURE 10 | Sucrose and ethanol preference tests. (A) Females drank
more sucrose than males, and KO males drank more sucrose than control
males during a 24-h sucrose preference test (∗ indicates significantly different
from control males with p < 0.05; #indicates significantly different from
control males with p < 0.001). (B) There were no differences between groups
in water consumption during the sucrose preference test. (C) Females
displayed a greater sucrose preference than males, and KO males had a

greater sucrose preference than control males (*indicates significantly
different from control males with p < 0.01; #indicates significantly different
from control males with p < 0.001). (D–F) Females consumed more ethanol
than males during a 24-h ethanol preference test (D; *p < 0.05) and trended
toward consuming more water (E; p = 0.069), resulting in no differences in
ethanol preference (F; n’s: CON male = 5, KO male = 5, CON female = 10,
KO female = 9).

mice (Redrobe et al., 2003; Tschenett et al., 2003; Carvajal et al.,
2006; Zambello et al., 2010). Here, we used mice on a C57BL/6J
background because most of our and others’ previous research on
alcohol drinking behavior and mechanisms of NPY modulation
of circuitry regulating emotional behaviors in mice has used this
strain. Specifically, mice on a C57BL/6J strain drink ethanol read-
ily, without the experimenter needing to induce ethanol drinking
with a sucrose or MSG fade procedure as other strains require, such
as DBA/2J. This allowed us to measure true basal levels of all behav-
iors in our study, including ethanol drinking. However, we may
have observed effects of Y2R deletion from GABA neurons on the
behaviors measured had mice been on a more stress-susceptible
background, such as DBA/2J. In addition, Y2R-mediated effects
on GABAergic transmission and emotional behaviors may emerge

after exposure to chronic stress that elicits tonic engagement of the
endogenous NPY system.

Our results on the role of Y2R on GABA neurons in depressive-
like and anxiety-like behavior are in contrast to previous reports
examining site-specific actions of Y2R or manipulation of Y2R
in a cell-type non-specific manner. A previous report found
that conditional deletion of all Y2R from the CeA decreased
depressive-like behavior in the tail suspension test (Tasan et al.,
2010). We found that global deletion of Y2R from all GABA neu-
rons increased depressive-like behavior in the forced swim test.
Together, these results suggest that (1) the depressive-like effects
of Y2R in the CeA are due to modulation of non-GABAergic cell
types and (2) Y2R actions on GABA transmission in the CeA, or
more broadly throughout the brain, may counteract its actions
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at non-GABAergic synapses. This is not very surprising given
the complex role of Y2R as an autoreceptor and a heterocep-
tor for many other neurotransmitters implicated in anxiety and
depression behaviors. For example, Y2R acts as a heteroceptor on
glutamatergic neurons to decrease glutamate release, and it is colo-
calized with norepinephrine and dopamine terminals (Silva et al.,
2001, 2005; Adewale et al., 2007; Nadler et al., 2007; Shoblock et al.,
2010; Zambello et al., 2010; Ledri et al., 2011; Stanic et al., 2011). As
Y2R is able to decrease the release of both GABA and glutamate,
manipulation of one of these functions versus manipulation of
both functions would likely result in different behavioral effects.
This interpretation is also consistent with our finding that Y2R
deletion from GABA neurons did not alter anxiety-like behavior.
Several studies have found that complete and global Y2R dele-
tion, systemic Y2R antagonism, or Y2R antagonism in the CeA
decrease anxiety-like behavior (Redrobe et al., 2003; Tschenett
et al., 2003; Carvajal et al., 2006; Kallupi et al., 2013) or have no
effect (Zambello et al., 2010), suggesting that, together with our
findings, the anxiogenic effects of Y2R activation in the CeA or
more broadly in the brain are due to its role at non-GABAergic
terminals.

Although we have previously demonstrated that Y2R mod-
ulates GABAergic transmission reliably across neurons in the
BNST (Kash and Winder, 2006; Pleil et al., 2012), deletion of
Y2R from GABA neurons in this study did not result in less
immunofluorescence for Y2R protein in the BNST. However,
we functionally confirmed Y2R deletion from GABA neurons
in the BNST using slice electrophysiology. As Y2R appears
to be ubiquitously expressed throughout the BNST, and dele-
tion of Y2R only from GABA neurons was not be detectable
with immunofluorescence, our data suggest that many differ-
ent types of neurons play host to presynaptic Y2R in the BNST.
Future studies combining cell-type and site-specific approaches
will help refine our understanding of the loci of Y2R in crit-
ical limbic regions and its role in affective and reward-related
behaviors.
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