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comprising 20% of the neurons in the mouse cortex (excitatory 
pyramidal cells constitute the other 80%), GABAergic interneu-
rons are highly diverse in terms of morphology and electrical and 
molecular properties (Ascoli et al., 2008). Ongoing studies have 
emphasised the notable diversity of GABAergic interneurons when 
classifying cells by morphology, projections and electrical proper-
ties (Helmstaedter et al., 2009a,b), or by neuropeptide expression 
(Karagiannis et al., 2009). Classifi cations of interneurons based on 
electrical properties do not directly correspond to those based on 
molecular markers (Markram et al., 2004), although it is possible 
to classify neurons by single cell RT-PCR analysis of expression of 
key genes, such as ion channels (Toledo-Rodriguez et al., 2004). 
Excitatory pyramidal neurons also exhibit considerable diversity in 
terms of morphology and connectivity, although to a lesser degree 
than interneurons (Thomson and Lamy, 2007).

In addition to now classical methods of defi ning cell types by 
mRNA and protein expression, there have been several notable 
studies using global expression profi ling of defi ned groups of neu-
rons to identify novel cortical cell type-specifi c transcripts (Arlotta 
et al., 2005; Rossner et al., 2006; Sugino et al., 2006). Retrograde 

INTRODUCTION
The question of the diversity of neuron types is a challenging 
contemporary problem in neuroscience (Nelson et al., 2006). It is 
generally held that a defi nitive parts list is essential to the accurate 
description of neuronal circuits and their potential functions (Bota 
and Swanson, 2007). However, the degree of neuronal diversity and 
its functional importance are areas of much debate, with a range of 
views on the degree to which neurons differ and the extent to which 
they should be grouped (see for example, Masland and Raviola, 
2000). Much of the diffi culty in defi ning neuronal cell types has 
stemmed from the absence of agreement over which neuronal prop-
erties can and should be used to defi ne a neuronal cell type. Current 
and previous strategies for classifying neurons in any region of 
the central nervous system (CNS) rely on the use of one or more 
neuronal property, such as morphology, neurotransmitters, passive 
and active electrical properties, and expression of small numbers of 
molecular markers, typically proteins (Ascoli et al., 2008).

The use of those approaches is exemplifi ed by the concerted 
effort by many researchers to defi ne the diversity of GABAergic 
interneurons in the cerebral cortex (Ascoli et al., 2008). Despite 
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labelling from targets was used to isolate two classes of layer V 
neurons, enabling the identifi cation of cell-type specifi c genes by 
expression profi ling (Arlotta et al., 2005). In a complementary 
approach, twelve mouse forebrain neuronal populations were iso-
lated by cell-specifi c transgene expression and expression profi led 
to identify cell-specifi c gene expression combinations (Sugino et al., 
2006). A taxonomy of cell types based solely on the gene expression 
data correctly refl ected the expected relationships between the dif-
ferent populations, confi rming that global expression profi ling can 
correctly identify neuronal subtypes (Sugino et al., 2006).

Here we extend this approach to ask whether single neuron 
gene expression profi ling can prospectively resolve neuronal sub-
types into groups, independent of any phenotypic information, 
and whether those groups refl ect meaningful biological proper-
ties of those neurons. To do so, we applied methods we devel-
oped to compare gene expression among single neural stem cells 
(Subkhankulova and Livesey, 2006; Subkhankulova et al., 2008) to 
study global gene expression between single neurons from layer 
II/III of mouse neocortex (Yano et al., 2006).

In proof of principle experiments, we fi nd that global expression 
profi ling of single cortical neurons can be used prospectively to 
group and classify neurons in a manner refl ecting their physiologi-
cal properties. The potential advantage of this approach is that it 
suggests that deep sampling of complex neuronal populations by 
single cell expression profi ling may be a useful approach for defi n-
ing neuronal complexity in the CNS. However, in this case we used 
electrophysiology and morphology to restrict the diversity of the 
population analysed. It will be of interest in future studies to carry 
out single cell expression studies of unselected neuronal popula-
tions to assess whether it is possible to use such data to generate 
biologically meaningful groupings of neuronal types.

MATERIALS AND METHODS
PATCH-CLAMP RECORDING FROM NEOCORTICAL NEURONS
Forebrains were acutely harvested from postnatal CD1 mice ranging 
in age from 5 to 20 days sacrifi ced according to United Kingdom 
Home Offi ce and local ethical guidelines. 300 µm thick sagittal 
slices of cortex containing the somatosensory region were cut with 
a vibratome (Microslicer DTK-3000, D. S. K., Kyoto, Japan). During 
slicing, tissue was kept in a low-sodium solution of the following 
composition (in mM): 254 sucrose, 2.5 KCl, 26 NaHCO

3
, 10 glucose, 

1.25 NaH
2
PO

4
, 2 CaCl

2
, and 1 MgCl

2
. The recording Ringer solution 

contained (in mM):125 NaCl, 2.5 KCl, 25 NaHCO
3
, 25 glucose, 1.25 

NaH
2
PO

4
, 2 CaCl

2
, and 1 MgCl

2
. Both slicing and recording solutions 

were equilibrated with 95% O2, 5% CO
2
 gas to a fi nal pH of 7.4.

Single cortical neurons were identifi ed in layer II/III of the slices 
using an infrared differential interference contrast microscope 
(Olympus BX50WI) and their electrophysiological properties were 
obtained by whole cell patch clamping as described (Tateno et al., 
2005), with the addition of recombinant RNase inhibitors to the 
pipette solution. Somatic patch-pipette recordings were made with 
a Multiclamp 700-A amplifi er (Axon Instruments, Foster City, CA, 
USA) in current-clamp mode, correcting for prenulled liquid junc-
tion potential. Whole cell recording pipettes (Clark GC150T-7.5) of 
resistance 3.9–4.3 MΩ were fi lled with the following intracellular solu-
tion, based on that of Monyer and Jonas (1995): 140 mM KCl, 5 mM 
EGTA, 3 mM MgCl2, 5 mM HEPES, pH adjusted to 7.3 with KOH; 

in this case 200 units/ml of SUPERase-In RNase inhibitor (Ambion, 
Austin Texas, USA) were added and KCl concentration reduced to 
125–130 mM to achieve the same fi nal osmolarity as the Monyer and 
Jonas solution. Neurons for RNA harvesting were selected by mor-
phology and on their fi ring properties in order to restrict the range 
of cell types sampled for gene expression profi ling. Recordings were 
carried out at room temperature to reduce RNase activity. Signals were 
low-pass fi ltered at 5 kHz (4-pole Bessel fi lter) and sampled at 20 kHz 
with 12-bit resolution, using a National Instruments analog card, and 
custom software (MatDAQ, Hugh Robinson, 1995–2010), written in 
Matlab and C. Stimulus generation was also at a 20 kHz rate, with 
12-bit resolution. All analysis was performed in Matlab (Mathworks, 
Natick, MA, USA). Classifi cation of cells as regular spiking (RS) or fast 
spiking (FS) was based quantitatively on their clearly different spike 
shapes, and agreed with other features such as maximum spike rate 
and the qualitative pattern of spike fi ring at threshold (Tateno et al., 
2004), and the pyramidal (RS) and nonpyramidal (FS) morphol-
ogy under infrared differential interference contrast optics. Action 
potentials from responses just above threshold were convolved with 
the fi rst derivative of a Gaussian function: G’(t) = −t exp[−t2/(2σ2)], 
where σ = 1.3 ms, to produce a smoothed fi rst-derivative of the 
action potential voltage trajectory. This was then aligned by the fi rst 
negative-going zero-crossing (corresponding to the AP peak), and the 
interval to the second, positive-going zero-crossing (corresponding 
to the interspike membrane potential minimum) was measured. FS 
cells are defi ned as showing intervals less than 10 ms, while RS cells 
had intervals of 20 ms or greater.

SINGLE CELL TOTAL mRNA AMPLIFICATION AND EXPRESSION 
PROFILING
The cytoplasmic contents of each neuron were harvested after record-
ing by aspiration into the patch pipette and deposited in a total vol-
ume of 5 µl. Total RNA was isolated from the cytoplasmic contents 
by the acid phenol-guanidinum extraction method (Trizol, Sigma; 
(Chomczynski and Sacchi, 1987). Total RNA was precipitated in etha-
nol in the presence of 100 pg polyinosinic acid (Sigma) and 1 µl of 
linear polyacrylamide (Ambion) as carriers to reduce the loss of low 
copy number mRNAs. Total mRNA from each of 18 neuronal cells was 
globally amplifi ed using a PCR-based technique (Brady and Iscove, 
1993; Brady et al., 1995; Iscove et al., 2002) with minor variations 
(Subkhankulova and Livesey, 2006). PCR products were purifi ed with 
the CyScribe GFX Purifi cation kit (Amersham Bioscience) and labeled 
with Cy3/Cy5-modifi ed dCTP using Klenow DNA polymerase (BD 
Bioscience). The labeled samples were hybridized against a reference 
of amplifi ed cDNA pooled from all of the neurons studied. Gene 
expression was studied using mouse oligonucleotide arrays printed 
in-house (65-mer, 23232 oligonucleotides representing ∼20,000 
genes; Compugen oligonucleotide library) in pairs of dye-swapped 
hybridisations, as previously described (Subkhankulova and Livesey, 
2006; Subkhankulova et al., 2008). Images of hybridised arrays were 
gathered on a microarray scanner (Axon Instruments GenePix). Data 
from single microarrays were extracted using the GenePix analysis 
package. The mean intensity of each feature (spot) and the local 
background at 532 nm (Cy3) and 635 nm (Cy5) were extracted. The 
background-corrected 635 nm/532 nm ratio was calculated for each 
feature as the initial measurement of relative mRNA levels for each 
gene represented on the array.
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RESULTS
CLASSIFICATION OF NEURONS INTO RS OR FS CELL TYPES FOR 
EXPRESSION PROFILING
The goal of this study was to explore whether the global expression 
profi les of neuronal cells could be used to prospectively cluster neu-
rons into groups that refl ected their neuronal fi ring properties. For 
this purpose, we chose to expression profi le neurons in two broad 
categories of morphologically and electrophysiologically-defi ned 
cortical neurons: regular-spiking cells of pyramidal morphology, 
corresponding to glutamatergic, excitatory pyramidal neurons 
(Connors and Gutnick, 1990); and fast-spiking, non-pyramidal cells, 
corresponding to GABAergic inhibitory interneurons of basket mor-
phology that express parvalbumin (Kawaguchi and Kondo, 2002). 
To do so, we analysed 18 cells from layer II/III of mouse neocortex 
harvested between postnatal days 5 (P5) and P20: 10 young neurons 
(all P13 and older) and 8 immature neurons (aged between P5 and 
P10). The fi ring properties of this set of neurons were measured 
individually for each cell, following which the cytoplasm of each cell 
was harvested for global mRNA amplifi cation (Figure 1).

The set of all recorded cells contained 7 RS and 11 FS cells. RS 
cells showed a pyramidal morphology, while FS cells generally had 
a nonpyramidal, multipolar morphology under infrared differ-
ential interference contrast microscopy (Connors et al., 1982). As 
in a previous study (Tateno et al., 2004), regular-spiking neurons 
(Figure 2A) showed an ability to fi re repetitively at very low frequen-
cies (<10 Hz), a relatively slow spike waveform and lacked a pro-
nounced after hyperpolarization. Fast-spiking neurons (Figure 2B), 
in contrast showed a very fast action potential waveform, a large-
amplitude, sharp after hyperpolarization, stable periodic fi ring only 
at a relatively high frequency (>10 Hz), and usually a high maximal 
fi ring rate. Depolarization block was pronounced at higher current 
levels in some recordings in each type of cell, potentially as a conse-
quence of the high levels of RNase inhibitor, which is not a normal 
component of whole-cell pipette solutions.

In addition to qualitatively matching the well-known RS and FS 
fi ring patterns, we distinguished the two cell types on a quantita-
tive basis, using the smoothed fi rst-derivative of action potentials 
elicited just above threshold (see Materials and Methods for details). 
The interval between zero-crossings of this derivative, correspond-
ing to the interval between the peak of the action potential and the 
deepest point of the after-hyperpolarization was tightly clustered 
(Figures 2C,D), below 10 ms for FS cells (blue), while it ranged 
from 20 to 60 ms for RS cells (red).

Neurons studied here demonstrated some diversity in fi ring 
patterns, however all could be clearly defi ned as FS or RS spiking 
types (Figure 3; see Table S1 in Supplementary Material for details). 
Particularly at young ages, depolarization block is pronounced and 
can obscure the typical adult fi ring pattern, but the spike shape and 
the pattern of spiking within a certain window of stimulus currents 
leading to periodic fi ring, enabled a quite robust classifi cation of 
such cells.

After analysis and recording of the electrophysiological prop-
erties of each neuron, the cytoplasmic contents of each cell were 
harvested. Total RNA was purifi ed from each cell, reverse tran-
scribed to cDNA and globally amplifi ed (see Materials and Methods 
for details). Typically, 32–34 cycles of PCR produced 15–20 µg of 
amplifi ed cDNA. Prior to global expression profi ling, we further 

SINGLE CELL qRT-PCR
Single cell qRT-PCR was carried out using the globally amplifi ed 
single cell cDNA as a template. Each real time PCR mix con-
tained was carried out in a 10 µl fi nal volume, containing 0.2 µl 
of each primer (10 mM) and 5 µl 2 × Master mix (DyNAmo 
Capillary SYBR Green qPCR Kit, Finnzymes). Intron-spanning 
primers were designed to Emx1, a pyramidal neuron-specifi c 
transcript (Chan et al., 2001), and GAD65/GAD2, a GABAergic 
interneuron-specifi c transcript (Katarova et al., 2000), using 
Primer3 software1, based on gene transcript information from 
the Ensembl genome browser2. Primer sequences were: Emx2, 
GAGCGAGCCTTTGAGAAGAA and CTGGAACCACACCTT
CACCT; GAD65/GAD2, AGATCGCCCCTGTATTTGTG and 
GCATGGCATACATGTTGGAG. Real-time PCR was performed 
in a LightCycler (Roche Diagnostics) according to DyNAmo 
Capillary SYBR Green qPCR protocol. Ct values were deter-
mined using the maximum second derivative function in the 
LightCycler software (Roche Diagnostics). Generation of PCR 
products was confi rmed by melting curve analysis and gel elec-
trophoresis. qPCR results were classifi ed as absent (−) if Ct values 
were higher than 35 and no single peak was observed from the 
melting curve, detectable above background (+/−) if a single 
peak was observed from the melting curve and Ct values were 
lower than 34, and expressed signifi cantly above background (+) 
if a single melting curve peak was present and Ct values were 
lower than 30.

ANALYSIS OF MICROARRAY DATA
All microarray data were analysed using the Acuity platform (Axon 
Instruments/Molecular Dynamics). Expression data from each 
array were normalized by locally-weighted regression (lowess) 
analysis. For data analysis of each group of arrays, data were fi ltered 
to remove low intensity features, features reporting gene expression 
in less than two thirds of the arrays in the set and features that did 
not show evidence for enriched expression in at least three cells in 
a set (empirically set at a 1.5-fold enrichment). Genes and arrays 
were pair-wise, hierarchically clustered using Pearson’s correlation 
coeffi cients as similarity metrics. Similar results were obtained 
using alternative hierarchical clustering metrics (Euclidean dis-
tance, for example), with minor variations in the assignment of 
cells within clusters. Hierarchical cluster dendrograms were built 
by iterative, pair-wise similarity comparisons, using Pearson’s cor-
relation coeffi cients.

To identify genes with robust differential enrichment between 
young fast- and regular-spiking neurons, Student’s t-testing was 
used to identify genes differentially expressed between the two 
groups (p < 0.05). Expression ratios of genes identifi ed as signifi -
cantly differing in expression between the groups were averaged to 
rank genes for enrichment in RS or FS cells, and those groups were 
visualized by hierarchical clustering. In situ hybridization data for 
adult expression of genes identifi ed as enriched in each cell class 
were extracted from the Allen Brain Atlas’ mouse brain database 
(mouse.brain-map.org) (Lein et al., 2007).

1http://frodo.wi.mit.edu/primer3/
2http://www.ensembl.org

http://frodo.wi.mit.edu/primer3/
http://www.ensembl.org
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two dye-swap hybridisations. Statistical analysis found that the 
expression of the abundant transcript GAPDH, printed on the 
arrays more then 200 times, did not vary signifi cantly among 
the cells (data not shown), confi rming the overall quality of the 
combined procedures of RNA harvesting, amplifi cation and 
microarray hybridisation.

To test the ability of global gene expression profi ling to group 
and distinguish well-characterised types of neurons, we used the 
set of 10 young cells (P13–22) to examine if the classifi cation of 
neurons by global expression analysis corresponded to the physi-
ological classifi cation of RS and FS cells. Cells were assigned to 
groups by unsupervised clustering according to the degree of simi-
larity between pairs of cells (as calculated by Pearson correlation 
coeffi cients; Figure 4). The cells formed two distinct groups of four 
and six cells each, as defi ned by gene expression (Figure 4). Those 
two groups corresponded to the two electrophysiologically-defi ned 
groups, with the three RS cells forming one branch of the overall 
dendrogram, with one misplaced FS neuron, and a set of fi ve FS 
cells plus one RS cell forming the other. Within the FS sub-tree 
there was a high degree of diversity of expression, although there 
were some cells that were highly similar in gene expression (cells 
14, 15 and 19, Figure 4).

SINGLE-CELL EXPRESSION PROFILING PROSPECTIVELY CLASSIFIED RS 
AND FS NEURONS AT DIFFERING DEVELOPMENTAL STAGES
To study whether gene expression could group and classify a more 
complex population of neurons, we proceeded to use unsupervised 
cluster analysis to analyse the entire group of 18 layer II/III neurons 
ranging in age from P5 to P22. Based on fi ring properties, all neu-
rons in this set could be designated as either RS or FS, but with some 
variation in their developmental stage, as refl ected in their electrical 
properties (Figure 3; Table S1 in Supplementary Material).

 investigated the expression of cell-specifi c transcripts in the  single 
cells by quantitative PCR (qPCR) analysis, using the amplifi ed 
cDNA as a template. Quantitative PCR for the pyramidal cell-
 specifi c transcription factor Emx1 and for the GABAergic neuron-
specifi c enzyme glutamic acid decarboxylase-2 (GAD2/GAD65) 
was used to distinguish between the two cell types (Figure 3). For 
example, cells 9 and 13 were defi ned as RS by fi ring properties 
(Table S1 in Supplementary Material) and expressed signifi cant 
levels of Emx1 and little or no GAD65 mRNA (Figure 3). Similarly, 
cell 12 was classed as FS by fi ring properties and qPCR found that 
this cell was GAD65-positive and Emx1-low.

However, there are notable exceptions in which expression of 
these markers was not detected in cells with clear electrophysi-
ological phenotypes. For example, Emx1 was not detected in the 
RS cell 7. This absence of PCR-based detection of markers probably 
refl ects drop-out or sampling of transcripts during the global cDNA 
amplifi cation step, as we have observed previously in neural stem 
cells (Subkhankulova et al., 2008). In contrast, the RS cell 1 was 
found to have both Emx1 and GAD65 mRNA by qPCR, but has 
pyramidal morphology. It is unlikely that this cell corresponds to 
a regular-spiking, non-pyramidal cell. As discussed below, cluster 
analysis based on gene expression indicates that this cell is a regular-
spiking pyramidal neuron. Therefore, it may be that the presence of 
GAD65 mRNA represents contamination or a false-positive result 
due to the use of globally-amplifi ed cDNA as the template for the 
subsequent qPCR.

INDIVIDUAL EXPRESSION PROFILING DISTINGUISHED TWO GROUPS OF 
YOUNG CELLS CORRESPONDING TO FS AND RS NEURONS
The experimental design here was one in which gene expression 
in each cell was compared to a reference sample of cDNA pooled 
from the entire set of 18 young and immature cells studied in 

FIGURE 1 | Expression profi ling of single mouse cortical neurons following 

characterization of their electrical properties. Experimental design of the 
study reported here. Layer II/III neurons were patch-clamped and their fi ring 
properties analysed as described (Materials and Methods). The cytoplasmic 
contents of each cell were harvested by aspiration into the patch pipette and 

total single cell mRNA was amplifi ed by a global polyadenylated PCR-based 
method. Amplifi ed cDNA from each neuron was compared against a common 
reference of amplifi ed cDNA pooled from all 18 cells in a set of paired, 
dye-swapped hybridizations, such that a total of 36 microarray hyridizations 
were performed.
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Cluster analysis by gene expression of all 18 neurons,  independent 
of their fi ring properties, identifi ed three major clusters (Figure 5). 
The fi rst group contained four regular-spiking neurons of a range 
of developmental stages (Figure 5). The second cluster of 6 cells 
contained four FS neurons, of which three were immature, together 
with two cells, 2 (P9) and 11 (P22), whose fi ring properties were 
those of typical RS cells. The third cluster contains 6 fast-spiking 
neurons and two regular-spiking neurons (one young and one 
immature). Thus unbiased clustering based on global gene expres-
sion grouped this complex population of single cortical neurons in 
a manner that broadly refl ects their fi ring properties, with a subset 
of neurons whose cluster assignment did not accurately refl ect their 
fi ring properties.

IDENTIFICATION OF TRANSCRIPTS ENRICHED IN REGULAR-SPIKING 
NEURONS COMPARED WITH FAST-SPIKING CELLS
We used the fi ring properties and qPCR data to group the ten 
young (>P13) neurons into RS- and FS-type cells for the purpose of 
identifying genes differentially expressed between the two groups. 
Genes showing the most reproducible differences in expression 
between the two groups were selected using Student’s t-test (see 
Materials and Methods for details), and the gene expression val-
ues for each gene averaged within each group. Those genes were 
then clustered for visualization (Figure 6A). At the statistical cut-
off applied (p < 0.05), 482 mRNA transcripts with differential 
expression between the two groups were identifi ed, 279 of which 
were enriched in RS cells and 203 enriched in FS cells (Table S2 in 

FIGURE 2 | Assignment of neurons to fast-spiking or regular-spiking 

electrophysiological phenotypes in cortical slices. (A,B) Regular-spiking 
(A) and fast-spiking cells (B), responding to step current stimulation. 
(C) Smoothed derivative of the action potential signals for all cells, centered on the 
fi rst downward zero-crossing, corresponding to the peak of the AP. This clearly 

separates the two characteristic spike shapes (FS, blue; RS, red). 
(D) Histogram of the interval between fi rst and second (corresponding to interspike 
minimum) zero-crossings of the smoothed derivative, for all cells analysed. Fast-
spiking cells are defi ned as having an interval of less than 10 ms, regular-spiking 
cells have intervals of over 20 ms (see Materials and Methods for details).
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Supplementary Material). The sets of genes enriched in each group 
were functionally heterogeneous, including transcription factors, 
intracellular enzyme and plasma membrane proteins (Table S2 in 
Supplementary Material).

To explore whether the enriched expression of genes identifi ed 
by the array analysis as such in RS or FS cells, we made use of the 
public, large-scale in situ hybridization dataset for the adult mouse 
brain, the Allen Brain Atlas (Lein et al., 2007). Many of the genes 
showing statistically signifi cant differences in expression between 
the two groups of cells, but of low magnitude, were found to be 

pan-neuronally expressed (data not shown). However, for those 
genes that were signifi cantly enriched in RS cells, that is pyramidal 
cells of the neocortex, we found many examples of genes that were 
either cortex-specifi c or highly enriched in expression in cortical 
and, in many cases, hippocampal pyramidal cells, when the expres-
sion patterns were compared with that of Emx1 (Figure 6). Several 
of those genes are not just enriched in cortex, but also demonstrate 
specifi c expression in layers 2–4 of the cortex (see Figure 6B for 
examples), demonstrating the ability of the single cell profi ling 
approach to identify cell type-specifi c genes.

FIGURE 3 | Typical fi ring patterns of the 18 layer II/III neurons analysed and their corresponding expression of pyramidal cell (Emx1) and interneuron 

(GAD65) markers. Expression levels: −, not detected; +/−, detected at low level; +, robustly detected. Cell numbers refer to the cell numbering system reported in 
Table S1 in Supplementary Material and used throughout the text.
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DISCUSSION
In this paper we have addressed the question of whether single neuron 
gene expression profi ling can prospectively resolve neuronal subtypes 
into groups, independent of any phenotypic information, and whether 
those groups refl ect meaningful biological properties of those neu-
rons. To do so, we applied methods we have developed to compare 
gene expression among single neural stem cells to study global gene 
expression in 18 randomly picked neurons from layer II/III of mouse 
neocortex. The morphology, fi ring characteristics and electrical prop-
erties of the neurons enabled the classifi cation of each cell as either 
fast- or regular-spiking, corresponding to inhibitory interneurons or 
excitatory pyramidal cells (Connors and Gutnick, 1990). Unsupervised 
clustering of neurons by global gene expression resolved the cells into 
three groups and those corresponded broadly with the groups of fast- 
and regular-spiking neurons. Genes specifi cally enriched in RS neurons 
were identifi ed from the expression dataset and confi rmed as such in 
the public mouse brain in situ hybridisation databases. These results 
provide an initial proof of principle that single-cell gene expression 
profi ling has the potential to be used to group and classify neurons 
in a manner refl ecting their known biological properties and can be 
used to identify novel, cell type-specifi c transcripts.

GLOBAL EXPRESSION PROFILING CAN GROUP SINGLE NEURONS INTO 
CLASSES THAT REFLECT MEANINGFUL BIOLOGICAL PROPERTIES
Previous expression profi ling studies at the resolution of defi ned 
neuronal cell types have either focused on a small number of 
functionally important transcripts, such as ion channels or neu-
rotransmitter systems (Cauli et al., 1997, 2000; van Hooft et al., 
2000), in single neurons or studied groups of neurons defi ned by 
a shared property: synaptic target (Arlotta et al., 2005) or com-
mon expression of a transgene (Sugino et al., 2006). While very 
powerful, those studies did not address the question of the ability 
of global expression profi ling at the single cell level to prospec-
tively group and classify neuronal cell types. In addition, the use 
of a single property to defi ne group identity, by its very nature, 
will give an averaged expression profi le of that population with 
no indication of underlying cellular heterogeneity. Given the dif-
fi culties encountered in classifying cortical interneurons using 
combinations of morphology, electrical properties and marker 
protein or gene expression (Ascoli et al., 2008), we wished to 
investigate whether an unbiased, global assay of gene expres-
sion could identify groups of neurons independent of any other 
 cellular property.

FIGURE 4 | Grouping single cortical neurons by their global expression 

profi les. Ten neurons from layer II/III of somato-sensory cortex of young mice 
(P13–P22) were recorded from and expression profi led as described (Figure 1 
and Materials and Methods). Cells were clustered based on Pearson correlation 
coeffi cients as a measure of similarity in gene expression. Clustering of these 
cells without averaging gene expression between the dye-swapped technical 
array replicates (A) resulted in the formation of two distinct clusters containing 
primarily fast-spiking neurons (yellow circles) or regular spiking neurons (blue 

circles), in each case with one RS and one FS neuron misassigned to each 
cell-type cluster. Numbers within circles correspond to the cell identifi ers used 
in Figure 3. Averaging gene expression between replicate arrays (B) did not 
change the cluster composition. In each cluster, each column represents 
expression data from a single array (A) or cell (B), each row expression ratio for a 
single gene. By convention, red colours indicate positive expression 
(enrichment) and green lower expression. The range of expression values is 
indicated by the colour bar beneath each cluster.
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FIGURE 5 | Clustering of all 18 neurons from four postnatal ages, based 

solely on global gene expression. Three major clusters can be observed: 
cluster one contains 4 RS neurons of different developmental stages; cluster 
two contains 6 neurons, 4 of which are FS and 2 are RS; cluster three 
contains 8 neurons, 6 of which are FS and 2 RS. Cell numbers correspond 

with those shown in Figure 3. Each column represents expression data from 
a single or cell, each row expression ratio for a single gene. By convention, 
red colours indicate positive expression (enrichment) and green lower 
expression. The range of expression values is indicated by the colour bar 
beneath each cluster.
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We generated global expression data from a relatively small sample 
of 18 morphologically and electrophysiologically characterized neu-
rons and used those data to group the neurons by hierarchical cluster 
analysis. It is noteworthy that the data were not fi ltered to fi rst derive 
a subset of transcripts that displayed variation in expression among 
the cells that would then be used to group the cells. In this case, the 
clustering based on gene expression was carried out independent of 
any phenotypic information. We found that this approach can group 
and classify cells that would be considered quite different in their cel-
lular properties, including neurotransmitter type, morphology and 
developmental origins. However, we did fi nd errors in assigning cells 
to clusters within this small and complex population of neurons. 
Secondly, we found that this approach also enabled the identifi cation 
of novel cell type-enriched transcripts. It is not clear currently if single 
cell profi ling is capable of distinguishing related, but distinct, classes 
of neurons, such as pyramidal cells from different cortical layers.

However, there are inherent limitations to this approach at 
present. Single cell expression profi ling presents specifi c technical 
and biological challenges. Technically, current expression profi ling 
technologies require amplifi cation of the population of single cell 
mRNA, a process that can and does introduce noise, resulting in 
an altered transcript distribution. Importantly, this can lead to low 
abundance transcripts being called as absent in a random manner, 
due to ineffi ciencies in the early steps of reverse transcription and 

amplifi cation (Subkhankulova et al., 2008). In the data reported 
here, for example, we did not identify some genes that are known 
to be pyramidal or interneuron-specifi c, such as Emx1 or GAD65 
(Katarova et al., 2000; Chan et al., 2001). From our previous work 
in neural stem cells, it is likely that this is due to a combination of 
technical issues, including ineffi ciencies in the global amplifi cation 
method, the sensitivity of the array technique and the use of the 
pooled cells as a common reference. This last aspect of the experi-
mental design is useful as it ensures that all genes expressed in the 
population are represented in the reference sample. However, the 
drawback of this approach is that, depending on the abundance of 
cell-specifi c transcripts in the pooled reference, some cell-enriched 
transcripts may not appear enriched when compared directly to 
the reference, rather they will appear depleted in the cells that do 
not express those genes.

A second potentially confounding biological problem is the noise 
inherent in gene expression in any cell and the consequent variation 
in absolute transcript numbers among phenotypically identical 
cells. We have previously found that there are signifi cant differences 
in transcript abundance between phenotypically identical neural 
stem cells and that technical noise did not account for those dif-
ferences (Subkhankulova et al., 2008). Therefore, it is likely that it 
is necessary to sample the population deeply to ensure  suffi cient 
representation of each cell type and thereby  compensate for the 

FIGURE 6 | (A) Clustering of transcripts identifi ed by t-test as enriched in 

either RS or FS cells. Expression is represented by a scale from green 
(enriched in FS cells) through red (enriched in RS cells). Each row represents 
expression for a single gene. (B) In situ hybridization patterns for the pyramidal 
neuron-specifi c transcript Emx1 and the GABAergic interneuron-specifi c 
transcript Gad65. Low power images are shown of mRNA in situ hybridizations 
of a set of differentially expressed genes on parasagittal sections of the adult 
mouse brain, from the Allen Brain Atlas (mouse.brain-map.org), along with a 
high power image of the expression in the somatosensory cortex. In all 
images the olfactory bulbs are to the left and the cerebellum to the right. For 

each non-radioactive ISH image, the corresponding Allen Brain Atlas 
expression analysis image is shown to clarify the relative expression of each 
gene according to scale of blue (low) to red (high) expression, as illustrated in 
the attached diagram. (C,D) Confi rmation of cell-specifi c or enriched 
expression of genes identifi ed by single cell expression profi ling as enriched in 
FS cells (C) or RS cells (D). Genes are as indicated by the gene symbols in 
each panel. For the RS cell-enriched genes (D), expression can be observed 
both in some or all cortical layers and also in hippocampal pyramidal cells. FS-
enriched genes (C) are expressed in interneurons in the striatum, as well as in 
the hippocampus and cortex.
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 differentiation hierarchy by global 
amplifi cation of cDNA from single 
cells. Curr. Biol. 5, 909–922.

Brady, G., and Iscove, N. N. (1993). 
Construction of cDNA libraries 
from single cells. Meth. Enzymol. 225, 
611–623.

Cauli, B., Audinat, E., Lambolez, B., 
Angulo, M. C., Ropert, N., Tsuzuki, 
K., Hestrin, S., and Rossier, J. (1997). 
Molecular and physiological diver-
sity of cortical nonpyramidal cells. J. 
Neurosci. 17, 3894–3906.

Cauli, B., Porter, J. T., Tsuzuki, K., 
Lambolez, B., Rossier, J., Quenet, B., 
and Audinat, E. (2000). Classifi cation 
of fusiform neocortical interneu-
rons based on unsupervised cluster-
ing. Proc. Natl. Acad. Sci. U.S.A. 97, 
6144–6149.

Chan, C. H., Godinho, L. N., Thomaidou, 
D., Tan, S. S., Gulisano, M., and 
Parnavelas, J. G. (2001). Emx1 is a 
marker for pyramidal neurons of 
the cerebral cortex. Cereb. Cortex 11, 
1191–1198.

Chomczynski, P., and Sacchi, N. (1987). 
Single-step method of RNA isolation 
by acid guanidinium triocyanate-
phenol-chloroform extraction. Anal. 
Biochem. 162, 156–159.

Connors, B. W., and Gutnick, M. J. (1990). 
Intrinsic fi ring patterns of diverse neo-

intrinsic variability of single cell transcript levels. Alternatively, 
reducing expression levels from continuous measurements to dis-
crete bins or, in the extreme, to simple binary presence or absence 
calls, would potentially simplify the classifi cation of cells based on 
expression of thousands of transcripts.

CAN GLOBAL EXPRESSION PROFILES BE USED TO PREDICT BIOLOGICAL 
PROPERTIES OF NEURONS?
One long-term goal of single cell profi ling is to use the combina-
torial expression data to predict the biological properties of the 
neuron, essentially by constructing cellular models from single cell 
transcriptome data. Previous studies, based on single cell PCR data 
of expression of sets of ion channels, indicated that it is possible 
to correlate electrical properties with the expression of particular 
combinations of channels (Toledo-Rodriguez et al., 2004). However, 
scaling this approach from tens to thousands of transcripts presents 
a considerable challenge, particularly if the relative levels of those 
transcripts, and not simply presence or absence of a given transcript, 
are included in the cellular modeling. Analyses of gene expression in 
single neurons have found that the levels of mRNAs for specifi c genes 
can vary considerably among cells of the same type (Schulz et al., 
2006, 2007; Tobin et al., 2009). It is likely that models of neuronal 
phenotype and electrical properties will require data on the levels 
of the corresponding proteins and also the possible protein-protein 
interactions and their functional signifi cance. Current technologies 
for protein analysis have not achieved single cell resolution, but 
large-scale proteomic analyses of neurons have begun to provide 
data that will be useful in this context (Emes et al., 2008).

TOWARDS A CATALOGUE OF CORTICAL CELL TYPES
Previous global expression studies of cortical neurons have  produced 
a taxonomy of forebrain cell types (Sugino et al., 2006) and identi-
fi ed many novel cell-specifi c transcripts in pyramidal cells (Arlotta 
et al., 2005). Those studies have demonstrated that there are many 
examples of transcripts that can be used singly or in combination as 
discriminators of cortical cell types. The data presented here indi-
cate that the global expression profi ling approach has the potential 
to be extended to the single cell level, independent of any cellular 
property of cortical neurons, to sample the population of neurons 
in a cortical region in order to assess cellular diversity at the genetic 
level, group those cells and, ultimately, classify them by gene expres-
sion. As such, this approach provides a bottom-up approach that 
complements the top-down approach of identifying cell-specifi c 
expression patterns based on some group- defi ning property of a set 
of neurons. Together, these complementary approaches may enable 
the generation of a catalogue of cortical cell types, based on gene 
expression, which can be one element of a holistic classifi cation of 
cortical neurons.
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