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Adeno-associated virus (AAV)-mediated gene delivery has emerged as an effective and safe
tool for both preclinical and clinical studies of neurological disorders. The recent discovery
that several serotypes are able to cross the blood–brain barrier when administered
systemically has been a real breakthrough in the field of neurodegenerative diseases.
Widespread transgene expression after systemic injection could spark interest as a
therapeutic approach. Such strategy will avoid invasive brain surgery and allow non-focal
gene therapy promising for CNS diseases affecting large portion of the brain. Here, we will
review the recent results achieved through different systemic routes of injection generated
in the last decade using systemic AAV-mediated delivery and propose a brief assessment
of their values. In particular, we emphasize how the methods used for virus engineering
could improve brain transduction after peripheral delivery.
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INTRODUCTION
In the last decade, adeno-associated-virus (AAV)-mediated gene
delivery has emerged as an effective and safe tool for both pre-
clinical and clinical studies of neurological disorders (Bartus
et al., 2013; Weinberg et al., 2013; Ojala et al., 2014). Currently,
AAV is the most widely used vector for clinical trials for neu-
rological disorders (gene therapy database can be found at:
http://www.abedia.com/wiley/index.html). To date, no adverse
effects linked to the use of this vector have ever been reported
from clinical trials. Adeno-associated virus is a non-pathogenic
dependovirus from the parvoviridae family requiring helper func-
tions from other viruses, such as adenovirus or herpes simplex
virus, to fulfill its life cycle (Dayton et al., 2012). The wild-type
(WT) AAV is characterized by a single-stranded DNA (ssDNA)
genome, with inverted terminal repeats (ITR) at both ends, of
approximately 5 kb surrounded by a capsid. Advances in process
development have made AAV production fast, reliable, highly pure,
and affordable.

The first recombinant AAVs of serotype 2 (rAAV2) have been
generated in the 1980s after the removal of 96% of the viral
genome (Samulski et al., 1982; Hermonat and Muzyczka, 1984;
McLaughlin et al., 1988). Only the two ITRs containing repli-
cation origin and encapsidation signal remained making it a
safe, non-replicative virus. Further studies allowed the produc-
tion of high-titer rAAV batches in the absence of WT virus
and adenovirus (Ferrari et al., 1997; Grimm et al., 1998; Xiao
et al., 1998). Moreover, AAVs have been reported to transduce
both dividing and non-dividing cells as well as a wide range
of tissue while remaining being poorly immunogenic, making
it an ideal candidate for gene delivery to the CNS (Weinberg

et al., 2013). Taking advantage of progresses made in rAAV
production, the first clinical trials for neurological disorders,
such as Parkinson’s disease, using rAAV2 vectors opened a
new era (Kaplitt et al., 2007; Marks et al., 2010; Bartus et al.,
2013).

Phylogenic studies of capsid protein sequence from human
and non-human primate (NHP) tissue allowed the characteri-
zation of distinct clades or families (Gao et al., 2004). Recently,
12 of these AAV serotypes have been engineered into rAAV
(Porras et al., 2014). Thanks to their different capsid composition,
the multiple serotypes exhibit distinct transduction profiles com-
pared to rAAV2 (Vandenberghe et al., 2008). The ability of AAV2
ITRs to package any of the serotype capsids allows efficacy com-
parison between serotypes in vivo (Rabinowitz et al., 2002). To
date, while rAAV2 is the most widely used in clinical trials, most of
the other serotypes have shown an enhanced ability to transduce
neurons in experimental studies (Davidson et al., 2000; Taymans
et al., 2007; Tarantal and Lee, 2010).

It is difficult to define the best serotype for intraparenchymal
CNS injections since species and cerebral structures have been
shown to influence transduction success (Taymans et al., 2007;
Korecka et al., 2011; Weinberg et al., 2013). At least one study
reported that overexpression of the microtubule-associated pro-
tein tau peaked earlier when mediated by rAAV9 or rAAVrh10
than by rAAV2 or rAAV8 despite their 2.1-fold lower dose of virus
genome (vg; Klein et al., 2008).

Among the different serotypes, only a few have been shown
to efficiently cross the blood–brain barrier (BBB; Zhang et al.,
2011). The BBB deprives the brain of > 98% of neurotherapeu-
tic compounds (Pardridge, 2002). In this context, gene therapy
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has been proposed as a means of crossing the BBB (Foust et al.,
2008). Widespread transgene expression after systemic injec-
tion, although challenging, could be of interest for therapeutic
approaches. Such a strategy would avoid invasive brain surgery and
allow promising non-focal gene therapy for CNS diseases such as
lysosomal storage disorders (LSDs) or Alzheimer’s disease, which
knowingly affect large part of the brain.

WIDESPREAD BRAIN TRANSDUCTION AFTER SYSTEMIC
INJECTION
As this field of research is booming, we review here the recent
results achieved through different systemic routes of injection,
such as intramyocardialy, intramuscularly, and intravascularly,
generated in the last decade using systemic AAV-mediated delivery.
In addition, we propose a brief assessment of their values.

Successful gene therapies for brain diseases require a
widespread distribution and magnitude of transgene expression
throughout the brain. Several studies reported an efficient gene
delivery to motor neurons after retrograde transport of viral par-
ticles injected intramuscularly (i.m.; Kaspar, 2003; Miller et al.,
2005). This strategy enabled the delay of disease onset and the
increase of lifespan in a mouse model of amyotrophic lateral scle-
rosis (ALS; Kaspar, 2003). However, targeting specific brain areas
such as the cerebral cortex would have required repeated injections,
thus preventing the clinical application of such an approach (Foust
et al., 2008). Conversely, efficient brain transduction after single
systemic injection of AAV particles has been recently reported in
several species such as mice, rats, cats, and monkeys (Table 1;
Foust et al., 2008; Duque et al., 2009; Wang et al., 2010; Dehay
et al., 2012). Foust et al. (2008) demonstrated a greater neuronal
tropism after injection in neonatal mice through the facial vein
while injection into adult mice through the tail vein led to glial
(mostly astrocytic) transduction. However, Duque et al. (2009)
reported up to 28% of transduction of cervical spinal cord in adult
mice after intravascular (i.v.) injection suggesting that this route
of injection might be effective for brain transduction in adult ani-
mals, even though the transduction efficiency was variable. Again,
systemic injection of rAAV9 to neonate cats also showed better
transduction efficiency than in adult animals (Duque et al., 2009).
Intravenous administration of rAAV9 to neonatal rats showed
up to 78% of transduction of motor neurons of the spinal cord
associated with widespread CNS transduction (Wang et al., 2010).
Altogether, these studies suggest that injection in neonatal ani-
mals is more successful compared to injection in adult animals
for widespread brain transduction. This strategy has been success-
fully applied to a spinal muscular atrophy (SMA) mouse model
(Foust et al., 2010). In this pioneer work, the group of Brian Kas-
par injected rAAV9 expressing the survival motor neuron (SMN)
protein at postnatal day 1 (P1) into SMA animals allowing rescued
motor function and increased lifespan (Foust et al., 2010). Interest-
ingly, treatment at postnatal day 5 partially rescued the phenotype
while treatment at postnatal day 10 had barely any effect (Foust
et al., 2010). The decreased effect of treatment over time can be
correlated with the increased glial transduction. To date, it is not
yet fully understood why neuronal transduction in adult brains is
not as powerful as in neonatal animals. Several factors have been
proposed such as differences in extracellular matrix composition,

neuron-to-glia ratio or BBB maturity although these hypotheses
remain controversial (Lowenstein, 2009; Saunders et al., 2009).
Recently, the group of Andrea Ballabio used a combined approach
with both intracerebral ventricle injection and systemic injection
of rAAV9 to achieve whole-body transduction in a multiple sul-
fatase deficiency (MSD) mouse model (Spampanato et al., 2011).
Although the combined approach reverses the phenotype of this
severe LSD, the intracerebral ventricle injection explained mainly
the brain transduction while the systemic injection induced most
of the peripheral transduction (Spampanato et al., 2011). Sev-
eral studies confirmed the reproducibility of rAAV9 intravenous
injection with a dose-dependent CNS transduction in neonatal
mice associated with a sustained expression of up to 18 months
post-injection (Gray et al., 2011b; Miyake et al., 2011). While most
studies used rAAV9, several other serotypes have also been shown
to cross the BBB and induce a robust CNS transduction as well
(Zincarelli et al., 2008; Zhang et al., 2009). Among them, rAAVrh10
appeared at least as efficient as rAAV9 in CNS transduction after
i.v. injection into neonatal mice (Zhang et al., 2009).

Consistent with mouse, rat, and cat studies, efficient gene
delivery and brain transduction has been reported after systemic
injection of rAAV in macaque monkeys (Bevan et al., 2011; Gray
et al., 2011b; Dehay et al., 2012; Mattar et al., 2012; Samaranch
et al., 2012). Even though some methodological discrepancies
between studies prevent a clear comparison of the results, some
conclusions can be achieved. Systemic administration of rAAV9 to
adult monkeys induced mostly glial transduction (Bevan et al.,
2011; Gray et al., 2011b; Samaranch et al., 2012) while injec-
tion in neonate animals induced neuronal transduction (Dehay
et al., 2012; Mattar et al., 2012). Another concern in this field
of research involves anti-AAV antibodies, which are commonly
present in both non-human primate and humans (Boutin et al.,
2010; Calcedo et al., 2011; Gray et al., 2011b; Samaranch et al.,
2012). Such antibodies might prevent efficient brain transduction
and might explain the weaker transduction into adult animals
since anti-AAV antibody concentration has been reported to
increase with time suggesting that “the sooner the better” is
the credo for systemic injection in NHP (Calcedo et al., 2011).
However, with regard to these discrepancies between studies, a
high-titer dose of viral particles appeared to be the common
denominator for monkey injection (Bevan et al., 2010; Gray et al.,
2011b; Dehay et al., 2012; Mattar et al., 2012; Samaranch et al.,
2012).

These critical points in mind, gene delivery to fetuses could be
clinically relevant for early-onset diseases associated with neurode-
generation and early death in childhood such as Type II Gaucher
disease (GD). In this particular disorder, brain pathology can be
detected in utero and death occurs within the two first years of age
(Sidransky et al., 2009). Correspondingly, two studies adminis-
tered rAAV9–GFP to fetal mice or monkeys and reported a robust
central and peripheral transduction (Rahim et al., 2011; Mattar
et al., 2012). Both studies reported a strong transduction of neu-
ronal cells compared to astrocytes, surpassing that of neonatal
injection (Rahim et al., 2011; Mattar et al., 2012). Even though
this strategy has not been applied yet to a disease model such as
Type II GD, in utero delivery of a therapeutic gene might improve
phenotype of early-onset diseases.
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Several routes of administration have been tested to obtain
widespread brain transduction. As mentioned earlier, large brain
transduction has been reported after intravenous injections of
rAAV (Foust et al., 2010; Dehay et al., 2012). Interestingly, a single
intracardiac injection of rAAV to adult mice has been reported to
preferentially transduce glial cells and to reduce amyloid-β peptide
levels in the brain (Iida et al., 2013; Iwata et al., 2013). Once again,
the strong glial transduction might be due to the time of injec-
tion. More invasive protocols such as intrathecal intra-cisterna
magna injections of rAAV9 have been reported to efficiently trans-
duce cerebral tissue in both NHPs and pigs (Federici et al., 2012;
Samaranch et al., 2012). Intra-cisterna magna and other intrathe-
cal injections reported a stronger transduction compared to i.v.,
i.m., s.c., and sciatic nerve injections (Towne et al., 2009; Sama-
ranch et al., 2012). Although interesting, this approach could
not circumvent the antibodies issue in NHP (and hence man;
Samaranch et al., 2012). Finally, some groups used intranasal
administration of rAAV and reported an efficient transduction
mostly in olfactory bulbs and lungs (Zhang et al., 2003; Wolf et al.,
2012).

Widespread brain transduction after systemic injection of rAAV
might have two distinct applications. First, AAV-mediated expres-
sion of a given pathogenic protein in the whole brain could
be an alternative modeling system to the classic toxic-based
or local injection models of non-focal neurological disorders.
Moreover, such strategy might allow global CNS transduction
of animals such as rats or NHP, which remains difficult to
achieve by classical transgenesis. Second, widespread silencing
of a pathogenic protein or expression of a rescue protein might
be useful for therapeutic interventions. However, gene therapy
for neurodegenerative disorders, which are mainly adult-onset
diseases, would ideally occur in adult, unless familial diseases
or cases of otherwise sporadic diseases are targeted. Even if
glial transduction might have clinical relevance for diseases such
as amyotrophic lateral sclerosis (ALS) or Parkinson’s disease
(Nagai et al., 2007; Colangelo et al., 2014), a strong cell-type-
specific transduction is mandatory for clinical application of
systemic gene delivery via rAAV. Moreover, the large titers of
virus used in NHPs suggest that even higher titers should be
used in humans. These limitations stress the need for more
powerful and precise vectors as well as an optimized route of
administration.

CONTROL OF TRANSGENE EXPRESSION, CELL SPECIFICITY,
AND VECTOR OPTIMIZATION
VIRUS GENOME TUNING
To overcome these limitations, several methods have been devel-
oped to improve brain transduction after systemic injection
(Figure 1). The WT AAV genome is packaged as a linear ssDNA
with ITRs at both ends. Host-cell-mediated synthesis of the
second strand of the AAV genome has been shown to be the
rate-limiting step of transduction with rAAV (Ferrari et al., 1996).
Thus, McCarty et al. (2003) deleted the terminal resolution site
from one ITR to generate so-called self-complementary vectors
(scAAV) with a 10 to 50-fold stronger gene expression than single-
stranded vectors. However, such an increase in gene expression
leads to the loss of half of the packaging capacity of the vector

(2150 bp for scAAV2; McCarty et al., 2003). Such increased expres-
sion has been reported in a systemic gene delivery study where the
number of reporter-positive cells after ssAAV9 injection was sim-
ilar to that obtained with a 20-fold lower dose of scAAV9 (Gray
et al., 2011b).

One of the main concerns of systemic gene delivery via i.v.
injection of rAAV might be off targets. Several studies reported
transduction of peripheral organs, such as skeletal muscle, heart,
pancreas, or antigen-presenting cells after systemic injections
(Zincarelli et al., 2008; Rahim et al., 2011; Mattar et al., 2012).
Although it can be of significance for diseases with periph-
eral and central components such as LSD, this can raise the
apprehension of unwanted protein overexpression external to
the CNS potentially eliciting toxic responses (Xie et al., 2011).
At the vector genome level, two distinct but complimentary
strategies could be used to specify gene expression: the first
is based on cell-type-specific promoters restricting transgene
expression to certain cell subpopulations; conversely the sec-
ond involves the repression of transgene expression in unwanted
cells or organs. In this context, promoter choice is critical
since it can determine the strength or specificity of expression.
Most intracerebral AAV injections used a cell-type-specific pro-
moter such as the synapsin promoter to restrict expression to
neurons (Decressac et al., 2012; Engeln et al., 2013). However,
systemic gene delivery studies mostly use strong and ubiqui-
tous promoters including the cytomegalovirus (CMV) promoter
or the truncated chicken beta actin (CBA) promoter (Dalkara
et al., 2011; Mattar et al., 2012). The restricted packaging capac-
ity of ssAAV and even more of self-complementary vectors
stresses the need for minimal and strong promoters. To fulfill
this need, Gray et al. (2011a) developed a hybrid CBA (CBh)
promoter of 800 base pairs (bp) allowing more stable, longer,
and stronger expression compared to CMV or CBA promoters.
This expression can be further enhanced by the use of 5′ or
3′ untranslated regions (UTR). Of note, the woodchuck hep-
atitis virus post-transcriptional response element (WPRE) has
been shown to improve brain transduction after intracerebral
injection (Hermening et al., 2006; Decressac et al., 2012). This
increased transduction comes with a cost of 600 bp of packag-
ing size (Hermening et al., 2006). Rahim et al. (2011) compared
brain and eye expression after in utero injection of scAAV9 with-
out WPRE element versus ssAAV9 carrying the WPRE sequence.
They observed that the scAAV9 vector including the WPRE
sequence is more efficient than an scAAV9 vector deprived of
WPRE. Subpopulation-specific neuronal promoters are often long
DNA sequences with regulatory elements. For instance, the full
mouse tyrosine hydroxylase promoter that controls expression
in dopaminergic neurons is 7.5 kb making it too voluminous
for use in an rAAV (Iwata et al., 1992). In this context, the use
of tissue-specific microRNAs (miRNAs)-binding site in the AAV
genome could overcome this promoter size limitation by repress-
ing expression in tissue that express the miRNAs (Xie et al., 2011).
Such a strategy might be of interest for systemic gene delivery.
Indeed, the incorporation of three copies of miRNA122-binding
site or miRNA1-binding site in the rAAV genome dramatically
decreases transduction in liver or heart, respectively (Xie et al.,
2011). Reduction of hepatic transgene expression after systemic
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FIGURE 1 | Summary of methods used to improve gene delivery after systemic injection of AAVs. AAV, adeno-associated virus; BBB, blood–brain barrier;
miRNA, microRNA; VP, viral particle protein.

gene delivery might be an added benefit as liver is a key target of
AAV vectors.

CAPSID TUNING
Virus capsid is the other obvious target to engineer to improve
or specify transgene expression. A WT AAV capsid comprises
three structural Cap proteins: VP-1, -2, and -3 with a ratio of
1:1:10. The capsid is the primary interface between virus and
host cell, mediating vector binding to cell surface receptors (Wu
et al., 2006). Moreover, the capsid but not the ITR sequence influ-
ences cell and tissue tropism (Grimm et al., 2008; Vandenberghe
et al., 2008). The propensity of certain AAVs serotypes to bypass
anatomical barriers is directly related to their capsid composi-
tion since only several serotypes with identical genome are able to
efficiently cross the BBB (Zhang et al., 2011). Glycans with ter-
minal β-galactose linkages have been recently identified as the
primary receptor for AAV9 (Bell et al., 2011; Shen et al., 2011).
This unique feature of serotype 9 might be related to its ability to
cross the BBB. The 37/67-kDa laminin receptor has been identified
as co-receptor for AAVs of serotypes 2, 3, 8, and 9; however, its
involvement in BBB crossing has not been determined yet (Akache
et al., 2006).

Capsid engineering can be designed to produce new AAV
variants by (i) mutagenesis of VP proteins, (ii) incorporation
of specific peptide ligand at the virus surface or (iii) directed
evolution (Gray and Samulski, 2011). One example of cap-
sid mutagenesis is tyrosine substitution. Zhong and colleagues
reported that rAAV2 capsid could be phosphorylated on surface-
exposed tyrosines leading to ubiquitinylation and degradation of
viral particles (Zhong et al., 2008). Mutagenesis of one or more of
the seven surface-exposed tyrosine residues to phenylalanine (Y–
F) has been reported to reduce proteasomal degradation of viral
particles and therefore enhance retina transduction after either

systemic or intravitreous injection of rAAV2, -8, or -9 (Petrs-Silva
et al., 2008; Zhong et al., 2008; Dalkara et al., 2011). Similarly, the
group of Aravind Asokan used random mutagenesis to identify
two rAAV9 variants carrying one (N498I) or two (N498Y and
L602F) mutations associated with a 10-fold decreased liver trans-
duction without affecting transduction of other organs after a
tail vein injection (Pulicherla et al., 2011). Earlier work reported
that rAAV2 capsid could sustain insertional mutagenesis with-
out affecting infectivity (Rabinowitz et al., 1999). In this context,
peptides derived from a glutamatergic receptor antagonist and
dynein-binding motif have been inserted in the VP3 sequence
allowing delivery and retrograde transport of rAAV2 to the CNS
after peripheral (tongue) injection in vivo (Xu et al., 2005). Several
groups inserted peptide motifs into rAAV2 capsid after random
library or phage-display library screening to increase rAAV2 affin-
ity for coronary or cerebral endothelium (Müller et al., 2003; Chen
et al., 2009). Although very promising, further work is neces-
sary to characterize such peptides for brain transduction. DNA
shuffling and directed evolution are other methods used to gen-
erate mixtures of AAV capsid genes in an unbiased way. Several
methods have now been described, but they are all based on a
two-step strategy (Maheshri et al., 2006; Gray et al., 2010; Dalkara
et al., 2013). First, a library is created by error-prone polymerase
chain reaction to induce random mutagenesis on capsid genes
or by a combination of different serotypes or random insertion
libraries. Second, the library is subjected to several rounds (often
three) of selection. One or more clones are obtained with unique
characteristics. The Samulski’s group used this method to cre-
ate clones that can selectively cross the seizure-compromised BBB
and transduce specific cells at the damage sites without transduc-
ing other organs (Gray et al., 2010). The new vectors generated
by directed evolution or a similar strategy might improve neu-
ronal transduction in adult and also overcome the seropositivity
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problem, since no antibody can be generated for these new capsid
variants.

Several methods, not directly relying on the virus, have been
proposed to increase brain expression after systemic delivery of
rAAV to adult animals. Mannitol has been used to induce hyper-
osmotic breaching of the BBB, therefore increasing the entry of
AAV into the brain (Fu et al., 2011). Although positive results were
reported for rAAV2 in a mouse model of LSD,co-administration of
mannitol with rAAV9 had only modest effects on brain transduc-
tion (McCarty et al., 2009; Fu et al., 2011; Gray et al., 2011b). Those
studies suggest that rAAV9 crosses the BBB through active trans-
port (Gray et al., 2011b). Moreover, mannitol co-administration
could be risky since it increases the influx of all molecules in the
brain. However, this compound is regularly used in clinical prac-
tice and no adverse effects have ever been reported in clinical trials
(Kaplitt et al., 2007; Lowenstein, 2009). Identification and mod-
ification of the key components of such transport might allow
transduction improvements. As stated earlier, preexisting anti-
AAV antibodies in primate might represent a major obstacle to
AAV-mediated gene therapy success. To overcome this concern,
Katherine A. High’s group developed an empty mutant capsid,
which can interact with antibodies without entering the cell (Min-
gozzi et al., 2013). As a trojan, addition of the mutant capsid at
different ratios in the whole vector formulation increased trans-
duction with the same vector genome dose in both mouse and
NHPs (Mingozzi et al., 2013). While safety and efficacy have been
proved, this encouraging concept still needs to be tested in a disease
model.

CONCLUDING REMARKS
Ultimately, gene therapy has been a long sought goal for neuro-
logical disorder. Thirty-two years after the development of the
first recombinant virus, AAV appears to be an extremely use-
ful and promising lynchpin for both therapeutic approaches to
neurodegenerative disorders and useful strategies in neuroscien-
tific research. Recent findings demonstrated that several serotypes,
such as AAV9 or AAVrh10, cross the BBB with a safe systemic deliv-
ery protocol associated with strong non-focal brain transduction.
Such a strategy has been proved efficient in several animal mod-
els of disease such as SMA or LSDs. Moreover, several innovative
strategies, at the genome or capsid levels, have been developed to
increase and/or precise tissue-specific gene expression after sys-
temic injection of rAAV. Unavoidable efforts need to be done
to harmonize production, purification, titration, and injection
protocols between laboratories. It is worth noting that strength-
ening those specific points will help achieve a clear comparison
between these studies. The advancements in AAV-mediated gene
therapy hold the promise of a bright future for neurodegenerative
diseases.
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