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Transient receptor potential (TRP) channels are a large and diverse family

of transmembrane ion channels that are widely expressed, have important

physiological roles, and are associated with many human diseases. These

proteins are actively pursued as promising drug targets, benefitting greatly from

advances in structural and mechanistic studies of TRP channels. At the same

time, the complex, polymodal activation and regulation of TRP channels have

presented formidable challenges. In this short review, we summarize recent

progresses toward understanding the structural basis of TRP channel function,

as well as potential ligand binding sites that could be targeted for therapeutics.

A particular focus is on the current understanding of the molecular mechanisms

of TRP channel activation and regulation, where many fundamental questions

remain unanswered. We believe that a deeper understanding of the functional

mechanisms of TRP channels will be critical and likely transformative toward

developing successful therapeutic strategies targeting these exciting proteins.

This endeavor will require concerted efforts from computation, structural

biology, medicinal chemistry, electrophysiology, pharmacology, drug safety and

clinical studies.
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Introduction

Ion channels are integrated membrane proteins that facilitate and regulate the passage
of ions through membranes (Hille, 2001). Their activities are controlled by various cellular
stimuli including chemical ligands, voltage, temperature, mechanical force and others
(Keynes, 1975; Hebert, 1998; Minor, 2010). Dysfunction or mis-regulation of ion channels
can lead to a plethora of diseases (Hübner and Jentsch, 2002; Zaydman et al., 2012),
and they are considered one of the most important classes of drug targets (Kaczorowski
et al., 2008; Clare, 2010; Bagal et al., 2013; Santos et al., 2017; Hutchings et al., 2019).
Transient receptor potential (TRP) channels, in particular, are a large and diverse family
of ion channels second in size only to potassium channels (Gees et al., 2012; Cao, 2020).

Frontiers in Molecular Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2023.1334370
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2023.1334370&domain=pdf&date_stamp=2024-01-11
https://doi.org/10.3389/fnmol.2023.1334370
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnmol.2023.1334370/full
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-16-1334370 January 6, 2024 Time: 16:6 # 2

Huang et al. 10.3389/fnmol.2023.1334370

They play critical roles in sensory perception and possess
polymodal activation by various physical and chemical stimuli
(Nilius and Owsianik, 2011). There are 27 members in the human
TRP ion channel superfamily. They can be further divided into
six subfamilies based on sequence homology, namely, TRPC1-7
(canonical), TRPV1-6 (vanilloid), TRPM1-8 (melastatin), TRPA1
(ankyrin), TRPML1-3 (mucolipin), and TRPP2-3 (polycystins)
(Montell et al., 2002). Note that the sequence-based classification
does not necessarily cluster TRP channels with the same or similar
functionalities–members within one subfamily can have distinct
functions. TRP channels are widely expressed in most cells, tissues
and organs with varying expression patterns among members
(Nilius and Owsianik, 2011). For example, TRPC, TRPA, TRPM
are primarily localized in plasma membrane, whereas TRPML and
TRPP channels locate in the cytosolic compartments due to their
C-terminal endoplasmic reticulum retention-signaling domain.

As multifunctional signaling proteins, TRP channels can sense a
wide range of external and internal stimuli and trigger downstream
physiological responses (Clapham, 2003; Voets et al., 2005). While
the functions of some TRP channels have been well studied,
many others remain insufficiently characterized, especially at the
molecular level. For example, TRPV1 has a significant role in
thermoregulation (Romanovsky et al., 2009; Szolcsányi, 2015),
TRPM8 plays a central role in cold sensing (McKemy et al., 2002;
Peier et al., 2002; Brauchi et al., 2004; Bautista et al., 2007),
TRPA1 could serve as a sensor for pain, noxious cold temperature,
environmental irritants, cellular stress and tissue damage (Caspani
and Heppenstall, 2009; Viana, 2016; Meents et al., 2019; Souza
Monteiro de Araujo et al., 2020) and TRPV5 and TRPV6, two
epithelial calcium channels, are responsible for Ca2+ reabsorption
and thus play a key role in calcium homeostasis (van Abel et al.,
2005; van Goor et al., 2017; Khattar et al., 2022; Walker and Vuister,
2023). Overall, due to their important sensory perception roles,
studies of the physiological function, activation and regulation of
TRP channels have been and will continue to be a hot spot in
biological and biomedical research.

With their widespread expression in the human body
and extensive involvement in various key psychological and
pathological processes (Nilius and Owsianik, 2011), TRP channels
are attractive therapeutic targets for treatment of both acquired
and hereditary channelopathies (Moran et al., 2011; Fallah et al.,
2022; Koivisto et al., 2022). Many traditional natural products from
plants and animals have been discovered to target TRP channels.
For example, capsaicin from Capsicum and resiniferatoxin from
resin spurge are activators of TRPV1, cannabinoids from Cannabis
activates TRPV2, menthol from mint can target TRPM8 and
TRPV3, and various pungent ingredients from wasabi, mustard,
radish activate TRPA1. These compounds have been well-curated
in several seminal review papers (Calixto et al., 2005; Vetter and
Lewis, 2011; Zhang et al., 2019). These examples also highlight
great potentials in exploiting natural products for targeting TRP
channels. Many drug candidates, either from natural or synthetic
origins, are currently in clinical trials, targeting various TRPVs
as well as TRPA1 and TRPM8 channels (Moran and Szallasi,
2018; Iftinca et al., 2021). Furthermore, high resolution structures
are now available for all subfamilies at multiple functional states,
providing a solid basis for rational approaches toward targeting
these proteins (Cao, 2020; Huffer et al., 2020; Diver et al., 2022).
Yet, significant gaps remain in the current understanding of

the activation and regulation of TRP channels at the molecular
level. In this review, we summarize the therapeutic potential of
TRP channels as well as recent advances in structural studies of
TRP channels, with an emphasis on known ligand binding sites
and mechanistic features of TRP channel gating and regulation.
We also discuss the perspective on how understanding the
molecular mechanisms can help to advance therapeutics and drug
development targeting TRP channels.

Pathological and therapeutic roles
of TRP channels

Hereditary mutations in TRP channels can cause a variety of
channelopathies, which is not surprising given their important
regulatory roles in membrane excitability of sensory neurons
and cellular ion homeostasis (Yue and Xu, 2021). For example,
TRPV4, which is involved in the most well-documented mutation-
induced inheritable channelopathies, is directly linked to peripheral
neuropathies, skeletal dysplasia and arthropathy with varied
phenotypes and syndromes (Dai et al., 2010; Nilius and Owsianik,
2010; Nilius and Voets, 2013). Currently reported TRP hereditary
channelopathies are summarized in Table 1, highlighting the
importance of TRP channels as drug targets. Direct modulation of
the activities of TRP channels through drugs has also been pursued
as an effective strategy to intervene the progressions of pain,
respiratory disease, cancer and diabetes (Santoni and Farfariello,
2011; Brederson et al., 2013; Colsoul et al., 2013; Shapovalov et al.,
2016; Belvisi and Birrell, 2017). The current status of drug discovery
and clinical trials of TRP channels has been well-covered in recent
reviews (Yue and Xu, 2021; Koivisto et al., 2022). Herein, we will
focus on the most well-known TRP-related acquired diseases – pain
and respiratory diseases.

Some TRP channels, such as TRPV1-4, TRPA1 and TRPM8,
are richly expressed in sensory neurons (Mickle et al., 2015),
and are prime analgesic targets to eliminate pain sensation (Dai,
2016; Moran and Szallasi, 2018). It has been known that both
agonists and antagonists of TRPV1 could silence TRPV1-mediated
nociception due to its prolonged desensitization after applying
agonists (Noto et al., 2009; Chung and Campbell, 2016; Bonezzi
et al., 2020). Downregulating or antagonizing TRPA1 has been
shown to reduce cold hyperalgesia in nerve injury models (Obata
et al., 2005; Katsura et al., 2006; Caspani et al., 2009; Staaf et al.,
2009), mechanical allodynia (Eid et al., 2008; Kerstein et al., 2009;
Kwan et al., 2009; Wei et al., 2011; Zappia et al., 2017), and painful
diabetic neuropathy (Koivisto et al., 2012) and chemotherapeutic-
induced peripheral neuropathy (Staff et al., 2017). Antagonists of
TRPM8 have been documented in the treatment of chronic pain
and migraine (Weyer and Lehto, 2017). Some natural agonists of
TRPM8, such as menthol, have been used for centuries due to their
analgesic effects (Patel et al., 2007). These and other TRP channels
involved in pain sensation and relief have been extensively reviewed
in many seminal reviews (Willis, 2009; Brederson et al., 2013;
Fernández-Peña and Viana, 2013; Dai, 2016; González-Ramírez
et al., 2017; Moran and Szallasi, 2018; Souza Monteiro de Araujo
et al., 2020), which speaks volume to the importance of these
ion channel’s role in nociception and the great promise of TRP-
targeting drugs in the treatment of pain of various natures.
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TABLE 1 TRP-related hereditary channelopathies.

Member Channelopathies References

TRPA1 Familial episodic pain syndrome (GOF) Kremeyer et al., 2010

TRPV3 Olmsted syndrome (GOF) Lin et al., 2012; Duchatelet et al., 2014; Ni et al., 2016

TRPV4 Autosomal dominant skeleto-dysplasia brachyolmia type 3 (GOF)
congenital distal spinal muscle atrophy (GOF)
Charcot-Marie-Tooth disease type 2C (GOF)
familial digital arthropathy brachydactyly (LOF)
familial digital arthropathy brachydactyly (LOF)
parastremmatic dysplasia
spondylo-epimetaphyseal dysplasia maroteaux pseudo-Morquio type 2
spondylometaphyseal dysplasia Kozlowski type
scapuloperoneal spinal muscular atrophy (GOF)

Thoroughly reviewed in Dai et al. (2010), Nishimura et al.
(2012), and Nilius and Voets (2013)

TRPV5 Kidney stone (LOF) Khaleel et al., 2015; Oddsson et al., 2015; Wang et al., 2017; Ali
et al., 2022

TRPV6 Chronic pancreatitis (LOF) Masamune et al., 2020; Zou et al., 2020

Transient neonatal hyperparathyroidism (LOF) Burren et al., 2018; Suzuki et al., 2018, 2020; Yamashita et al.,
2019; Almidani et al., 2020; Mason et al., 2020

Kidney stone (GOF) Suzuki et al., 2008

TRPC6 Focal and segmental glomerulosclerosis (GOF) Winn et al., 2005

Idiopathic pulmonary artery hypertension Yu et al., 2009

TRPM1 Congenital stationary night blindness (LOF); Audo et al., 2009; Li et al., 2009; van Genderen et al., 2009

TRPM2 Western Pacific Amyotrophic Lateral Sclerosis and Parkinsonism Dementia Hermosura et al., 2008

TRPM3 Developmental and epileptic encephalopathies (GOF) Dyment et al., 2019; de Sainte Agathe et al., 2020; Van
Hoeymissen et al., 2020; Zhao S. et al., 2020

TRPM4 Brugada syndrome Liu et al., 2013; Gualandi et al., 2017

Progressive symmetric erythrokeratoderma (GOF) Wang et al., 2019

Congenital long QT syndrome (LOF) Hof et al., 2017

Inherited cardiac conduction defects, including progressive familial heart block type
1 (GOF), childhood atrioventricular block

Kruse et al., 2009; Liu et al., 2010; Daumy et al., 2016; Syam et al.,
2016; Xian et al., 2018; Janin et al., 2019; also reviewed in Abriel
et al., 2012

TRPM6 Familial hypomagnesaemia with secondary hypocalcemia (LOF) Walder et al., 2002

TRPM7 Guamanian amyotrophic lateral sclerosis and parkinsonism dementia (LOF) Hermosura et al., 2005

TRPML1 Mucolipidosis type IV (LOF) Bassi et al., 2000; Sun et al., 2000

TRPML3 Varitint-waddler (Va) deafness (GOF) (in mice) Xu et al., 2007; Cuajungco and Samie, 2008; Nagata et al., 2008

TRPP2 Autosomal dominant polycystic kidney disease (LOF) Mochizuki et al., 1996; Wu and Somlo, 2000

GOF, gain of function; LOF, loss of function.

Interestingly, many nociceptive TRP channels are also
expressed widely in sensory neurons that innervate the airway
as well as in non-neuronal cells in the lung including structural
and immune cells (Belvisi and Birrell, 2017). These channels thus
play important roles in the pathophysiology of respiratory diseases
[such as asthma and chronic obstructive pulmonary disease
(COPD) and chronic refractory cough] (Grace et al., 2014; Koivisto
et al., 2022). Antagonizing TRPV1, TRPA1, and TRPV4 was shown
to have anti-coughing effects in animal models (Andrè et al., 2009;
Khalid et al., 2014; Mukhopadhyay et al., 2014; Bonvini et al., 2016;
Mason et al., 2020, p. 4). Airway hypersensitivity, as a respiratory
symptom of asthma, can be suppressed by TRPV1 and TRPA1
inhibitors (Raemdonck et al., 2012; Baker et al., 2016). TRPV4 has
been frequently linked to pulmonary diseases including acute lung
injury, pulmonary edema formation, and pulmonary hypertension,
due to its role of sensing osmolarity to regulate the pulmonary

capillary permeability (Goldenberg et al., 2015b; Rosenbaum
et al., 2020). Inhibition of TRPV4 has also been suggested to be a
promising therapeutic route for treating acute lung injury/acute
respiratory distress syndrome (ARDS) (Goldenberg et al., 2015a),
and more recently for treating COVID-19 patients with lung
edema (Kuebler et al., 2020).

The therapeutic potential of TRP channels for other acquired
diseases has also been reported. Pharmacological inhibition of
TRPM2 shows beneficial effects toward ischemia/reperfusion (I/R)
injury in brain, heart and kidney (Zhan et al., 2016). Inhibition
of TRPCs, such as TRPC4 and TRPC5, have anxiolytic and
antidepressant effects in mice, which could potentially be used
for treatment of anxiety disorders (Just et al., 2018). Many TRPs
are also intimately connected to itching (Tóth et al., 2015),
cardiovascular diseases (Watanabe et al., 2008; Yue et al., 2015),
kidney diseases (Hsu et al., 2007; Chubanov et al., 2017), diabetes
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(Colsoul et al., 2013; Zsombok and Derbenev, 2016), and cancers
(Lehen’kyi and Prevarskaya, 2011; Santoni and Farfariello, 2011;
Shapovalov et al., 2016; Yang and Kim, 2020).

Developing drugs for TRP-related acquired channelopathies
requires deeper understanding of the signaling pathways or the
interaction/regulation networks of the TRP channels. For example,
TRPV1 antagonists and agonists seemingly have similar therapeutic
effects for pain relief (Moran and Szallasi, 2018; Iftinca et al.,
2021). The implication follows that developing both inhibitors and
activators for TRP channels allows for dealing with complicated
syndromes with different therapeutic strategies and/or to minimize
side-effects. Cautions, however, should be taken when interpreting
the therapeutic effects of agonists or antagonists on these channels.
For example, menthol, a known TRPM8 activator, has been used
as an antitussive drug, but its mechanism of action may not
derive from TRPM8 activation as menthol can also interact with
TRPA1 (Karashima et al., 2007). Complication due to promiscuity
of various antagonists and agonists toward TRP channels has to
be considered, which will likely benefit from better understanding
of the molecular mechanism of interaction and regulation of
the ligand.

Recent progresses in TRP channel
structure and ligand binding

The first high-resolution TRP channel structure was not
determined until 2013, when the structure of TRPV1 was resolved
at near-atomic resolution thanks to breakthroughs in cryo-electron
microscopy (cryo-EM) (Cao et al., 2013; Liao et al., 2013). This
landmark work ushered in a new era in structural biology,
where cryo-EM can now be readily applied to obtain high-
resolution structures of membrane proteins and other complex
bio-macromolecules (Cao, 2020; Diver et al., 2022). Ten years on,
there are over 350 structures of TRP channels deposited in the

Protein Data Bank (PDB) as of October 2023 (Supplementary
Appendix Table 1). At least one structure exists for all the
TRPVs, most TRPMs, TRPC3-6, TRPA1, all TRPMLs and TRPP1-
3 members. For many TRP channels, structures are available in
multiple functional and/or ligand-bound states (either agonists or
antagonists), especially those within the TRPV, TRPM and TRPA
subfamilies (Supplementary Appendix Table 1). These structures
have provided crucial insights into the molecular basis of ion
conductance, activation and regulation of TRP channels.

The TRP channel superfamily can be divided into two
subgroups based on their structural features as well as cellular
distributions (Montell, 2005). The first subgroup consists of TRPCs,
TRPVs, TRPMs, and TRPA. They mainly distribute in the plasma
membrane and share similar structural features. Structurally, this
subgroup of TRP channels exists as tetramers, featuring six
transmembrane (TM) helices in each protomer. Following the
S6 helix, a TRP helix or so-called TRP box runs parallel to the
membrane surface and is believed to play an important role in
gating of TRP channels. The second subgroup includes TRPML
and TRPP, which are located in the endosome membrane and do
not have the TRP box. While TRP channels in the first subgroup
contain large cytosolic domains from each protomer assembling
as a skirt-like or multiple-layered structure enveloping a large
cytosolic cavity (e.g., Figures 1–3), TRP channels from the second
subgroup have large “extracellular” segments inserted between S1
and S2 and form a “cap”-like domain (Figure 4). In this review,
we will focus on the ligand binding pockets shared among TRP
channels and analyze the degree of binding site similarity and
conservation among each subfamily, to provide some guidance for
future TRP drug discovery and pharmaceutical research.

TRPVs

As the most intensively investigated TRP subfamily, structures
are available in different functional or ligand-bound states for all

FIGURE 1

Ligand binding sites in TRPV channels. The TRPV1 structure in complex with DkTx (PDB: 3J5Q) is used for visualizing the binding sites, with the pore
region, the VSLD region and cytosolic domain colored in cyan, yellow and gray, respectively. All other structures were first structurally aligned using
US-align (Zhang et al., 2022) to allow the clustering of all ligands observed. The major binding pockets or interfaces in the TRPV channels are
highlighted using clusters of ligands shown in different colors. The side view in the right panel is rendered by rotating along the x-axis of the top
view (the left panel) by 90◦ and then along the y-axis by 45◦ for a better view of the binding sites. Some ligands can have multiple binding poses
within the same pocket; only one configuration is shown for clarity. Binding sites for ions or ion blockers are not shown.
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FIGURE 2

Ligand binding sites in TRPM channels. The TRPM8 structure with TC-I 2014-bound (PDB: 6O72) is used for visualization, with the pore region, the
VSLD region and cytosolic domain colored in cyan, yellow, and gray, respectively. The major binding pockets or interfaces are highlighted using
different colors. The top and side views are rendered in the same way as in the TRPV channel (see Figure 1).

FIGURE 3

Ligand binding sites in TRPC channels. The SAR7334-bound TRPC structure (PDB: 7DXG) is used for visualization, with the pore region, the VSLD
region and cytosolic domain colored in cyan, yellow, and gray, respectively. The major binding pockets or interfaces are highlighted using different
colors. The Ca2+ binding sites (blue) are also included because Ca2+ plays a regulation role in the TRPC3 activity. The top and side views are
rendered in the same way as in the TRPV channel (see Figure 1).

TRPV members. A thorough review of the ligand binding pockets
in TRPV channels has been recently published, which summarizes
16 distinct binding sites in TRPV channels (Yelshanskaya and
Sobolevsky, 2022). Though several new ligand-bound structures
have been deposited in the PDB since, no additional binding
site has been discovered. Here we will briefly summarize the
most important sites (Figure 1), and discuss some of the very
recent studies not included in the 2022 review. The so-called
vanilloid site is the most frequently observed one. It is an
interface cavity formed between S3, S4, S4-5 linker and the

neighboring S5 and S6 helices. Ligands that bind to the vanilloid
site include both activators, such as capsaicin (Cao et al., 2013;
Kwon et al., 2021; Nadezhdin et al., 2021a), resiniferatoxin
(Nadezhdin et al., 2021a; Zhang et al., 2021; Kwon et al., 2022),
and inhibitors, such as capsazepine and SB-366791 in TRPV1 (Gao
L. et al., 2016; Neuberger et al., 2023), econazole in TRPV5 and
(4-phenylcyclohexyl)piperazine derivatives (PCHPDs) in TRPV6
(Hughes et al., 2018; Neuberger et al., 2021). It is worth mentioning
that, when a ligand molecule is not present, the vanilloid site is
generally occupied by lipid molecules, such as phosphatidylinositol
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lipid (PI) observed for TRPV1 (Gao L. et al., 2016; Zhang et al.,
2021) and phosphatidylcholine lipid (PC) for TRPV3 (Nadezhdin
et al., 2021b). The effects of lipid binding in the vanilloid site
can be either inhibitory or excitatory and appear to have different
physiological and functional implications among TRPV members
(Cheng et al., 2022). Su et al. (2023) recently showed that binding
of endogenous cholesterol to the vanilloid pocket inhibited the
TRPV2 channel activity.

The second important binding site in TRPV channels is
the S1-S4 bundle site or the VSLD pocket, formed by the S1-
S4 helix bundle and the TRP helix. Several chemicals showing
either activation (2-APB in TRPV3) or inhibition (2-APB-Br,
Osthole in TRPV3 and ZINC17988990 in TRPV5) have been
discovered to bind in this VSLD cavity (Figure 1; Supplementary
Appendix Table 1). Recently, the agonists (4-alpha-PDD and
GSK1016790A) and antagonists (HC-067047 and GSK2798745)
bound structures of human TRPV4 were resolved, showing that
both agonists and antagonists can bind to the VSLD cavity (Kwon
et al., 2023; Nadezhdin et al., 2023b). The cryo-EM structures
of TRPV channels also show lipids can occupy the VSLD cavity
in absence of other ligands, the native functional implications of
which need to be further investigated (Supplementary Appendix
Table 1). The third major binding site is the portal site, which
is the pocket formed by the S5 and the pore helix (PH) of one
subunit plus the neighboring S6 helix. Cannabidiol or cannabidiol
derivatives have been shown to bind to this portal site in TRPV2
(Gochman et al., 2023). Other compounds such as ZINC17988990
or ZINC9155420 inhibit TRPV5 by binding to this site (Hughes
et al., 2019). Recently, the anesthetic dyclonine was also found
to bind to the portal site in TRPV3, providing the structural
basis of how this compound can relieve pain and itch in the
traditionally topical applications (Neuberger et al., 2022). Some
other binding sites (Figure 1) have also been found within TRPV
members, such as central pore sites (sites along the central
permeation pathway), the S4-5 site (the interface between VSLD
and S5-6 pore helices, also referred as “deep” or “shallow” S4-
5 in the 2022 review), the S2-3 site [the PI(4,5)P2 binding
site in TRPV5], and the cytosolic calmodulin (CaM) binding
site (Yelshanskaya and Sobolevsky, 2022). Those additional sites
indicate the TRPV channels have the potential to be targeted
by drugs in other less common but important interfaces or
pockets. It is noteworthy that ligand binding to the same site
can have different or sometimes completely opposite effects on
the channel function, suggesting a high level of adaptability of
the binding pockets and the likely presence of multiple coupling
pathways and/or regulatory mechanisms with the TRP channel
proteins.

TRPMs

The TRPM subfamily members have also attracted intensive
attention in recent years due to their important roles in sensing
temperature, taste, oxidative state and osmolarity, cellular
proliferation, cell death, neurological diseases and cancer
progression (Jimenez et al., 2020). Cryo-EM structures have
been determined for all TRPM channels in both the apo and
bound states with different ligands, except for TRPM1 and

TRPM6 (Huang et al., 2020). TRPM and TRPV channels share
the similar architecture in the TM region (Figures 1, 2). Two of
the major ligand binding pockets identified for TRPV channels,
the vanilloid-like pocket and the VSLD pocket, are also present
in TRPM channels (Figure 2). For the vanilloid-like pocket,
inhibitor-bound structures such as VER155008 and NS8593
in TRPM7, N′-(3,4-dimethoxybenzylidene)-2-(naphthalen-1-
yl)acetohydrazide (NDNA) in TRPM5, and activator-bound
structure, Naltriben in TRPM7, have been reported (Ruan et al.,
2021; Nadezhdin et al., 2023a), showing again the adaptability of
this pocket. The VSLD cavity, so far only observed in the TRPM8
cryo-EM structures, can also accommodate ligands with either
inhibitory (AMTB) or excitatory (TC-1, WS-12, icilin) effects.
Interestingly, the portal site in TRPMs has not been found to
bind any inhibitors or activators but can be occupied by lipids
(Diver et al., 2019). Together with the large accessible groove on
the inter-protomer surface, the portal site clearly has the potential
to bind ligands and modulate the gating/activation process of the
TRPM channels.

Another interesting feature of TRPMs is that the cytosolic
domain of TRPMs usually contains of 4 melastatin homology
regions (MHR1-4) instead of ankyrin repeats in TRPV channels.
This variance provides several unique binding sites in TRPMs. The
first one is the pre-S1/S4-5 loop/TRP helix interface, which provides
a positively charged electrostatic environment to bind the PI(4,5)P2
molecule. So far, fourteen PI(4,5)P2-bound structures (seven for
each TRPM3 and 8) reveal that the PI(4,5)P2 head group all binds
into a similar position on this interface. However, the PI(4,5)P2
binding site might not be conserved in other TRPM channels,
because the interacting residues are not conserved among TRPMs
(Yin et al., 2019a). It would be interesting to dissect the PI(4,5)P2
binding in TRPMs because the important regulatory effect of
PI(4,5)P2 on TRPMs has been long recognized (Runnels et al., 2002;
Liu and Liman, 2003; Zhang et al., 2005; Nilius et al., 2006; Xie
et al., 2011). Other less common cytosolic binding sites have also
been reported individually in several TRPMs. The naltriben-bound
TRPM7 structure reveals that the ligand binds to MHR4/pre-
S1 interface and activates the channel by pulling MHR4 to the
neighboring MHR repeat and triggering a rigid body rotation of
the whole N-terminal domain (Nadezhdin et al., 2023a). In TRPM2,
there is a unique ADPR (ADP ribose)-binding site, which is located
at the cleft of the MHR1/2 and is far away from the central pore
domain (Yin et al., 2019b). It has been shown that binding of ADPR
to this site can activate the channel, while binding of its derivative
8-Br-cADPR can block the allosteric coupling from MHR3-4 to
the central pore and lock the conformation in apo state (Huang
et al., 2019; Yin et al., 2019b). In TRPM4, a nucleotide-binding site
in the N-terminal region was found to bind to ATP, allosterically
inhibiting the channel activity (Guo et al., 2017). These cytosolic
sites are in general far away from the pore domain and thus pose
an intriguing question on what long range coupling mechanism(s)
would allow the ligand binding to control the pore domain.

TRPCs

All members of the “canonical” TRP channels, TRPCs, were
discovered in the late 1990s (Wes et al., 1995; Zhu et al., 1995, 1996;
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FIGURE 4

Ligand binding sites in the TRPA1 channel. The structure in complex with covalent agonist JT010 (PDB: 6PQO) is used for visualization, with the pore
region, the VSLD region and cytosolic domain colored in cyan, yellow, and gray, respectively. The major binding pockets or interfaces are
highlighted using different colors. The top and side views are rendered in the same way as in the TRPV channel (see Figure 1).

Okada et al., 1999). Their general structural features, functions
and regulation have been reviewed elsewhere (Wang H. et al.,
2020). Though not as extensively studied as the TRPV and TRPM
subfamilies, over 30 structures of TRPCs have been determined,
covering TRPC3-6 members (Supplementary Appendix Table 1).
As shown in Figure 3, ligands in the bound structures of TRPCs
mainly cluster into two common binding sites, namely, the
portal and VSLD binding sites, as seen in TRPVs and TRPMs
(Figures 1, 2). For TRPC4-6, there have been more extensive
studies attempting to determine the ligand-bound structures,
including both activators and inhibitors. Only one structure of the
agonist (AM-0883)-bound human TRPC6 was captured a more
open state among all reported TRPC structures. The binding of
the AM-0883 in the portal site, situated between the S6 of one
monomer and the pore helix (PH) of another, tilts S6 as well as the
VSLD and S4-S5 linker, suggesting a further rotation of S6 to release
the hydrophobic seal in the open state pore of TRPC6 (Bai et al.,
2020). Interestingly, the portal site also accommodates inhibitors
HC-070 and HC-608 in TRPC5 and lipids in TRPC3 (Wright
et al., 2020; Song et al., 2021). A second highly populated binding
site among TRPC4-6 is the VSLD pocket. There are a handful of
inhibitors and an activator that bind to this pocket (Bai et al., 2020;
Vinayagam et al., 2020; Song et al., 2021; Guo et al., 2022; Yang et al.,
2022; Figure 3). The activator/inhibitor pair riluzole and clemizole
have been determined to bind to this pocket in TRPC5. These
ligands are used pharmacologically to combat amyotrophic lateral
sclerosis (ALS) and anxiety and depression, respectively (Song et al.,
2021; Yang et al., 2022). The vanilloid-like pocket prominent in
TRPV and TRPM channels has been observed to be occupied
by [2-(1,3-benzodioxol-5-ylamino)-1,3-thiazol-4-yl]-[(3R,5S)-3,5-
dimethylpiperidin-1-yl]methanone (BTDM) in TRPC6 (Figure 3;
Guo et al., 2022). TRPC3 has only been resolved in the closed

state(s) with observed binding by unidentified lipids in a binding
pocket between S1 and the pre-S1 elbow (Fan et al., 2018) and by
Ca2+ in several intracellular regions (Guo et al., 2022; Figure 3).

TRPA1

TRPA1 is the sole member of the TRPA subfamily,
characterized by its 16 ankyrin repeats (the longest among
TRP channels) and a TM region is structurally very similar to
TRPVs (Paulsen et al., 2015). Due to its previously observed
pain- and irritant-sensitivity, it has been studied extensively with
various ligands (Meents et al., 2019). TRPA1 structure usually
could be divided into three layers with the top, middle and bottom
layers consisting of the TM domain, the coupling domain and
the ankyrin repeat domain, respectively. As shown in Figure 4,
all cryo-EM-resolved ligand-bound structures together show
the four familiar binding sites as already discussed above: the
vanilloid-like site, the VSLD pocket, the portal site and the pre-
S1/S4-5 loop/TRP helix interface, in addition to a unique coupling
domain pocket. The portal site, formed by S5/S6/PH, can bind with
the GDC-0334 inhibitor, which reduces airway inflammation as
asthma treatment (Balestrini et al., 2021). Interestingly, a separate
study of compound-21 (C21) has also shown to reduce airway
inflammation, though by binding to the pre-S1/S4-5 linker/TRP
box interface (Terrett et al., 2021), which is often occupied by
regulatory lipids in TRPM and TRPV channels. GNE551, an
agonist of TRPA1, binds in the vanilloid-like pocket, though still
resulting in a non-conductive state of TRPA1 (Liu et al., 2021).
The most unique binding site of TRPA1 is the coupling domain
pocket (Figure 4). The coupling domain pocket is believed to
be important for the “electrophile sensing” of TRPA1 due to the
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FIGURE 5

Ligand binding sites of TRPML channels. The PI(4,5)P2-bound TRPML1 structure (PDB: 6E7Y) is used for visualization, with the pore region, the VSLD
region and extracellular domains colored in cyan, yellow, and gray, respectively. The top (left) and side (right) views are rendered as described in
Figure 1. Existing complex structures of TRPML only show two major binding pockets.

presence of several cysteine residues (Bahia et al., 2016). TRPA1 is
a great example of the structural similarities and differences among
the TRP subfamilies that allow both conserved and unique binding
pockets.

TRPMLs

Primarily localized in the endolysosomal membrane of
mammalian cells, TRPML is one of the least studied TRP
subfamilies (Zhang X. et al., 2018). Cryo-EM structures of all
members of the TRPML family have been resolved, but only
TRPML1 has solved structures in both open and closed states
with various lipids and ligands present. As a homotetrameric
Ca2+-permeable, nonselective, cation channel, TRPML1 regulates
lysosomal calcium signaling, lipid trafficking, and autophagy-
related processes. As such, loss-of-function mutation of TRPML1
is associated with a neurodegenerative disorder, known as
Mucolipidosis type IV (MLIV) (Schmiege et al., 2021). As shown
in Figure 5, current cryo-EM structures enriched all ligands or
internal mediators (such as PIP2 molecules) into two major binding
pockets: the VSLD pocket and the portal site. Lipids PI(3,5)P2 and
PI(4,5)P2 both have been resolved to bind in the VSLD pocket,
where polar and hydrophilic residues are distributed similar to
the corresponding pocket in other TRP channels (see above).
Interestingly, PI(3,5)P2 has been observed to promote channel
opening, while PI(4,5)P2 can act as channel suppressor (Fine
et al., 2018). It was proposed that due to the different phosphate
group locations, R403 and Y355 are positioned to promote pi-
cation interactions in PI(3,5)P2 but not PI(4,5)P2, affecting the
movement of the S4-5 linker and further facilitating pore opening
(Fine et al., 2018). The portal site in TRPML1, which is similar

to the one in TRPV channels, is formed by the TM interface
between S5 of one domain and the neighboring S6. It hosts both the
agonist ML-SA1 and antagonists ML-SI3 and temsirolimus through
mostly hydrophobic interactions (Fine et al., 2018; Schmiege et al.,
2021). ML-SA1 was observed, unlike ML-SI3, to promote pi-pi
interactions in the portal site, pulling S6 away from the central axis
and thus opening the pore (Fine et al., 2018). A similar open state
was observed with temsirolimus binding in tandem with PI(3,5)P2
as was observed with ML-SA1 alone (Gan et al., 2022). Interestingly,
the VSLD pocket and the portal site in TRPML1 have been shown
to both independently and synergistically modulate the channel,
with PI(3,5)P2 binding observed even in a ML-SI3 bound state
(Schmiege et al., 2021; Gan et al., 2022).

TRPPs

As the most primitive and ancient member of the TRP family,
TRPP family was found to present in both animals and yeast,
and mutations implicate the autosomal dominant polycystic kidney
disease (ADPKD) (Gees et al., 2012; Samanta et al., 2018). TRPP2
(polycystin-2, polycystin kidney disease-2 or PKD2) and TRPP3
(polycystin-2 like, or PKD2L1) are Ca2+-activated cation channels
which are structural homologous to other TRP ion channels in
terms of the six transmembrane helices. Structural studies have
revealed cryo-EM structures of TRPP2 and TRPP3 either in the
apo state or in the PIP2-bound state (Supplementary Appendix
Table 1). Unfortunately, the PI(4,5)P2 and PI(3,5)P2 were not well-
resolved based on cryo-EM density maps of TRPP2 (Wang Q.
et al., 2020). Despite this ambiguity, the authors found the density
of those PIP2 molecules to be located at the vanilloid-like pocket
(Wang Q. et al., 2020). The structural information is still very
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limited to have a better understanding of ligand binding in TRPP
ion channels and thus requires further investigation, though the
conserved six transmembrane helices structure suggests that the
common binding sites comprised of elements from the TM region
discussed in all the above families might be also very likely the
binding sites in TRPP channels.

Molecular mechanisms of TRP
activation and regulation

The remarkable sensory roles of TRP channels are conferred
by the complex dynamic properties of the protein conformations
and how they can be delicately controlled by various physical
and chemical stimuli. A deep understanding of the molecular
mechanisms of these controls is critical for successful rational
approaches targeting TRP channels. Activation of an ion channel
can be divided into three general steps. First, the “sensor”
domain or element needs to respond to the given stimuli,
which typically involve certain local conformational changes and
movements. Second, the conformational response of the sensor,
which is typically distal from the ion-conducting pore, needs to be
transduced to the pore domain through intramolecular coupling
pathway(s). Lastly, the pore needs to undergo to an opening
transition and release the gating element for ion permeation.
A drug molecule could interfere with any or all of these three
steps of channel activation. The abundant structural data on TRP
channels have provided a solid basis for understanding the inner
work of these channels. However, a recent global analysis of
TRP channel TM domain structures revealed that most available
structures represent non-conducting states, leaving much to be
learned about the gating transitions alone (Huffer et al., 2020).
Even more questions remain to be answered regarding the identities
and movements of the sensors as well as the sensor-pore coupling.
Below, we summarize the current understanding of the three
general steps in TRP channel activation.

Sensor elements in the TRP channels

The sensory roles of TRP channels are well-documented
in term of somatosensation. TRPV1-4, TRPM2, TRPM3 and
TRPM5 have been reported to be heat sensing, whereas TRPC5,
TRPM8 and TRPA1 can be cold sensing (Talavera et al., 2005;
Wetsel, 2011; Voets, 2014; Wang and Siemens, 2015; Kashio
and Tominaga, 2022). TRPVs and TRPA1 channels can sense
touch, pain and itch (Mickle et al., 2015; Sun and Dong,
2016; Moore et al., 2018). In addition, TRPV4 has been shown
to be capable of mechanosensation, including osmo-sensation
(Christensen and Corey, 2007). Sensation of the redox status has
also been reported for TRPC5, TRPV1 and TRPA1 (Takahashi and
Mori, 2011; Ogawa et al., 2016). In addition to the physical stimuli,
many chemicals, synthetic and natural, can regulate TRP channel
functions, as extensively discussed above.

Thermo-sensor
Extensive efforts have been dedicated to pinpoint the thermo-

sensor elements of the thermo-TRPs. Many candidates have been

evaluated through deletion, mutagenesis and chimeragenesis, so far
without reaching a conclusive identification (Diaz-Franulic et al.,
2021; Luu et al., 2023). Temperature sensing elements have been
proposed throughout the channel structure including: the ankyrin
repeat domain for TRPA1 (Cordero-Morales et al., 2011) and
TRPV1 (Saito et al., 2016; Ladrón-de-Guevara et al., 2020; Hori
et al., 2023), a membrane proximal domain (the N-terminal region
connects ankyrin repeats to the S1 helix) for TRPV1-V3 (Yao et al.,
2011; He et al., 2017; Liu and Qin, 2021), the whole VSLD for
TRPV1 (Kim et al., 2020), the pore turret (Yang et al., 2010; Cui
et al., 2012; Du et al., 2020) [although contradicting with a study
showing the torrent-deleted TRPV1 remains thermosensitivity
(Liao et al., 2013)], the pore helix domain for TRPV1 (Myers
et al., 2008) and TRPA1 (Wang et al., 2013), a loop after the
pore helix plus the S6 helix for TRPV3 (Grandl et al., 2008),
the outer pore loop region for TRPV1 (Grandl et al., 2010), the
whole pore domain (S5-S6) for TRPV1 (Zhang F. et al., 2018) and
the C-termini for TRPV1 (Vlachová et al., 2003; Brauchi et al.,
2006; Joseph et al., 2013). These studies have been plagued by
the different experimental conditions/procedures being employed
and ambiguity in interpretation. It is possible that there is no
single thermo-sensing element in a given TRP channel; instead, the
temperature driven conformational transition may emerge from
the cooperative property of the entire oligomer assembly within its
native membrane environment.

On the other hand, it was also proposed that the
thermosensitivity of the thermoTRP channels may not be
necessarily attributed to a specific sensor element or domain
(Clapham and Miller, 2011; Yeh et al., 2023). Instead, thermoTRP
channel activation may be accompanied by large molar heat
capacity differences, such that both the activation enthalpy
and entropy would be both temperature dependent and the
temperature dependence of the open-close equilibrium would be
always non-monotonic. Such a model could give rise to both cold
and hot activation behaviors, depending on temperature where
the open-close equilibrium constant minimizes. It was further
proposed that a major contribution to the molar heat capacity
is solvation or desolvation of hydrophobic residues and charged
ones during activation, which could be delocalized throughout the
whole channel protein. This model has been successfully applied
to rationally engineer a canonical voltage-sensing potassium
channel to confer temperature sensitivity, by varying the polarity
of residues in the VSD that undergoes state-dependent changes in
solvation (Chowdhury et al., 2014). The molecular basis for the
successful design was further confirmed by NMR and molecular
dynamics simulations, which reveal increased hydration in the
VSD of the engineered channel at high temperatures (Chen et al.,
2021).

It is worthy of noticing that cryo-EM studies of TRPV3
have revealed the closed, the heat-induced sensitized state as
well as the open state, providing a structural foundation for
understanding the molecular mechanism of temperature-sensing
(Singh et al., 2019; Nadezhdin et al., 2021b). Comparison
of those different states revealed a mutually dependent
conformational wave, which involved secondary structural
rearrangements of the S2-3 linker and N-/C-termini, and rigid
body translational movements involving ARD, the S4-5 linker
and pore domain helices (Nadezhdin et al., 2021b). It was thus
proposed that the distributed multi-domain conformational
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wave could be triggered at any localized “sensor” within the
wave itself (Nadezhdin et al., 2021b). Nevertheless, heat-
induced secondary structure rearrangements could shape
the energetics of close-to-open equilibrium. For example,
exposure of 10∼15 hydrophobic residues per subunit, to
give a 1H value as large as ∼90 kcal/mol (Nadezhdin et al.,
2021b). Nonetheless, it remains challenging to dissect the
contributions of individual regions involved in the conformational
wave and to explore whether the heat capacity differences in
thermoTRP channels can be attributed to localized thermo-
sensors or it arises from delocalized contributions throughout the
channel.

pH-sensor
pH, as one important aspect of the physiological conditions

for living cells, has shown to regulate many TRP channels. TRPV1
was the first TRP channel found to be potentiated and even
directly activated by extracellular acidification (Caterina et al.,
1997; Tominaga et al., 1998; Baumann and Martenson, 2000). Two
extracellular Glu residues (E600 and E648, located at the pore turret
and the pre-S6 loop, respectively) were proposed to be the pH-
sensing elements of the pH-induced potentiation and activation
in TRPV1 (Jordt et al., 2000). Another study suggests that F660
located in the pore domain is the key pH-sensor of TRPV1 (Aneiros
et al., 2011). Extracellular protons have also been shown to activate
TRPV4 (Suzuki et al., 2003), and potentiate TRPA1 (Takahashi
et al., 2008; de la Roche et al., 2013), TRPM6 (Li et al., 2007),
TRPM7 (Jiang et al., 2005; Li et al., 2007; Numata and Okada, 2008),
TRPC4 (Semtner et al., 2007), TRPC5 (Semtner et al., 2007; Kim
et al., 2008) and TRPP3 (Inada et al., 2008). Negatively charged
residues (Asp or Glu) in the pore turret, the pre-S6 loop as well
as the selectivity filter have been frequently proposed to be the pH-
sensing elements in these channels (Zheng, 2013), although specific
locations of those charge residues may differ greatly among those
members. Extracellular protons could also be inhibitory for some
TRP channels, including TRPV3 (Wang et al., 2021), TRPV5 (Yeh
et al., 2003), TRPM2 (Du et al., 2009), TRPM5 (Liu et al., 2005), and
TRPC6 (Semtner et al., 2007).

Furthermore, intracellular alkalization can activate TRPV1
with H378 in the ARD proposed to be the sensor (Dhaka et al.,
2009). Intracellular proton-induced potentiation and activation
was also reported in TRPV3 involving a N-terminal H426 (Cao
et al., 2012) or the S2-3 linker (Gao L. et al., 2016), whereas
intracellular proton-induced inhibition has been observed for
TRPV5 involving a proximal C-terminal K607 (Yeh et al., 2005)
and TRPM2 involving the S4-5 linker (Du et al., 2009).

Although there is some consensus in terms of pH-sensors in
individual TRP members, the proposed key residues are often
scattered in both the extracellular and intracellular domains.
The implication is that TRP channels do not share conserved
pH-sensing elements or mechanism. More studies are required
to elucidate the molecular mechanisms of proton regulation
in TRP channels.

Mechanosensor
The nature and location of the mechanosensor domain

in mechanosensitive TRP channels (for example, TRPV4,
TRPA1, TRPC1, TRPC6, and TRPP2) also remain largely elusive

(Lin and Corey, 2005; O’Neil and Heller, 2005). Several proposals
have been discussed. For example, the ankyrin repeats domain
in the TRP channels was proposed to function like a molecular
“spring” during the mechanical force-induced gating (Corey et al.,
2004; Howard and Bechstedt, 2004). Further, it has been debated
whether a TRP channel is directly transducing mechanical signals
or it is indirectly regulated by being a downstream receptor of
the signaling pathway (Christensen and Corey, 2007). Evidence
has suggested that epoxyeicosatrienoic acids, a type of cellular
secondary messenger, can directly activate TRPV4 (Vriens
et al., 2005). Very recently, two independent cryo-EM studies
captured the human TRPV4-RhoA (a small GTPase) complexes
showing RhoA interacts extensively with the ARD domain (Kwon
et al., 2023; Nadezhdin et al., 2023b). Given that RhoA is a
membrane-anchoring protein, it is possible that RhoA plays a role
in connecting or transducing membrane surface or morphological
changes to the TRPV4 channel (Kwon et al., 2023; Nadezhdin et al.,
2023b). More intensive studies are required to dissect the role of
mechanosensitive TRP channels in mechanical transduction and
the possible existence of mechanosensor domains.

Chemosensor
As a sole member in the TRPA subfamily, TRPA1 has long

been recognized as the “chemonociceptor” due to its ability
to “sense” a wide range of noxious chemical compounds or
environmental irritants (Meents et al., 2019; Manolache et al.,
2021). Mechanistically, TRPA1 can be activated by thio-reacting
electrophile irritants using an array of cysteine residues loaded at
the N-terminal domain (Hinman et al., 2006; Macpherson et al.,
2007; Bahia et al., 2016), and also binds non-covalently with other
non-reactive chemicals in a way of using the traditional binding
pocket(s) (Xu et al., 2006; Karashima et al., 2007; Lee et al., 2008; Liu
et al., 2021). The chemosensor of TRPA1 discussed here only refers
to the covalent binding module. Several functional studies have
consistently revealed that highly reactive C621 (human TRPA1
numbering, uniprot: O75762) plays a key role in covalent binding
of electrophiles, though inconsistency exists with other potential
cysteine sites based on mutagenesis data (Hinman et al., 2006;
Macpherson et al., 2007; Bahia et al., 2016, p. 621). The role of C612
as the “chemosensor” element of TRPA1 has been further supported
by cryo-EM structures showing agonist-modified C612 (Suo et al.,
2020; Zhao J. et al., 2020).

Mechanism of sensor-pore coupling
during TRP channel activation

At present, there are relatively limited studies on the sensor-
pore coupling mechanisms of the TRP channels, to a large degree
due to much ambiguity in the sensor elements (see above).
Existing analysis is largely based on structural data alone. Here,
we highlight two conformational switches that have been the most
extensively investigated.

C-terminal switch
An interesting structural rearrangement during the close/open

transition found primarily in thermoTRPVs (TRPV1-V4) involves
a loop-to-helix transition in the C-terminus, termed “C-terminal
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switch” (Zubcevic et al., 2019; Deng et al., 2020). TRPV channels
share a C-terminal domain (CTD) following the TRP helix, which
coils back to the coupling domain (defined as the domain from
right after ankyrin repeat 6 to the pre-S1 helix), forming an
interacting network with the neighboring ankyrin repeat domain
(Cao, 2020; Pumroy et al., 2020). The CTD was proposed to be
involved in temperature-induced gating in several cases (Vlachová
et al., 2003; Brauchi et al., 2004, 2006, 2007). The C-terminal
switch was discovered in the structural studies of a sensitized
phenotype (the K169A mutant) in the human TRPV3 that breaks
an important salt bridge between CTD and the neighboring ARD
(Zubcevic et al., 2019). The K169A mutation induces distal CTD
to undergo coil-to-helix transition, altering the position of CTD
and the interactions at the inter-protomer interface. It was thus
proposed that the C-terminal loop-to-helix transition represents a
functional “switch” during TRPV channel gating (Zubcevic et al.,
2019). Similar helical CTD was also observed in the rat TRPV2
for both the apo and the agonist-bound (cannabidiol) structures
(Pumroy et al., 2019). Besides, in the recently resolved TRPV4-
RhoA complex, binding of 4-αPDD also triggers the C-terminus
transit from a loop to a α-helix in the captured open state
(Nadezhdin et al., 2023b). In another study of mouse TRPV3,
although the distal CTD was assigned as a loop in the open
state, it was proposed to be a “latch” that needs to be released
and unwrapped from the N-terminal beta-sheet to sensitize the
channel (Singh et al., 2019). A recent cryo-EM structure of squirrel
TRPV1 also revealed that the C-terminus “hook” wraps around the
interdomain N-terminal beta-sheet (Nadezhdin et al., 2021a). In
many other cases, the CTD was not well-resolved in thermoTRPV
channels, due to either limitation of the cryo-EM resolution or the
inherent structural flexibility. Nonetheless, it has been suggested
that the CTD conformational transition plays in the temperature-
induced gating of TRP channels.

Coupling of the S6 and TRP helices
Changes in the S6 and TRP helix coupling have also been

observed in the ligand-induced open/close transitions of the TRP
channels. This type of transition usually involves elongation of
the S6 helix and/or shortening of the TRP helix. It was firstly
discovered in the captured open state of TRPV3 where the S6 helix
is elongated by two helical turns compared with the closed state
(Singh et al., 2018). A similar pattern was discovered later in ligand-
induced activation of the human TRPV3 (Zubcevic et al., 2019),
temperature-induced opening of the mouse TRPV3 (Singh et al.,
2019) and more recently in the gain-of-function mutation-induced
opening of the mouse TRPM7 (Nadezhdin et al., 2023a). Besides,
structural determination of PIP2-bound TRPV5 revealed that PIP2
binding induces lengthening of the S6 helix for about 1 helical turn
and shortening of the TRP helix in order to form favorable salt
bridge interactions with PIP2 head group (Hughes et al., 2018).
Changes on the helix rearrangement between the S6 and TRP helix
will likely alter the pore-sensor coupling upon stimulation of the
channel, which often swivels or “pulls” the S6 helix outward to
open the central pore (Hughes et al., 2018; Zubcevic et al., 2019;
Nadezhdin et al., 2023a). It is worth noting that the C-terminal
switch and coupling of S6-TRP helices are not mutually exclusive
during the close/open transitions (Hughes et al., 2018; Zubcevic
et al., 2019).

How does the pore open: gating of TRP
channels

Generally speaking, TRP channels can have two constriction
regions that may serve as the gate – the selectivity filter region
and the bundle-crossing formed by the pore-lining S6 helices. The
existence of a selectivity filter gate varies among subfamilies. The
selectivity filter of TRPV1-3 allows ions to enter the pore even in the
inactive state, indicating that the selectivity filter might not be a gate
(Jara-Oseguera et al., 2019). Global structure alignments showed
that the selectivity filter regions of nonselective TRP channels have
large variations on their radii of opening, indicative of significant
intrinsic flexibility (Huffer et al., 2020). Selective TRP members,
such as TRPV5-6 and TRPM4-5, tend to contain narrower filter
regions compared with nonselective ones (Huffer et al., 2020).
Further, it has been shown that the cytosolic S6 activation gate
formed by bundle-crossing (also being called “hydrophobic seal”)
is a consistent feature among most all TRP channels (Cao, 2020;
Huffer et al., 2020; Pumroy et al., 2020). Additional contribution
to TRP channel gating may come from the hydrophobic inner
pore region between the bundle-crossing and selectivity filter,
which may undergo spontaneous dewetting transitions and form
a vapor barrier to block ion permeation (Huang and Chen,
2023). An important caveat is that most currently resolved TRP
structures, either with ligand bound or not, have a rather narrow
cytosolic gate and thus represent a closed pore (Huffer et al.,
2020), which present extra challenges in delineating the gating
mechanisms.

One of the more notable and general structural elements in the
gating of TRP channels is probably the π-helix in a single turn of the
S6 helix. Since many TRP channels form a “bundle-crossing” lower
gate, it was proposed that the flexibility of the π-helical turn in the
middle of the S6 helix allows bending of the S6 helix and thus may
enable channel opening. The π-helices resemble the glycine hinge
or the proline hinge discovered previously in potassium channels.
As the TM regions of TRP channels are highly conserved, almost
all TRP subfamilies can find cases exhibiting state-dependent π-
helices in their captured structures in either closed, sensitized or
open states (Zubcevic and Lee, 2019). TRPV6 is an exemplary case
where the α-to-π transition at an alanine hinge of the S6 helix
dictates the close-to-open conformational transition (McGoldrick
et al., 2018). The π-helix can induce bending and rotation of S6,
changing the pore-lining residues to create a more ion-favorable
hydrophilic environment (McGoldrick et al., 2018). In TRPV3,
the α-to-π transition occurs during ligand-induced sensitization,
which widens the pore slightly and exposes different groups of
pore-lining residues (Singh et al., 2018; Zubcevic et al., 2018).
Studies have also found some TRP members can also have π-to-α
transition going from closed state to sensitized or open state, such
as the most recently reported TRPV4 (Nadezhdin et al., 2023b),
whereas some TRP channels exhibit π-helix in the S6 helix in
both the closed and open state, including the most recent case of
TRPV3 and TRPM7 (Zubcevic and Lee, 2019; Nadezhdin et al.,
2021b, 2023a). It is worth noting that a conserved feature among
all TRP channels is that the pore-lining residues in the inner pore
region of S6 in the closed state are usually hydrophobic ones,
forming a so-called “hydrophobic seal.” For example, the lower
portion of S6 contains a highly conserved sequence, LLLNMLI,
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among TRPV1-4. The hydrophobic lower pore region present in
the deactivated state suggest a general role of hydrophobic gating
mechanism among TRP channels (Aryal et al., 2015; Yazdani et al.,
2020). The dewetting transition involved in hydrophobic gating can
be readily controlled by α-to-π or π-to-α transitions modifying the
pore geometry and surface hydrophobicity.

Concluding discussion

As multifunctional proteins intimately involved in diverse
physiological processes, TRP channels are considered exciting
and potentially rewarding therapeutic targets. Many modulators
of this ion channel family are under development, and several
have reached clinical trials (Moran et al., 2011; Moran and
Szallasi, 2018; Iftinca et al., 2021; Koivisto et al., 2022). At
the same time, TRP channels have presented critical challenges
due to their complex, polymodal activation and regulation
and complex roles in physiological functions, which frequently
leads to potential issues with clinical efficacy, safety and side
effects. Overcoming these issues has been plagued by important
gaps in the current understanding of TRP channel function
at the molecular level. While hundreds of structures of are
now available for TRP channels in both apo and bound states,
they alone do not readily reveal functional mechanisms. For
example, only a handful of the “open” structures represent
truly conductive states (Huffer et al., 2020). Many agonists and
antagonists can bind to similar pockets, without leading to apparent
conformational changes in the channel protein. We still do not
have a concrete understanding of how the TRP channels may
sense temperature, mechanical force, osmotic pressure or voltage.
These critical gaps in the fundamental understanding of the TRP
channel function make it extremely challenging for any rational
attempt to optimize lead chemical matters or discover novel
ones.

Notwithstanding many important challenges, intensive
research into the molecular basis of the TRP channel function
has generated a rich set of structural and functional data. As
summarized in this review, high resolution structures are now
available for all subfamilies of TRP channels, often times in
multiple functional states and/or several ligand-bound states. Some
mechanistic features of TRP channel gating are also emerging, such
as the α-to-π transition of pore-lining S6 helix and the potential
role of hydrophobic gating. These structures together reveal major
binding pockets present in the TRP channels. Multiple binding
sites, inside and outside of the membrane bilayer, have been
identified for some members of this family with some pockets
seemingly more druggable than others. In some TRP channels,
the only identified pockets reside deep in the membrane, which
can lead to challenges in identifying development candidates
with drug-like physicochemical properties. Low solubility
and permeability may result in poor bioavailability, limiting
the effectiveness of the drug. There is an urgent need and
exciting opportunity to leverage this rich set of structural and
functional data to further elucidate the three general steps of

channel activation and regulation, namely, sensor movements,
sensor-pore coupling, and pore opening transitions. This will
require concerted efforts from computation, structural biology,
medicinal chemistry, electrophysiology, and pharmacology. An
ever improving understanding the channels’ activation and
regulatory mechanisms will guide the drug design efforts and
open new possibilities and venues for targeting the TRP channels
in therapeutics.
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