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exhibit white matter (WM) injury on clinical MRI scans, not all 
do, and it often isn’t until later school age that cognitive deficits 
become evident (Anderson and Doyle, 2003). Because earlier 
treatment is generally more effective for neurocognitive problems 
associated with prematurity, a method of more accurately identi-
fying those children at risk for developmental delay would be of 
tremendous clinical benefit.

Recent advances in neuroimaging offer an opportunity to bet-
ter characterize the effects of prematurity on brain structure. High 
resolution imaging identifies regional brain volumes that may be 
more sensitive to the effects of prematurity than overall structure 
(Kesler et al., 2004; Thompson et al., 2007; Tzarouchi et al., 2009), 
and diffusion tensor imaging suggests that fractional anisotropy 
identifies WM abnormalities not apparent on standard MRI scans 
(Miller et al., 2002; Anjari et al., 2007). In a recent review of neu-
roimaging in prematurity, 16 studies using diffusion tensor imaging 
and 10 high resolution structural studies were identified (Ment 
et al., 2009). However the effect of prematurity on brain function 
has been less well studied. This report focuses on one aspect of 
brain function, resting-state networks that are related to functional 
networks and can be obtained in sleeping children.

Only several studies have examined the RSNs in infants. In two 
studies Fransson et al. have presented results on the presence of 
RSNs. In the first study (Fransson et al., 2007) 12 pre-term infants 
were imaged 41-weeks gestational age and in the second, 19 term 
unsedated infants (Fransson et al., 2009) were studied. In both 

IntroductIon
Patterns of low frequency spontaneous correlations in large-scale 
brain regions in humans have been detected (Biswal et al., 1995) 
from blood oxygenation level dependent (BOLD) functional mag-
netic resonance imaging (fMRI) signals collected at rest. These cor-
relations are used to obtain resting-state networks (RSNs), which 
may represent functional connectivity within the brain, and have 
been largely studied in adult populations (Buckner et al., 2008). 
Among these RSNs, a default mode network (DMN) has been iden-
tified which is characterized by a decrease in neuronal activation 
when the subject concentrates on an external task (Binder et al., 
1999; Raichle et al., 2001). Differences in the functional connectiv-
ity of RSNs have been implicated in neurological disorders such as 
Schizophrenia (Garrity et al., 2007; Rotarska-Jagiela et al., 2010) 
and Alzheimer’s disease (Greicius et al., 2004; Sorg et al., 2007). In 
this paper we study the maturation of RSN functional connectivity 
during early human development in healthy term born children and 
in former premature children between 18 and 36 months of age.

Extremely low birth weight (ELBW) premature infants have a 
high risk of developmental delay. Almost half of the ELBW infants 
go on to develop moderate to severe cognitive intellectual impair-
ment (Hack et al., 2004; Taylor et al., 2004; Vohr et al., 2004; Wilson-
Costello et al., 2005) and even premature children with normal 
IQs are at high risk for school failure due to deficits in executive 
function (Vicari et al., 2004). The mechanisms underlying these 
deficits are often not well understood. While many ELBW  children 
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children and adults (Fair et al., 2009; Supekar et al., 2009). An 
interesting finding was that development of children to adults was 
accompanied by a decrease in connectivity of short range connec-
tions and an increase in long-range connectivity. In this paper we 
do not discuss such differences in network metrics.

MaterIals and Methods
PartIcIPants
In this study we recruited very low birth weight premature infants 
(≤1500 g at birth) and full-term children at 18–22 months and 
36–48 months of age. All of the subjects sustained normal develop-
ment and had no abnormalities on neurologic examination or on 
standard MRI scan. The subjects were categorized into four groups: 
(a) 16 premature infants at 18 months (P18), (b) 13 premature infants 
at 36 months (P36), (c) 9 full-term infants at 18 months (F18), and 
(d) 9 full-term infants at 36 months (F36). All experiments were done 
on sleeping children. The term children were not sedated while some 
premature children were lightly sedated with 50 mg/kg chloral hydrate 
administered orally. Prior to scanning, written informed consent was 
obtained from the parents and the study was approved by Institutional 
Review Board of the University of New Mexico. Light chloral hydrate 
sedation (50 mg/kg orally) was used for 11 of 16 premature infants at 
18 months and 9 of 13 premature infants at 36 months. The mean ges-
tational age for pre-term 18-month-old children was 28.7 weeks (±1.38, 
range 26.3–30.5 weeks) and the mean gestational age for pre-term 
36-month-old children was 29.9 weeks (±1.58, range 28–32 weeks).

data acquIsItIon
Initially, a high resolution five-echo T1-weighted magnetization 
prepared rapid gradient-echo (MPRAGE) image was acquired 
on a 3T Siemens Trio scanner [TE = 1.64, 3.5, 5.36, 7.22, and 
9.08 ms, TR = 2530 ms, flip angle = 7°, FOV = 256 mm, matrix 
size = 256 × 256, 1 mm3 isotropic voxel]. The resting-state data was 
collected from a gradient-echo echo-planar sequence [TE = 29 ms, 
TR = 2 s, FOV = 240 mm, matrix size = 64 × 64, 32 slices, thickness 
4.45 mm]. Resting-state data was collected for 5 min 16 s resulting 
in 158 volumes of BOLD fMRI data per subject.

data analysIs
The data was preprocessed using a mixture of free and commercial 
packages including SPM1, GIFT2, AFNI (Cox, 1996) and MATLAB 
(The Mathworks Inc). The first four volumes of the functional data 
were discarded to account for T1 equilibrium effects. The remaining 
154 volumes of EPI data of each subject was first motion corrected 
(INRIA align) followed by slice time correction. The data was then 
de-spiked using AFNI. Each subject’s de-spiked EPI data was aligned 
to an infant’s template obtained from the subjects in our study. 
In order to compare the 18-month and the 36-month infants we 
pooled our data and obtained one common template. A two step 
procedure was used to reduce the effect of the adult template (Altaye 
et al., 2008). We first aligned all the infant T1 images to the adult 
MNI template. The mean of these infant T1 registered images was 
our study specific infant template. In the second step, the spatial 
normalization was repeated by registering each infant’s image to 

these groups RSNs were found in the sensory cortices, parietal 
and  temporal areas, and the prefrontal cortex. Another study (Gao 
et al., 2009) compared DMNs and their functional connectivity in 
neonates, 1-year-old and 2-year-old infants. They found the pres-
ence of an incomplete DMN in neonates, which was developed in 
1-year olds and was similar to adults in 2-year olds. Recently longi-
tudinal neural network development was studied in pre-term chil-
dren (Smyser et al.) from postmenstrual age of 26–40 weeks. They 
were able to find RSNs in various cortical regions and map their 
spatial growth longitudinally as a function of child’s age. Although 
the presence of RSNs have been demonstrated in infants as early 
as 42 weeks, no study has examined the effects of prematurity on 
the spatial and temporal properties of RSNs systematically. Our 
goal was to compare age and prematurity dependent RSN property 
differences and their functional network connectivity (FNC) (Jafri 
et al., 2008). Forty seven children participated in this study, where we 
compare differences in RSNs in premature (≤1500 g) and full-term 
children imaged at 18–22 months and 36–48 months of age.

Temporally coherent networks of low frequency spontaneous 
oscillations were found from BOLD data collected on sleeping chil-
dren. We call these networks as RSNs to mean networks found when 
the subjects were not actively doing a specific task. This does not 
exclude the presence of these networks during a task as well.

Currently there are two main methods for doing rs-fcMRI analysis. 
The first method consisted of the seed based correlation approach in 
which few region of interest (ROI) time series are selected a priori and 
voxelwise cross-correlation is computed across the whole brain (Fox 
et al., 2005). The ROI approach is more suitable to study adult resting 
fMRI data as the ROI’s are well defined by many researchers and may 
not be completely evolved in a younger population (Fair et al., 2008). 
The second approach to identify RSNs uses independent component 
analysis (ICA). The advantage of ICA is that it is a model free data-
driven approach that decomposes the data into linear mixtures of 
spatially independent and temporally coherent source signals/compo-
nents. The applicability of the technique to resting fMRI data to extract 
RSNs has been demonstrated previously (Beckmann and Smith, 2004; 
Greicius et al., 2004; Calhoun and Adali, 2006; Damoiseaux et al., 
2006). In this paper we use a ROI based rs-fcMRI analysis, where the 
ROIs are defined by the ICA spatial maps. Rather than define ROIs 
based on some atlas that may not be representative of functional units 
in infants, we treat ICA as a clustering algorithm to define regions with 
high within cluster correlations. We define functional ROIs based on 
the data itself. Although, the goals of both these methods is to identify 
functional connectivity, the network nodes and the time courses used 
for functional connectivity are different in the two methods. The ICA 
method defines a spatial map across the whole brain while the ROI 
based method uses locally defined clusters. The ICA method uses 
time courses associated with each ICA spatial map, while the ROI 
based method uses BOLD time response local to that specific ROI 
after removing effects of physiological noise. Thus there are significant 
differences between the two approaches and it is reassuring that the 
results of the two methods are similar.

Once the functional connectivity network is obtained graph-
theoretic metrics can be used to study network properties (Bullmore 
and Sporns, 2009). These include parameters such as path-length, 
network clustering, modularity, and small-world topology. At least 
two recent papers discuss differences in network properties between 

1www.fil.ion.ucl.ac.uk/spm
2http://icatb.sourceforge.net
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the total energy will be higher at a frequency where the contributions 
are coherent. This shows that a stronger within network connectiv-
ity at a frequency can lead to a higher power spectrum peak for that 
frequency. Unfortunately we cannot conclude the reverse. If the power 
spectrum has higher energy at some frequency, we cannot conclude 
that the within network correlations are higher at that frequency.

Another advantage of a signal with higher energy is that in the 
presence of noise, the accuracy of correlation coefficient calculation 
increases for higher signal amplitudes. The correlation coefficient 
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noise θ(t) is zero. On the other hand, the correlation coefficient 
tends to zero with increasing noise variance. Thus in the absence 
of noise, the signal amplitude does not matter for correlation cal-
culations; but with noise, a higher signal-to-noise ratio improves 
accuracy of correlation coefficient estimates, making it easier to 
detect connectivity.

Two sample t-tests (assuming unequal variance) were performed 
to investigate the effects of age and prematurity on power spectrum 
differences. Significant p-values are reported after correcting for 
multiple comparisons using false discovery rate (FDR) (Benjamini 
and Hochberg, 1995). Significance of the observed effect was also 
verified by permutation tests. Subject group membership was 
randomly permuted 10000 times and null distribution of group 
differences was obtained. The probability of observed difference 
given the empirical null was obtained. This p-value was corrected 
for multiple comparisons.

FunctIonal connectIvIty
To assess the strength of functional connectivity within an ICA net-
work across groups, two sample t-tests (assuming unequal variance) 
were performed on the spatial maps to test age and term related differ-
ences. To restrict the search space, first a one-sample t-test for a given 
spatial map was performed for the corresponding group. For example 
to test term related effect in the 18-month kid group, for each ICA 
spatial map a one-sample t-test was performed on all of the 18-month 
kid’s data. This map was thresholded at a FDR corrected p < 0.05 
value and all the positively active voxels in this thresholded map were 
used to define a mask. The two sample t-tests for that independent 
component were then performed within these voxels. The resulting 
maps were thresholded at an FDR corrected value of p < 0.05.

FunctIonal network connectIvIty
The 14 (manually selected) resting-state networks were divided 
into the following five functionally defined major groups with sub-
networks. These being: (1) Visual networks, (2) Default mode net-
works, (3) Temporal network, (4) Motor network, and (5) Basal 
ganglia. These are discussed in Table 1.

the infant template found in the first step. The spatially normalized 
images were resampled to 3 mm isotropic cubic voxels and then 
smoothed with a 6-mm Gaussian kernel. Finally each voxel’s time 
series within the brain tissue was normalized to a mean of 100.

All of the preprocessed data from both the age groups was ana-
lyzed together in a single group ICA framework as implemented in 
the GIFT package. A two step data reduction approach using prin-
cipal component analysis (PCA) was taken prior to performing the 
ICA analysis. In the first step, 80 principal components were obtained 
from each individual subject data to retain most of the subject specific 
variance. Then each of the subject’s reduced data was concatenated 
in time and a second PCA was performed to retain 30 components. 
Recent extensive experiments on simulated and real fMRI data sets in 
our lab have shown that accounting for greater subject specific vari-
ance by retaining more components at the first PCA reduction step 
yields more reliable group and subject specific back reconstructed 
maps using GIFT package (Erhardt et al., 2010). Then Infomax ICA 
algorithm was used to obtain 30 independent components. The sta-
bility of the estimated components was ensured using 10 ICASSO 
(Himberg and Hyvarinen, 2003) iterations. Individual subject spe-
cific maps were subsequently obtained using the improved back 
reconstruction algorithm implemented in GIFT package.

Out of the 30 independent components, a set of 14 resting-
state networks within the cortex were identified (Figure 1). These 
networks are listed in Table 1. The remaining components corre-
sponded to subject’s motion or were spatially confined to cerebro-
spinal fluid (CSF), and blood vessels. The independent component 
spatial maps obtained were first z-scored and one-sample random 
effects maps for the whole group were generated. Each subject’s 
reconstructed ICA time courses were orthogonalized with respect 
to their estimated motion parameters, and representative WM and 
CSF signals. CSF and WM regions were identified based on the 
infant template found earlier. Several small ROI’s were manually 
drawn in the CSF and WM regions of the template and the mean 
time signal in CSF and WM was calculated for each subject for use 
in orthogonalization. Spectral analysis was performed on these 
time courses. Subject specific time courses were variance normal-
ized. Time course spectra were then determined using multi-taper 
spectral estimation3. In our data, the power spectrum had a peak 
at approximately 0.03 Hz and we compared for the differences in 
the power spectrum within the low frequency range (0.01–0.06 Hz) 
by averaging across this range for the four infant groups. The 
average spectral power was obtained in the low frequency range 
0.01–0.06 Hz because it has been suggested in the literature that 
the cross-correlations between resting-state BOLD data is reflected 
in frequencies less than 0.1 Hz (Cordes et al., 2001).

An increased power density at a frequency can be caused by 
higher within network connectivity at that frequency. In addition, 
higher power density at a frequency makes it easier to detect con-
nectivity between networks associated with that frequency. The ICA 
time course has contributions from the whole brain weighted by the 
ICA spatial map. For simplicity we assume that there are only two 

 voxels and two frequencies present. The ICA time course can then be 

expressed as x t A t B tk k k k k k( ) cos( ) cos( )= ∑ + + ∑ += =1
2

0 1
2
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3http://chronux.org
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We computed correlation between each pair of ICA time courses 
(Jafri et al., 2008). These correlation values were converted to 
z-scores using Fisher’s Z transform [z = 1/2ln(1+r)/(1−r)], and two 
sample t-tests were performed on these z-scores to probe age and 
term related effects. In order to calculate the group mean correla-
tion, we averaged the Z-scores and back calculated the correlation. 
The results of differences in correlations between different groups 
are presented similarly. We calculate the Z-score for the group mean 
difference and for presentation convert it back to a correlation.

There is considerable discussion in the literature in merits of 
simply averaging the untransformed correlations (Schmidt-Hunter 
method, Schmidt and Hunter, 1999) or averaging the Z-scores after 
transformation. We believe that both the methods will give similar 
results. Monte-Carlo simulation studies have shown that Schmidt-
Hunter method results in estimates with an under-bias and the 
Fisher’s transform method leads to a slight over-bias (Law, 1995). 
Even for the Schmidt-Hunter method the significance is tested by 
using Fisher’s Z transform. The conversion of Z-score back to a 
correlation is less common but has been used previously in fMRI 
data analysis (see Gao et al., 2009).

regIon oF Interest analyses
Additionally region of interest (ROI) based connectivity analysis 
was also performed. One-sample t-tests were performed on the 14 
group ICA networks. These maps were thresholded at an arbitrary 
value of t > 5 and clusters of at least 80 contiguous voxels were 
obtained. A total of 44 regions of interest (ROIs) were obtained 
from all of the 14 independent components. A multiple regression 
was performed on each subject’s preprocessed BOLD fMRI data 
with their estimated motion parameters and their WM and CSF 
signals as regressors and residuals were obtained. ROI time courses 
for the clusters defined above were obtained by weighted average of 
these residual fMRI time series, free of physiological and motion 
artifacts, within voxels of each cluster. The weighting factor, a value 
in the range 0–1, was obtained by scaling the contribution or load-
ing value of the voxel in the cluster with respect to all the voxels 
in the spatial map that survived a threshold of t > 5. Correlation 
matrices between these ROI time courses were computed for each 
subject. This resulted in 946 correlations per subject. These values 
were Fisher Z transformed. PCA was performed on the Fisher Z 
transformed correlation matrix of all subjects (946 × 47 matrix). 
The loading parameters/principal component coefficients of first 
and second eigenvectors were used to probe for age and term related 
effects. For visualization, correlation matrix projected into first two 
eigenvector spaces is plotted. The loading values for each group 
were plotted in the inset of these figures. Also the mean difference 
Fisher Z transformed maps between full-term and pre-term infants 
at 18 months and 36 months were obtained. These maps were 
inverse Z transformed to obtain a mean difference in correlation 
strength across groups and plotted.

results
sPatIal MaPs
All of the children at 18 and 36 months exhibited well developed 
resting-state networks. Except for the right and left lateral fronto-
parietal networks, we found all other major RSNs found in adults. 
The children exhibited a sub-cortical RSN (IC12) not seen in the 
adult population. The hippocampal formation is usually  considered 

as part of the DMN. In our ICA analysis it manifested within the 
component consisting of primarily visual regions (IC22 and IC23). 
The spatial maps of RSNs are summarized in Figure 1, and Table 1 
summarizes the network properties with their functional grouping. 
The volumes in Table 1 were calculated by thresholding the spatial 
maps at an arbitrary value of t > 5 and retaining clusters of at least 
80 contiguous voxels.

To compare the functional connectivity differences within each 
IC, we performed two sample t-tests with subjects as random 
factor probing the differences in spatial extent of independent 
component networks with age or term. Our data revealed that 
spatially IC’s were similar between pre-term and full-term chil-
dren at both ages. However, a main effect of age was observed 
(p < 0.05 whole brain FDR corrected) in IC02, the bilateral visual 
cortex and IC12, basal ganglia including bilateral amygdala and 
putamen (Figure 2).

tIMe courses
The power spectrum of the temporal response for each network 
was compared for group differences across subjects. The signal 
power had a maximum in the range (0.02–0.05 Hz) for all sub-
jects. This supports the trend in resting-state analysis to filter the 
data below 0.1 Hz. The signal power in the low frequency range 
(0.01–0.06 Hz) was higher in pre-term infants at FDR corrected 
p < 0.05 than term born infants at 36 months in IC12, bilateral 
amygdala, and putamen (Figure 3). Although there was a trend 
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Table 1 | resting-state networks obtained from group iCA. Clusters of at least 120 voxels at a threshold t > 5 are reported.

Component number, Talairach regions Broadman areas Volume (mm^3) Maximum T MNi coordinates in mm LPi

(1) ViSuAL NeTworKS

iC02 – Bilateral visual

Bilateral lingual gyrus 17,18 2820 24 (1,−93,−9)

iC16 – Bilateral medial visual

Bilateral medial primary visual areas 17 3800 34.1 (2,−81,9)

iC15 – Bilateral secondary visual

Bilateral secondary visual areas 19,39 6500 28 (39,−80,−1)

Right middle cingulate cortex 24 144 9.8  (2,6,34)

iC22 – Right visual/hippocampal formation

Right lingual and right parahippocampal gyrus 17,30 4820 25.3 (20,−59,3)

Left parahippocampal gyrus 36 585 10 (−24,−51,−8)

iC23 – Right visual/hippocampal formation

Left lingual and left parahippocampal gyrus 17,30 5120 30.9  (−12,−53,0)

Left paracentral lobule 31 384 7.2  (−7,−33,52)

Right precentral gyrus 4 147 10.2 (46,−26,68)
(2) DeFAuLT MoDe NeTworKS

iC17 – Post. cingulated cortex/Inferior parietal lobe

Bilateral posterior cingulate cortex 31 3000 32.5 (0,54,5)

Left angular gyrus 39 1230 18.1 (−45,−73,32)

Right angular gyrus 39 1110 17.4 (45,−70,32)

Bilateral mid orbital gyrus  466 8.9 (0,54,5)

iC27 – Bilateral angular gyrus/Sup, medial gyrus

Bilateral superior medial frontal gyrus 8 2170 18.8 (1,34,50)

Bilateral precuneus  887 15.8 (−1,−56,50)

Left angular gyrus  211 15.2 (−48,−68,32)

Left hippocampus 37 161 10.9 (−18,−20,−15)

Right hippocampus 37 121 10.2 (18,−21,−11)

iC28 – Superior frontal gyrus

Bilateral dorsal medial prefrontal cortex 6 4890 30.7 (2,7,62)

iC11 – Bilateral anterior cingulate

Bilateral anterior cingulate cortex 32 4000 27.2 (0,34,21)

Bilateral cuneus 19 375 7.6 (4,−93,28)
(3) TeMPorAL NeTworKS

iC25 – Bilateral posterior temporal cortex

Right superior temporal gyrus  3600 25.9 (56,−27,3)

Left superior temporal gyrus  1879 17.2 (−51,−37,10)

Bilateral precuneus 7 612 7.7 (0,−54,67)

Bilateral medial frontal gyrus 6 151 6.7 (−2,−16,54)

iC26 – Bilateral middle temporal cortex

Right rolandic operculum 43 3189 24 (54,−11,25)

Left rolandic operculum 43 2140 16.9 (−47,−18,25)

Bilateral cuneus 19 476 6.5 (0,23,40)

Bilateral medial frontal gyrus 32 233 9 (1,23,40)
(4) MoTor CorTex

iC03 – Right motor cortex

Right precentral gyrus 4 3390 26.3 (34,−28,65)

Left postcentral gyrus 5 125 8.2 (−37,−46,69)

iC10 – Left motor cortex

Left precentral gyrus 4 4116 22.2 (−31,−33,61)

Right calcarine gyrus 17 293 7 (13,−76,−3)

Right postcentral gyrus 5 138 8.5 (43,−46,65)
(5) BASAL gANgLiA

iC12 – Bilateral putamen/amygdala

Left putamen  1700 26.2 (−24,1,5)

Right putamen  1670 20 (26,1,5)
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lower half of the correlation matrix excluding the diagonal is 
shown. The ICA components have been ordered according to the 
groups indicated in Table 1 (Visual, DMN, Motor, Temporal, and 
the Basal Ganglia region). We probed for differences in correla-
tion between these sub-networks as a function of prematurity. 
The results are summarized in Figure 4B. In the default mode 
networks, we did not observe any significant difference in cor-
relation between the pre-term and term born children nor did 
we observe any age related effects. In the visual network the 
pre-term children had higher correlation between the Bilateral 
secondary visual (IC15) and the Bilateral medial visual (IC16) 
(p = 0.03, FDR corrected) at 18 months. For the temporal/motor 
network there was significantly higher correlation in pre-term 
infants between left motor cortex (IC10) and the bilateral pos-
terior temporal cortex (IC25) at 18 months and at 36 months of 
age (p < 0.05, FDR corrected). Connectivity differences between 
the sedated and unsedated pre-term children were studied for 
the two age groups. The difference in mean correlation values is 
plotted for 18-month group (Figure 5A) and 36-month group 
(Figure 5B). Since the number of unsedated children is low, 
significance of differences was assessed using a permutation test. 
The cells which depict significant correlation differences after 
multiple comparison correction are enclosed in a black square. 
The effect of sedation seems to be more in the 18-month children. 
None of the correlation strength differences reached significance 
for 36-month group.

FunctIonal network connectIvIty based on roI analysIs
Spatial clusters obtained from independent component analysis 
were used to define ROI’s. Mean ROI time courses were computed 
from each subject’s preprocessed fMRI time courses that were 

for signal power in the low frequency range (0.01–0.06 Hz) to be 
higher in pre-term infants in several RSNs, we did not see sig-
nificant differences. A similar comparison was done comparing 
18-month and 36-month-old infants. No age dependent differ-
ences were observed in the spectral power of respective IC time 
courses. Differences between the time course spectral properties 
for the sedated and unsedated children were compared for the 
18-month and the 36-month group and no significant differences 
were found. The signal power in the low frequency range (0.01–
0.06 Hz) was higher in pre-term infants even after the sedated 
children were removed.

FunctIonal network connectIvIty based on Ica coMPonents
Functional network connectivity between two independent 
components was defined as the correlation between their time 
courses. A correlation matrix between each pair of 14 ICA com-
ponents was calculated and is shown in Figure 4A. Only the 

X = 9Y = 99Z = -9

X = 18Y = -18Z = -3

L R IC12

IC02

Figure 2 | independent component maps depicting significant age 
related differences in two sample random effects analysis. Maps are 
thresholded at a whole brain voxelwise FDR corrected p < 0.05.
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Figure 3 | Spectral analysis of iCA time courses of basal ganglia (iC12) 
component. Plotted here is the mean spectral power for pre-term children 
(blue) at 36 months along with their standard errors (cyan) and mean spectral 
power for full term children (red) at 36 months along with their standard errors 
(yellow).

Table 2 | roi labels for Figures 5 6 and 7.

R – Right IFG – Inferior frontal gyrus

Vis – Visual PreCG – Precentral gyrus

Cun – Cuneus PoCG – Post central gyrus

PreCu – Precuneus HF – Hippocampal formation

Put – Putamen Bi – Bilateral

FFG – Fusiform gyrus S – Secondary

Ang – Angular gyrus MOG – Middle occipital gyrus

Amy – Amygdala MeFG – Medial frontal gyrus

Hip – Hippocampus dMePFC – Dorsal medial prefrontal cortex

L – Left SMA – Supplementary motor area

SPL – Superior parietal lobe STG – Superior temporal gyrus

IPL – Inferior parietal lobe ITG – Inferior temporal gyrus

SFG – Superior frontal gyrus ACC – Anterior cingulate cortex

 MCC – Middle cingulate cortex
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across all subjects and the corresponding regions are indicated in 
Figure 6B. Time courses were arranged such that neighboring brain 
areas are placed closer in the matrix. A strong positive correlation 
can be observed among different visual areas and also among motor 

orthogonalized with respect to their motion parameters, CSF and 
WM signals. We then investigated the effects of prematurity and 
age in the correlation between these time courses. Figure 6A depicts 
the overall correlation between these ROI time courses collapsed 
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between full term and pre-term children at 18 months (left panel) and at 
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Figure 6 | (A) Mean correlation matrix of the all the subjects for all of the 
ROI pairs. The correlation values obtained for each pair were Fisher Z 
transformed, averaged across all of the subjects and finally inverse Fisher Z 
transformed to obtain a mean correlation value for each pair. The color coding 

next to ROI labels shows the grouping of regions based on their location in 
brain. Abbreviations of labels are listed in Table 2 and the brain regions are 
displayed in (B). (B) Brain maps depicting the weighted ROI masks used in 
ROI analysis.
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Figure 7 | Principal component analysis results: individual correlation 
values of all of the subjects projected into first (A) and second 
(B) principal component space. The insets in each panel show bar 
graphs of group mean loadings with standard errors for each of the 
four groups for the corresponding component score. Subject specific 

loadings are plotted in circles overlaid on top of bar graphs. * represents 
significant difference between pre-term and full term groups for 
corresponding age groups. In inset of (B), for the pre-term group, loadings 
for unsedated children are displayed in filled circles shifted slightly to 
the right.

networks. Also positive correlation exists between visual and motor 
networks, and motor and frontal networks. Results from the PCA of 
subject specific correlation matrices are presented in Figures 7A,B. 
The PCA we did is a variant on the standard PCA. In the stand-
ard analysis the subjects would be the number of samples and the 
mean would be subtracted across subjects. We changed the roles 
of samples and their attributes, with the mean along the attributes, 
the column of the correlation matrix (946 × 47) matrix being sub-
tracted. This has the effect of the first principal component score 
(Figure 7A) reflecting the pattern of a shifted group mean plot 
(Figure 6). The corresponding subject loadings (inset Figure 6A) 
did not show any difference across groups. The second principal 
component score represents modulation or variances in the con-
nectivity among different regions. Here a main effect of prematurity 
in the group loadings (inset Figure 7B) is evident (p = 0.009). The 
unsedated subjects in the premature group are marked with fill 
in the dots. The observed difference in loadings is preserved in 
the 36-month children as most of the unsedated kids fall in the 
same distribution as the sedated kids do. Insights into the second 
principal component score map can be obtained from the group 
differences in the correlation maps between pre-term and full-term 
kids depicted in Figures 8A,B for ages 18 months and 36 months 
respectively. It should be noted that stronger connectivity among 
visual areas in pre-term infants compared to full terms at both 
ages, a stronger connectivity among visual and motor networks 

and motor and frontal regions in full-term infants compared to 
pre-term infants is reflected in the second PCA score. The third 
principal component score mainly corresponded to regions of weak 
correlations (values of r < 0.1) in mean correlation matrix shown in 
Figure 6. So the third and higher PCA components were not consid-
ered for further analysis. Connectivity differences between sedated, 
and unsedated pre-term children was studied for the two age groups 
(Figure 9). A trend of stronger connectivity differences between 
sedated and unsedated children is apparent in the 18-month group, 
but not in the 36-month group. None of the differences survived 
multiple comparison correction.

dIscussIon
The effects of prematurity and age on the RSNs of children at 18 and 
36 months was investigated. Our group independent component 
analysis yielded RSNs similar to those observed in adults. Visual 
(Figure 1A), default-mode (Figure 1B), temporal (Figure 1D) and 
motor networks (Figure 1E) consistently observed in adults (for 
reference see Figure 1 in both Damoiseaux et al., 2006; Calhoun 
et al., 2008) were present as early as 18 months. The fronto-parietal 
network (Figures 1C,D Damoiseaux et al., 2006), which is usually 
lateralized in adults is not present in our data. This network is 
consistently shown to be involved in active memory tasks and may 
not be present prior to 3 years of age. We observed an additional 
network in the basal ganglia that encompasses caudate nucleus, 
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Figure 9 | Connectivity differences in the roi based functional 
connectivity between pre-term unsedated and sedated children for the 
18 month (A) and the 36 month (B) groups. Although no significant 

differences were observed at an FDR corrected p < 0.05 for either groups, a 
trend towards higher connectivity for unsedated children was observed for 
18-month group as compared to sedated children.
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putamen and amygdala. This is consistent with the recent finding 
by Fransson et al. (2009) who observed the network in term born 
infants scanned when they were sleeping naturally. The sensori-
motor component (Figure 1E) showed predominant hemispheric 
lateralization with a small but significant cluster in contralateral 
hemisphere. This is supported by a recent study by (Liu et al., 2008) 
in which they observed the same unilateralization of the network in 
9 out of 11 infants scanned at 12 months. This effect is speculated 
to be mediated by the breakdown of effective cortical connectivity 
in the motor cortex during certain stages of sleep.

The same spatial maps existed in premature as well as term 
born children at both ages suggesting a similar pattern of network 
development. This finding should be interpreted with caution, how-
ever, as only premature children with normal development and 
normal brain structures were included. Therefore this may only 
suggest that prematurity per se does not interfere with the normal 
process of functional brain network development. Development 
of functional brain networks may indeed be affected by lesions 
sometimes associated with prematurity (such as periventricular 
leukomalacia or intraventricular hemorrhage), or with more subtle 
injury resulting in cognitive deficits that are not clinically apparent 
until subjects are older.

The role of different frequency bands towards functional con-
nectivity in adults has been previously studied (Wu et al., 2008). 
They showed that 0.01–0.06 Hz band demonstrated strong corti-
cal connections, while connections between limbic structures was 
distributed over a wider frequency range (0.01–0.14 Hz). Although 
we did not compare the role of different frequency bands towards 
functional connectivity we did see higher power density in the 
0.01–0.06 Hz band in pre-terms at 36 months of age in amygdala 
and putamen regions (Figure 3).

The two methods of calculating network connectivity (ICA 
components and hybrid ROI approach) gave similar group mean 
connectivity patterns as seen by comparing Figures 4A and 6. One 
difference between them was that there were considerable more 
negative correlations present with the ICA method. The similarity 
is remarkable and one reason for the differences can be that the 
ICA spatial maps extend over the whole brain and can in part be 
negative. In the ROI method we obtained the regions from only the 
positive part of the ICA map which had a t-value >5. The patterns 
for the difference between premature and full-term children were 
also similar with two methods (compare Figures 4B and 8). In the 
visual area the premature children had higher connectivity at both 
18 months and 36 months of age with both methods of analysis. 
However, regions with statistically significant network connectiv-
ity were different between the two methods. In the ICA method 
we found significant differences in connectivity only in the visual 
area and between the temporal and the motor cortex, while with 
the hybrid ROI method we found significant differences in motor – 
frontal and the motor – visual areas.

A significant difference we found was stronger connectivity in the 
resting-state networks in term born children at 36 but not 18 months 
of age compared to former premature children. This was consistently 
identified in the two strongest networks present: motor – frontal 
and motor – visual networks (Figure 7). Prior work by Chugani 
(1998) using PET scans in the first year of life showed regional 
changes in cerebral metabolism that occurred starting in the primary 

sensory motor cortex and deep gray matter (newborn) to parietal 
lobes (3 months) to frontal lobes (8 months). A somewhat simi-
lar pattern of myelination occurs, with primary sensorimotor and 
visual pathways myelinating before parietal and finally frontal lobes 
(for review see Marsh et al. (2008)). It is of interest that networks 
involving the motor (and possibly premotor) and visual areas were 
the strongest we identified, raising the possibility that resting-state 
network development, although occurring later, follows a similar 
pattern as does early brain metabolism and myelination. In our 
subjects there was consistently stronger network connectivity in 
the term born children compared to premature children. Thus, the 
connectivity, not simply the presence, of resting-state networks may 
be particularly sensitive to the effects of prematurity.

Only minor effects of age were observed spatially in our group 
of children between 18-months and 36-months old. The children 
at 36 months exhibited a stronger contribution to visual cortex and 
basal ganglia components compared to 18-month sample. Similarly, 
the only difference in the time course of the premature and the 
term born infants was in the basal ganglia network. It should be 
pointed out that our conclusions are dependent on our methods of 
analysis. Our method of back-projection of group spatial ICA maps 
and time courses to individual subjects does preserve differences 
but enhancing differences is not the primary objective in the initial 
PCA data reduction step and subsequent ICA analysis. Alternate 
methods which incorporate prior information about the subject’s 
group are being developed and may increase sensitivity to group 
differences (Sui et al., 2009a,b).

Our ROI based functional connectivity analysis was based on 
regions-of-interest being defined by ICA spatial maps. We avoid 
selecting ROIs based purely on anatomical considerations, or some 
form of atlas. Instead we use the data itself to define functionally 
connected regions. We treat ICA as a means of cluster analysis, 
where disjoint brain regions are identified with correlated BOLD 
response. An advantage of this hybrid ROI approach is that by 
decomposing an ICA network into smaller contiguous clusters 
allows us to define connectivity between regions whose function 
is known from prior work. Our method is not based on pre-defined 
atlas with sharp boundaries but clusters and the associated weight-
ing function obtained from the data itself. Thus functional associa-
tions in the data are preserved and the data defines the location 
and weighting of the cluster. A disadvantage of this ICA based 
cluster definition is that we have not taken any advantage of ICA’s 
filtering properties. In ICA the time course of one voxel is factored 
into multiple time courses which can be shared between different 
ICA networks and those associated with noise get factored out into 
separate components. In the proposed hybrid method we do not 
have this advantage and each voxel’s time course had to be further 
filtered to remove effects of physiological noise. The hybrid method 
does use ICA to calculate the fractional contribution of each time 
course to the mean cluster time course.

A problem with our approach is that we have used the same 
data sets for doing the ICA analysis and selecting the ROIs and 
then doing a ROI based connectivity analysis on these regions 
(Kriegeskorte et al., 2009; Vul et al., 2009). If validation of the ICA 
method was our goal then our results would have been stronger 
if the groups we had used for identifying clusters were based on 
one group of subjects and then the ROI analysis for these clusters 
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spectral energy and the difference in connectivity between 
pre-term and term children was not changed by considering 
sedation.

Our results suggest that the anatomical locations of the RSNs 
are well developed by 18 months of age and their spatial locations 
are not distinguishable between premature and term born infants 
at 18 months or at 36 months, with the exception of small spatial 
differences noted in the basal ganglia area and the visual cortex. The 
two major differences between term and pre-term children were 
present at 36 but not 18 months and include: (1) increased spectral 
energy in the low frequency range (0.01–0.06 Hz) for pre-term 
children in the basal ganglia component, and (2) stronger connec-
tivity between RSNs in term children. We speculate that children 
born very prematurely are vulnerable to injury resulting in weaker 
connectivity between resting-state networks by 36 months of age. 
Further work including longitudinal studies of brain-behavioral 
relationships will be necessary to determine whether the resting-
state networks connectivity properties may indeed be early markers 
of brain injury associated with prematurity.
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done on a separate group of subjects. The present analysis is valid 
to show that the clusters found by ICA also show high correla-
tions for the same subjects even when the time courses are pulled 
directly from the input data. This is interesting because the ICA 
algorithm is based on mutual information cost function and does 
not directly use correlations as basis of optimization. Thus it is 
important to understand the differences between the meaning 
of correlations obtained from the time courses corresponding to 
ICA maps and correlations obtained directly from the input data 
based on a cluster. This consistency of the correlations between the 
two different time courses is intuitively expected but additional 
work needs to be done to tie down the connection between the 
two approaches.

In order to address the problem of sedation we have looked 
at the spectral properties of the time courses and found no dif-
ference in the energy distribution. Some differences were found 
in the functional connectivity of sedated and unsedated pre-
term children. We found a trend for stronger connectivity in 
unsedated pre-term children as compared to sedated children 
for the 18-month group. No such differences were found for 
the 36-month group. Although the amount of chloral hydrate 
administered was the same proportion of the child’s weight, the 
previous observation may indicate that at the younger age of 
18 months the children were more  sensitive to sedation. Our 
results presented for the 36-month group for the time course 
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