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Regulation of substantia nigra pars reticulata GABAergic 
neuron activity by H2O2 via flufenamic acid-sensitive channels 
and KATP channels
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Substantia nigra pars reticulata (SNr) GABAergic neurons are key output neurons of the basal 
ganglia. Given the role of these neurons in motor control, it is important to understand factors 
that regulate their firing rate and pattern. One potential regulator is hydrogen peroxide (H2O2), a 
reactive oxygen species that is increasingly recognized as a neuromodulator. We used whole-cell 
current clamp recordings of SNr GABAergic neurons in guinea-pig midbrain slices to determine 
how H2O2 affects the activity of these neurons and to explore the classes of ion channels 
underlying those effects. Elevation of H2O2 levels caused an increase in the spontaneous firing 
rate of SNr GABAergic neurons, whether by application of exogenous H2O2 or amplification 
of endogenous H2O2 through inhibition of glutathione peroxidase with mercaptosuccinate. 
This effect was reversed by flufenamic acid (FFA), implicating transient receptor potential 
(TRP) channels. Conversely, depletion of endogenous H2O2 by catalase, a peroxidase enzyme, 
decreased spontaneous firing rate and firing precision of SNr neurons, demonstrating tonic 
control of firing rate by H2O2. Elevation of H2O2 in the presence of FFA revealed an inhibition of 
tonic firing that was prevented by blockade of ATP-sensitive K+ (KATP) channels with glibenclamide. 
In contrast to guinea-pig SNr neurons, the dominant effect of H2O2 elevation in mouse SNr 
GABAergic neurons was hyperpolarization, indicating a species difference in H2O2-dependent 
regulation. Thus, H2O2 is an endogenous modulator of SNr GABAergic neurons, acting primarily 
through presumed TRP channels in guinea-pig SNr, with additional modulation via KATP channels 
to regulate SNr output.
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Bevan, 2005). Tonic firing can be modulated, however, by synaptic 
input as well as by activation of membrane conductances that cause 
changes in firing rate and pattern (Rick and Lacey, 1994; Stanford 
and Lacey, 1996; Shen and Johnson, 2006; Zhou et al., 2006, 2008; 
Ibáñez-Sandoval et al., 2007). Among the important membrane 
conductances in SNr GABAergic neurons are those mediated by 
transient receptor potential (TRP) channels (Lee and Tepper, 
2007b; Zhou et al., 2008). A number of TRP channel subfamilies 
are expressed in the CNS (Clapham et al., 2003, 2005), and the 
canonical TRP type-3 (TRPC3) channel has been identified as a 
regulator of SNr GABAergic neuron excitability in neonatal mice 
(Zhou et al., 2008). Activation of TRPC3 channels in SNr neurons 
increases the firing rate of these cells and contributes to the tonic 
depolarization that maintains their spontaneous firing (Zhou et al., 
2008, 2009). In addition, TRP channel activation may underlie 
a depolarizing plateau potential observed in these neurons (Lee 
and Tepper, 2007b). A potential opponent of TRP channel activity 
is ATP-sensitive K+ (K

ATP
) channels, which can cause membrane 

hyperpolarization and suppress firing in SNr GABAergic neurons 
(Schwanstecher and Panten, 1993; Stanford and Lacey, 1996; Dunn-
Meynell et al., 1998).

IntroductIon
The GABAergic neurons of the substantia nigra pars reticulata 
(SNr) comprise one of the major output nuclei of the basal  ganglia, 
and convey information from the basal ganglia network through 
projections that target the thalamus and superior colliculus, as 
well as other nuclei including the pedunculopontine nucleus and 
the mesencephalic locomotor region (Beckstead and Frankfurter, 
1982; Deniau and Chevalier, 1992; Redgrave et al., 1992; Mana and 
Chevalier, 2001; Takakusaki et al., 2003; Cebrián et al., 2005; Lee 
and Tepper, 2007a; Nambu, 2007). Identifying intrinsic membrane 
conductances and extrinsic factors that influence the excitability of 
these neurons is therefore important for understanding regulation 
of movement by the basal ganglia.

Substantia nigra pars reticulata GABAergic neurons are sponta-
neously active in vivo and in vitro (Wilson et al., 1977; Deniau et al., 
1978; Guyenet and Aghajanian, 1978; Nakanishi et al., 1987; Lacey 
et al., 1989; Yung et al., 1991; Stanford and Lacey, 1996; Richards 
et al., 1997; Atherton and Bevan, 2005; Lee and Tepper, 2007b; Zhou 
et al., 2008). A variety of conductances contribute to this tonic fir-
ing, and spontaneous activity persists in the absence of synaptic 
input indicating that it is intrinsically generated (Atherton and 
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The emerging neuromodulator hydrogen peroxide (H
2
O

2
) can 

activate both some TRP channels and K
ATP

 channels (Ichinari et al., 
1996; Herson and Ashford, 1997; Tokube et al., 1998; Hara et al., 
2002; Avshalumov and Rice, 2003; Avshalumov et al., 2005; Bao et al., 
2005; Freestone et al., 2009). Through these effects, H

2
O

2
 has been 

shown to be an important neuromodulator in basal ganglia neurons, 
including striatal medium spiny neurons (MSNs), which are depolar-
ized by H

2
O

2
 through a TRP channel-dependent mechanism (Bao 

et al., 2005), and dopaminergic (DAergic) neurons of the substantia 
nigra pars compacta (SNc), which are hyperpolarized by activation 
of K

ATP
 channels (Avshalumov et al., 2005). Whether H

2
O

2
 has a 

neuromodulatory action on SNr GABAergic neurons is unknown. 
Here, we investigated regulation of SNr GABAergic neuron activity 
by H

2
O

2
 using whole-cell current clamp recordings of visualized 

SNr GABAergic neurons in guinea-pig and mouse midbrain slices. 
In marked contrast to the inhibitory effect of H

2
O

2
 on SNc DAergic 

neurons, we found that SNr GABAergic neurons in guinea pig are 
excited by H

2
O

2
. Pharmacological methods implicated TRP channels 

as probable targets of H
2
O

2
 signaling in these neurons. However, SNr 

GABAergic neurons recorded from mouse are inhibited by H
2
O

2
. 

These results reveal a new mechanism regulating basal ganglia output 
via H

2
O

2
-dependent modulation of SNr neuron firing.

MaterIals and Methods
slIce preparatIon
Whole-cell recordings were obtained in midbrain slices containing 
the substantia nigra (SN) from adult male guinea pigs (Hartley, 
150–250 g) or mice (C57BL/6, 120 days). All procedures were per-
formed in accordance with the National Institutes of Health Guide 
for the Care and Use of Laboratory Animals and with the approval of 
the New York University School of Medicine Institutional Animal 
Care and Use Committee. Procedures for preparation of midbrain 
slices were similar to those described previously (Avshalumov et al., 
2005; Lee and Tepper, 2007a,b). Briefly, animals were deeply anes-
thetized with 50 mg/kg pentobarbital administered i.p., then trans-
cardially perfused with ice-cold solution containing (in mM): 225 
sucrose; 2.5 KCl; 0.5 CaCl

2
; 7 MgCl

2
; 28 NaHCO

3
; 1.25 NaH

2
PO

4
; 7 

glucose; 1 ascorbate; and 3 pyruvate, equilibrated with 95% O
2
/5% 

CO
2
. The brain was quickly removed, trimmed to a block containing 

the midbrain, and sectioned at 300 μm in the same medium using 
a Leica VT1200S vibrating blade microtome (Leica Microsystems, 
Bannockburn, IL, USA). Slices were immediately transferred to 
warmed (34°C) recovery medium containing (in mM): 125 NaCl; 
2.5 KCl; 1.25 NaH

2
PO

4
; 25 NaHCO

3
; 1 MgCl

2
; 2 CaCl

2
; 25 glucose; 

1 ascorbate; 3 pyruvate; and 0.4 myo-inositol, equilibrated with 
95% O

2
/5% CO

2
, which gradually cooled to room temperature over 

the next hour; slices were maintained in this medium until use. 
Physiological recording was conducted in a submersion recording 
chamber, with slices continuously superfused at 1.4 mL/min with 
artificial cerebrospinal fluid (aCSF) at 32°C containing (in mM): 
124 NaCl; 3.7 KCl; 26 NaHCO

3
; 2.4 CaCl

2
; 1.3 MgSO

4
; 1.3 KH

2
PO

4
; 

and 10 glucose, equilibrated with 95% O
2
/5% CO

2
.

VIsualIzed whole-cell recordIng
Neurons were visualized at 40× using a water-immersion objective 
on an Olympus BX51WI microscope equipped with infrared dif-
ferential interference contrast (IR-DIC) optics (Olympus America, 

Center Valley, PA, USA). Pipettes were constructed from 1.5 mm o.d. 
borosilicate capillary tubing (World Precision Instruments, Sarasota, 
FL, USA) using a Sutter P-97 Flaming/Brown micropipette puller 
(Sutter Instrument Company, Novato, CA, USA) and filled with a 
solution containing (in mM): 129 potassium gluconate, 11 KCl, 10 
HEPES, 2 MgCl

2
, 10 EGTA, 3 Na

2
-ATP, and 0.3 Na

3
-GTP, which was 

titrated to a pH of 7.3 with KOH. In some experiments, the pipette 
backfill also included an H

2
O

2
-sensitive fluorescent probe as described 

below. Pipettes had resistances of 3–6 MΩ. Recordings were obtained 
using an Axopatch 200B amplifier, low pass filtered at 2 kHz, and digi-
tized by a Digidata 1322A connected to a personal computer running 
Clampex 9 (Molecular Devices, Sunnyvale, CA, USA). In the present 
experiments, we used visualized whole-cell current clamp recordings 
to allow for control of the intracellular and extracellular environments 
in neurons while monitoring how H

2
O

2
 affects the spontaneous activ-

ity of these cells. Previous studies found no differences in the firing 
rate and regularity of firing between whole-cell and perforated-patch 
recordings in SNr GABAergic neurons (Atherton and Bevan, 2005).

The SN contains both DAergic and GABAergic neurons which 
can be distinguished by their electrophysiological characteristics. 
When compared to DAergic neurons, nigral GABAergic neurons 
recorded in guinea-pig slices in vitro have a higher spontane-
ous firing rate, narrower action potential, shorter duration after 
hyperpolarization (AHP), and a less pronounced sag in response to 
hyperpolarizing current pulses (Hainsworth et al., 1991; Yung et al., 
1991; Hajós and Greenfield, 1994), characteristics that are indis-
tinguishable from those observed in rat SNr GABAergic neurons 
(Matsuda et al., 1987; Nakanishi et al., 1987; Grace and Onn, 1989; 
Lacey et al., 1989; Richards et al., 1997; Gulácsi et al., 2003; Lee and 
Tepper, 2007a,b). Data presented are from neurons determined to 
be GABAergic based on these characteristics.

Fluorescent IMagIng oF h2o2

Fluorescent imaging of H
2
O

2
 was carried out using methods simi-

lar to those described previously (Avshalumov et al., 2005, 2007, 
2008; Bao et al., 2005). The H

2
O

2
-sensitive indicator 5-(and-6)-

chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate, acetyl ester 
(CM-H

2
DCF-DA, Invitrogen, Carlsbad, CA, USA) was loaded into 

individual neurons via the pipette backfill solution. For these experi-
ments, stock solutions of CM-H

2
DCF-DA were made in ethanol with 

10% v/v KOH (8 N); the final concentration of indicator in the pipette 
solution was 8 μM. Following electrophysiological identification of 
SNr GABAergic neurons, cells were held for 20 min before imaging 
to allow the indicator to infiltrate the recorded cell (Avshalumov 
et al., 2005). After diacetate cleavage, the parent molecule H

2
DCF 

becomes fluorescent DCF when oxidized by H
2
O

2
 or other reactive 

oxygen species. Excitation wavelength (488 nm) was controlled by 
a DeltaRam monochromator (Photon Technology International, 
Birmingham, NJ, USA) and emission at 535 nm detected using an 
IC-200 CCD camera (Photon Technology International). Images 
were acquired at 1 Hz with 30 ms exposure and eight frame averag-
ing using ImageMaster 5.0 (Photon Technology International).

drugs and cheMIcals
All components of physiological solutions, as well as H

2
O

2
, mercap-

tosuccinate (MCS), flufenamic acid (FFA), and glibenclamide were 
purchased from Sigma-Aldrich (St. Louis, MO, USA). Tetrodotoxin 
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absence of oxidative damage in brain slices with this concentration 
of H

2
O

2 
under similar conditions (Chen et al., 2001). Importantly, 

the effect of H
2
O

2
 on SNr neurons was reversible, providing evi-

dence for the absence of toxicity in the present studies (control 
14.2 ± 2.1 Hz; H

2
O

2
 18.4 ± 3.2 Hz; washout 14.0 ± 2.3 Hz; n = 5; 

F
(2,8)

 = 13.68; p < 0.01; control vs. washout p > 0.05).
The increase in firing rate elicited by H

2
O

2
 elevation was not 

accompanied by a change in the regularity of firing, as measured by 
the CV of interspike intervals, which was 0.122 ± 0.009 in control 
conditions and 0.127 ± 0.012 in the presence of H

2
O

2
 (Figure 1D; 

p > 0.05). Additionally, when a hyperpolarizing current pulse was 
delivered to SNr neurons from rest, the voltage deflection observed 

(TTX) citrate and 2-aminoethoxydiphenyl borate (2-APB) were 
purchased from Tocris Bioscience (Ellisville, MO, USA). Catalase 
(bovine liver) was purchased from Calbiochem (San Diego, CA, 
USA). Solutions of H

2
O

2
, MCS, and catalase were made fresh 

daily. Solutions of FFA, 2-APB, and glibenclamide were prepared 
in DMSO (Sigma-Aldrich) before dilution in aCSF; final concen-
trations of DMSO did not exceed 0.05%, which was also present 
in control aCSF for studies with these agents. All other agents were 
added directly to aCSF; application of all agents to slices via the 
superfusing aCSF did not exceed 20 min.

data analysIs
Electrophysiological data were analyzed using Clampfit 9 (Molecular 
Devices). Spontaneous firing rates were determined from 60 s of 
spontaneous activity with zero holding current under control con-
ditions and during the period of maximal effect following drug or 
enzyme application. Maximal effects were observed within 10 min 
of application. Neurons that did not exhibit a steady baseline fir-
ing rate under control conditions were excluded from analysis. 
Regularity of firing was assessed from the coefficient of variation 
(CV) which was calculated as the standard deviation of the inter-
spike interval divided by the mean interspike interval (Atherton 
and Bevan, 2005). Action potential parameters were measured 
from spike threshold, which was determined manually. Membrane 
potential between action potentials was measured from a region 
just after repolarization of the AHP and just prior to depolariza-
tion preceding the next action potential. Voltages were corrected 
for the liquid junction potential which was estimated to be 13 mV 
using JPCalc (Barry, 1994).

Fluorescence imaging data were analyzed using ImageMaster 
5.0 (Photon Technology International) to determine the fluores-
cence intensity (FI) for a region of interest in each frame drawn 
around the cell body. Background fluorescence was measured from 
an area within the same field of view but outside of the region of 
interest and subtracted from the region of interest. The resulting 
FI was normalized and data are presented as [(intensity − basal)/
(basal)] × 100%.

All data are presented as mean ± SEM. Statistical evaluation 
of the data was conducted using paired t-tests or repeated meas-
ures ANOVA followed by pairwise contrasts to assess signifi-
cance between groups using SAS (SAS Institute, Cary, NC, USA). 
Differences were considered significant with p < 0.05.

results
h2o2 Increases the spontaneous FIrIng rate oF guInea-pIg snr 
gaBaergic neurons
To assess the sensitivity of SNr GABAergic neurons to H

2
O

2
, we first 

examined the effect of exogenous H
2
O

2
 (1.5 mM, Chen et al., 2001; 

Avshalumov et al., 2005). In contrast to the suppression of firing 
seen in a large proportion of SNc DAergic neurons (Avshalumov 
et al., 2005), exogenous H

2
O

2
 augmented the spontaneous firing 

rate of SNr GABAergic neurons from 15.9 ± 1.2 Hz in control con-
ditions to 21.6 ± 1.5 Hz in H

2
O

2
 (Figures 1A–C; n = 23; t = 6.53; 

p < 0.001). Firing rate increased in all SNr neurons tested, with an 
average increase of 39 ± 6%. The H

2
O

2
-induced increase reached a 

maximum after an average latency of 4.2 ± 0.5 min following H
2
O

2
 

entry into the recording chamber. Previous studies demonstrated an 
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FiGuRe 1 | exogenous H2O2 increases the firing rate of SNr GABAergic 
neurons from guinea pig recorded in vitro. (A) Whole-cell current clamp 
recording from a SNr GABAergic neuron under control conditions and (B) 
following application of H2O2 (1.5 mM). (C) H2O2 caused an increase in firing 
rate without affecting the regularity of firing as measured by the coefficient of 
variation in (D). (e) The voltage deflection caused by a hyperpolarizing current 
pulse under control conditions (black trace) was attenuated in the presence of 
H2O2 (red trace) indicating that H2O2 decreased input resistance, consistent 
with ion-channel opening. (***p < 0.001).
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presumably reflecting the time required for enzyme inhibition and 
endogenous H

2
O

2
 accumulation. Most neurons (28/29) responded to 

MCS with an increase in firing rate, though one exhibited a decrease. 
The increase was reversible upon washout of MCS with aCSF (con-
trol 12.3 ± 1.2 Hz; MCS 14.6 ± 1.6 Hz; washout 11.8 ± 1.3 Hz; n = 5; 
F

(2, 8)
 = 9.16; p < 0.01; control vs. washout p > 0.05), again indicating 

that the effect of H
2
O

2
 on cell firing is not a consequence of irrevers-

ible oxidative damage. The regularity of firing was unaffected by 
MCS, as reflected in the CV which was 0.146 ± 0.011 under control 
conditions and 0.147 ± 0.011 in MCS (Figure 3D; p > 0.05).

Several small changes in action potential parameters were seen 
when endogenous H

2
O

2
 levels were enhanced with MCS, including 

depolarization of action potential threshold from −48.5 ± 1.6 to 
−44.6 ± 1.7 mV in MCS (n = 21; t = 4.62; p < 0.001) and attenua-
tion of spike amplitude from 75.1 ± 1.7 to 70.4 ± 1.6 mV (n = 21; 
t = −6.83; p < 0.001). Action potential AHP was attenuated from 
−27.8 ± 1.1 to −25.3 ± 1.1 mV in MCS (n = 21; t = 5.46; p < 0.001). 
Finally, the membrane potential measured between action poten-
tials was depolarized in the presence of MCS from −58.8 ± 1.5 to 
−54.0 ± 1.5 mV (n = 21; t = 7.90; p < 0.001).

h2o2 produced durIng spontaneous actIVIty MaIntaIns FIrIng 
rate and regularIty oF FIrIng
To determine whether basal levels of endogenous H

2
O

2
 gener-

ated in SNr GABAergic neurons during spontaneous activity 
also influence firing rate, we depleted endogenous H

2
O

2
 using 

in the presence of H
2
O

2
 was strongly attenuated relative to that 

elicited under control conditions (Figure 1E), indicating decreased 
input resistance, consistent with ion-channel opening in the pres-
ence of H

2
O

2
.

Elevation of H
2
O

2
 also caused slight, but significant changes to 

several action potential parameters, including depolarization of 
action potential threshold from −48.0 ± 0.9 to −46.7 ± 0.9 mV in 
H

2
O

2
 (n = 23; t = 3.08; p < 0.01) and attenuation of spike amplitude 

from 67.1 ± 1.8 to 61.7 ± 1.7 mV (n = 23; t = −4.32; p < 0.001). The 
amplitude of spike AHP was also attenuated from −28.2 ± 0.6 to 
−26.2 ± 0.8 mV in the presence of H

2
O

2
 (n = 23; t = 4.55; p < 0.001). 

Lastly, membrane potential measured between action potentials 
was depolarized from −60.2 ± 0.9 to −58.2 ± 1.0 mV in the presence 
of H

2
O

2
 (n = 23; t = 4.39; p < 0.001).

snr gaBaergic neurons are excIted By eleVated leVels oF 
endogenous h2o2

The use of exogenous H
2
O

2
 established that this potential mod-

ulator can affect the spontaneous firing rate of SNr GABAergic 
neurons. We next examined whether elevation of endogenously pro-
duced H

2
O

2
 also alters the activity of these cells. For these experi-

ments, basal levels of H
2
O

2
 were enhanced by inhibiting glutathione 

(GSH) peroxidase, an H
2
O

2
 metabolizing enzyme, with MCS 

(1 mM; Avshalumov et al., 2005). The ability of MCS to enhance 
endogenous H

2
O

2
 levels was verified by monitoring H

2
O

2
-sensitive 

DCF fluorescence. Application of MCS led to an increase in DCF 
FI in guinea-pig SNr GABAergic neurons that reached a plateau 
8.3 ± 0.7 min after MCS entered the recording chamber, with an 
average increase to 166 ± 8% of basal FI (Figures 2A–C; n = 12; 
t = 11.45; p < 0.001). It should be noted that oxidation of H

2
DCF to 

fluorescent DCF is irreversible, precluding washout measurements. 
The increase in DCF FI induced by MCS was strongly attenuated 
when applied simultaneously with the H

2
O

2
 metabolizing enzyme, 

catalase (500 U/mL; Avshalumov et al., 2003; n = 7; F
(1, 17)

 = 27.01; 
p < 0.001 two-way repeated measures ANOVA), confirming that 
the DCF signal was largely H

2
O

2
 dependent (Figure 2C).

We hypothesized that tonic H
2
O

2
 generation in SNr GABAergic 

neurons was activity dependent, given the spontaneous activity of 
these cells in slice preparations (Richards et al., 1997; Gulácsi et al., 
2003; Atherton and Bevan, 2005; Lee and Tepper, 2007a,b). To test 
this, we examined the effect of MCS on DCF FI after blocking 
spontaneous activity with TTX (2 μM). Under these conditions, 
the increase in DCF FI measured at the time of maximal increase 
in DCF FI in MCS alone was significantly attenuated compared 
to that seen with normal activity (Figure 2C; n = 5; F

(1, 15)
 = 15.85; 

p < 0.01 two-way repeated measures ANOVA). The attenuated 
increase in DCF FI in TTX was still significant compared to basal 
DCF FI (t = 13.38; p < 0.001), likely reflecting the small amount of 
H

2
O

2
 produced during basal metabolism. These data indicate that 

the MCS-induced increase in DCF FI in SNr GABAergic neurons 
largely reflects amplification of activity-dependent H

2
O

2
 levels.

As with exogenous H
2
O

2
, elevation of endogenous H

2
O

2
 by 

MCS caused a significant increase in the spontaneous firing rate of 
guinea-pig SNr GABAergic neurons from 13.6 ± 0.8 to 17.6 ± 1.2 Hz 
(Figures 3A–C; n = 29; t = 6.00; p < 0.001), with an average increase of 
30 ± 4%. Maximal effects were seen 7.8 ± 0.6 min after MCS applica-
tion. This was slightly longer than that seen with exogenous H

2
O

2
, 

200

180

160

140

120

100

80

A

Basal

B

MCS

C
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FiGuRe 2 | Glutathione (GSH) peroxidase inhibition increases levels of 
endogenously produced H2O2 in SNr GABAergic neurons. (A) Pseudocolored 
photomicrograph of basal DCF fluorescence in a SNr GABAergic neuron. (B) DCF 
fluorescence intensity (FI) increased following inhibition of GSH peroxidase with 
mercaptosuccinate (MCS; 1 mM). Scale bar = 20 μm. (C) Plot of the DCF FI 
increase caused by MCS alone (black), by MCS in the presence of catalase 
(500 U/mL; green), and by MCS in the presence of TTX (2 μM; red). The 
MCS-induced increase in DCF FI was strongly attenuated when MCS was 
applied in the presence of catalase as well as when spontaneous activity was 
silenced with TTX when measured at the same duration of MCS exposure. These 
data indicate that GSH peroxidase inhibition by MCS increases intracellular H2O2 

concentration in SNr neurons and that spontaneous activity contributes to 
endogenous H2O2 production. (***p < 0.001 basal vs. MCS; ++p < 0.01 MCS vs. 
MCS + catalase; *p < 0.05 MCS vs. MCS + TTX).
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rate caused by either exogenous or endogenous H
2
O

2
 elevation. 

In these experiments, exogenous H
2
O

2
 caused an increase in fir-

ing rate from 15.3 ± 1.3 to 21.5 ± 1.9 Hz, which was reversed by 
FFA (Figures 5A–D; n = 11; F

(2, 20)
 = 30.85; p < 0.001; all pairwise 

contrasts p < 0.01). In fact, when TRP channels were blocked, fir-
ing rate during H

2
O

2
 exposure fell below control to 7.3 ± 2.4 Hz 

(Figure 5D). The suppression of firing rate below control levels 
could reflect the blockade of a tonic depolarizing current mediated 
by TRP channels (Zhou et al., 2008) and/or the unmasking of an 
additional effect of H

2
O

2
 on channels mediating a hyperpolarizing 

conductance. We explored these possibilities in separate experi-
ments described in the following section.

As with exogenous H
2
O

2
, MCS-enhanced endogenous H

2
O

2
 lev-

els caused an increase in firing rate from 14.0 ± 1.3 to 19.2 ± 2.3 Hz, 
which was reversed by FFA to 10.3 ± 2.5 Hz (Figures 5E–H; n = 11; 
F

(2, 20)
 = 18.35; p < 0.001; all pairwise contrasts p < 0.05). Again, in 

the presence of FFA, MCS caused a suppression of firing rate below 
control (Figure 5H). We then tested the efficacy of another TRP 
channel blocker, 2-APB (Xu et al., 2005; Clapham, 2007; Togashi 
et al., 2008; not illustrated). Results with 2-APB (100 μM) were 
similar with H

2
O

2
 or MCS, so that data were pooled for analysis. As 

with FFA, 2-APB reversed the increase in firing rate seen with H
2
O

2
 

or MCS (control 14.1 ± 2.1 Hz; H
2
O

2
 or MCS 17.9 ± 2.5 Hz; H

2
O

2
 or 

catalase (500 U/mL; Avshalumov et al., 2003). Catalase caused a 
∼40% decrease in the spontaneous firing rate of SNr GABAergic 
neurons from 16.6 ± 1.8 to 10.1 ± 1.1 Hz (Figures 4A–C; n = 11; 
t = −6.33; p < 0.001). Additionally, the precision of action poten-
tial discharge was decreased, as indicated by an increase in the 
CV from 0.113 ± 0.011 under control conditions to 0.194 ± 0.024 
after catalase (Figure 4D; n = 11; t = 4.06; p < 0.01). These data 
show that basal H

2
O

2
 levels modulate the rate and regularity of 

spontaneous activity in SNr GABAergic neurons.

h2o2-Induced Increases In snr gaBaergic neuron FIrIng rate are 
reVersed By FFa
Having shown that H

2
O

2
 elevation increases the firing rate of SNr 

GABAergic neurons and that H
2
O

2
 depletion decreases it, we next 

sought to determine whether putative TRP channels had a role in 
these effects. We first tested FFA (20–40 μM; Bao et al., 2005; Lee 
and Tepper, 2007b; Zhou et al., 2008), which can block a number 
of TRP channel subtypes, including H

2
O

2
-activated TRPM2 

channels (Hill et al., 2004; Clapham, 2007). The concentrations 
of FFA found to be effective in the present experiments are lower 
than those associated with non-specific effects on ion channels 
other than TRP channels (Takahira et al., 2005; Wang et al., 2006; 
Gardam et al., 2008; Yau et al., 2010). Consistent with a role for 
H

2
O

2
-sensitive TRP channels, FFA reversed the increase in firing 

FiGuRe 3 | Amplifying endogenous H2O2 levels increases SNr GABAergic 
neuron firing rate. (A) Spontaneous firing from a SNr GABAergic neuron 
under control conditions and (B) after inhibition of GSH peroxidase with 
mercaptosuccinate (MCS; 1 mM). (C) Amplifying endogenous H2O2 with MCS 
caused a significant increase in the firing rate of SNr GABAergic neurons. (D) 
The regularity of firing as measured by the coefficient of variation was 
unaffected by increasing endogenous H2O2. (***p < 0.001).
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FiGuRe 4 | Depletion of endogenous H2O2 with catalase slows the firing 
rate of SNr GABAergic neurons and decreases the regularity of their 
spontaneous activity. (A) Spontaneous activity of a SNr GABAergic neuron 
under control conditions and (B) after depletion of endogenous H2O2 with 
catalase (500 U/mL). (C) Catalase (Cat) caused a decrease in the spontaneous 
firing rate of SNr GABAergic neurons. (D) In addition, spontaneous activity 
became more irregular in catalase, reflected in an increase in the coefficient of 
variation. (**p < 0.01; ***p < 0.001).
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of FFA on firing rate was abolished, resulting in no change in 
firing rate from that observed with catalase alone (Figures 6C,D; 
9.4 ± 0.8 Hz; p > 0.05). These data indicate that basal H

2
O

2
 is an 

important factor underlying the tonic activation of TRP channels 
in SNr neurons.

h2o2 suppresses FIrIng VIa Katp channel actIVatIon In the 
presence oF FFa
As described in the previous section, blocking TRP channels 
with FFA in the presence of elevated H

2
O

2
 not only reversed the 

excitatory effect seen, but led to a decrease in firing rate below 
control. Initially, we assumed that this decrease below control 
reflected blockade of TRP channel contributions to the tonic 
activity of SNr GABAergic neurons reported previously (Zhou 
et al., 2008). To test this assumption, we first applied FFA, 
then applied H

2
O

2
 or MCS in the continued presence of FFA. 

MCS + 2-APB 11.4 ± 2.8 Hz; n = 6; F
(2, 10)

 = 23.67; p < 0.001; control 
vs. H

2
O

2
 or MCS p < 0.01; H

2
O

2
 or MCS vs. H

2
O

2
 or MCS + 2-APB 

p < 0.01).
Previous experiments have shown that tonic activation of TRP 

channels maintains basal firing rate, as well as the regularity of 
firing, in SNr GABAergic neurons (Zhou et al., 2008), with con-
sequences of TRP channel blockade that appear much like the 
consequences of H

2
O

2
 depletion by catalase reported here (Figure 

4). To determine whether endogenous H
2
O

2
 contributes to the 

tonic activation of putative TRP channels in SNr GABAergic neu-
rons, we tested whether the decrease in firing rate caused by FFA 
(Zhou et al., 2008) would persist following catalase-induced H

2
O

2
 

depletion. Catalase alone caused a decrease in firing rate from 
16.4 ± 2.0 to 10.0 ± 0.9 Hz (Figures 6A,B; n = 4; F

(2, 6)
 = 22.93; 

p < 0.01; control vs. catalase p < 0.05). However, when FFA (20 
mM) was applied in the continued presence of catalase, the effect 

FiGuRe 5 | Flufenamic acid (FFA) reverses H2O2-induced increases in firing 
rate. (A) Spontaneous activity of a SNr GABAergic neuron under control 
conditions, (B) following H2O2 (1.5 mM) application, and (C) with FFA (20 μM) 
applied in the continued presence of H2O2. (D) The H2O2-induced increase in 
firing rate was reversed by FFA and the resulting firing rate suppressed below 

control. (e) Activity of another SNr GABAergic neuron under control conditions, 
(F) following amplification of endogenous H2O2 with MCS (1 mM), and (G) in 
FFA (20 μM) in the continued presence of MCS. (H) Increases in firing rate 
induced by amplified endogenous H2O2 were similarly reversed and suppressed 
below control levels by FFA. (*p < 0.05; **p < 0.01; ***p < 0.001).
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The finding that elevated H
2
O

2
 caused a further decrease in 

firing rate when TRP channels were blocked led us to investi-
gate whether this effect was due to unopposed activation of K

ATP
 

channels. To test this hypothesis we applied FFA followed by 
H

2
O

2
 or MCS along with a K

ATP
-channel blocker, glibenclamide 

(3 μM). Glibenclamide was co-applied with H
2
O

2
 or MCS to 

minimize total recording time. As before, FFA (20–40 μM) caused 
a decrease in firing rate from 14.9 ± 1.7 to 10.8 ± 1.7 Hz (p < 0.01). 
However, in contrast to the suppression of activity when H

2
O

2
 

alone was applied in the presence of FFA, co-application of H
2
O

2
 

plus glibenclamide in the continued presence of FFA produced 
a slight increase in firing rate to 13.4 ± 1.7 Hz (Figure 7E; n = 
8; F

(2, 14)
 = 8.33; p < 0.01; FFA vs. FFA + glibenclamide + H

2
O

2
 

p < 0.05). Similarly, in experiments with MCS plus glibenclamide, 
FFA caused a decrease in firing rate from 16.4 ± 2.7 Hz under con-
trol conditions to 11.8 ± 2.2 Hz (p < 0.01), which did not change 
when MCS was applied with glibenclamide in the continued 
presence of FFA (12.3 ± 2.2 Hz; Figure 7J; n = 7; F

(2, 12)
 = 13.82; 

p < 0.001; FFA vs. FFA + glibenclamide + MCS p > 0.05). Thus, 
the suppression of SNr neuron firing caused by H

2
O

2
 when TRP 

channels are blocked is mediated by K
ATP

-channel activation.
Next, we tested whether K

ATP
 channel activation attenuated 

the increase in firing rate caused by H
2
O

2
 when TRP channels 

were functioning. In these experiments, glibenclamide (3μM ) 
alone did not alter the firing rate of SNr GABAergic neurons 
(control 15.6 ± 0.8 Hz; glibenclamide 14.9 ± 0.9 Hz; n = 15; 
p > 0.05); in the presence of glibenclamide, exogenous H

2
O

2
 

caused an increase in firing rate of 52 ± 17% (n = 6) and MCS 
caused an increase of 46 ± 13% (n = 9). Although the increases 
in firing rate caused by H

2
O

2
 or MCS in the presence of glib-

enclamide tended to be greater than those in the absence of 
K

ATP
 channel blockade (see preceding sections), these increases 

were not significantly greater than with H
2
O

2
 or MCS alone 

(p > 0.05 two-way repeated measures ANOVA in both cases). 
Therefore, it would appear that H

2
O

2
-induced activation of 

K
ATP

 channels only modestly attenuates the excitation caused 
by TRP channel activation. Overall, these data indicate that the 
primary effect of H

2
O

2
 elevation is to increase the activity of 

guinea-pig SNr GABAergic neurons by activating one or more 
FFA-sensitive channel.

h2o2 suppresses FIrIng In gaBaergic neurons recorded In 
Mouse snr
To provide mechanistic insight into the regulation of TRP  channels 
by H

2
O

2
 we investigated the effects of H

2
O

2
 on SNr neurons in 

mouse midbrain slices where a specific subtype of TRP channel, 
namely TRPC3, is selectively expressed (Zhou et al., 2008). In con-
trast to our results in guinea-pig SNr, exogenous H

2
O

2
 (150 μM 

to 1.5 mM) inhibited the firing of these neurons (Figures 8A,B). 
Mouse SNr GABAergic neurons exhibited a spontaneous fir-
ing rate of 16.1 ± 2.1 Hz under control conditions which fell to 
1.0 ± 0.7 Hz in the presence of exogenous H

2
O

2
 (Figure 8C; n = 6; 

t = −6.23; p < 0.01). This inhibition of firing was surprisingly strong 
and resulted in 4/6 neurons falling silent. In a subset of neurons 
where washout was assessed, H

2
O

2
 caused complete silencing of 

firing from an average control firing rate of 14.9 ± 2.4 Hz (n = 3; 
p < 0.05). The firing rate returned to 7.2 ± 1.2 Hz following  washout 

Application of FFA (20 μM) caused a decrease in firing rate from 
16.2 ± 1.1 to 10.8 ± 1.7 Hz (p < 0.05) and an increase in the CV 
from 0.092 ± 0.007 to 0.154 ± 0.022 (n = 5; t = 3.48; p < 0.05), 
consistent with tonic excitation and maintenance of firing regu-
larity mediated by TRP channels (Zhou et al., 2008). Addition 
of exogenous H

2
O

2
 in the continued presence of FFA caused a 

further decrease in firing rate to 0.7 ± 0.7 Hz (Figures 7A–D; 
n = 5; F

(2, 8)
 = 82.49; p < 0.001; FFA vs. FFA + H

2
O

2
 p < 0.01). In 

4/5 neurons, H
2
O

2
 caused a complete suppression of firing when 

applied in the presence of FFA. The same pattern was seen when 
endogenous H

2
O

2
 levels were elevated while TRP channels were 

blocked. Again, FFA alone caused a decrease in firing rate from 
15.5 ± 3.4 to 8.6 ± 1.9 Hz (p < 0.05). Addition of MCS caused a 
further decrease in firing rate to 2.3 ± 1.2 Hz (Figures 7F–I; n = 7; 
F

(2, 12)
 = 10.30; p < 0.01; FFA vs. FFA + MCS p < 0.05).

FiGuRe 6 | FFA-sensitive channels are tonically activated by H2O2 in SNr 
GABAergic neurons. (A) Spontaneous firing of a SNr GABAergic neuron 
under control conditions, (B) following depletion of basal H2O2 with catalase 
(500 U/mL), and (C) in FFA (20 μM) in the continued presence of catalase. (D) 
Catalase (Cat) caused a significant decrease in firing rate which was 
unchanged when FFA was added in the continued presence of catalase. (NS 
not significant; *p < 0.05).
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neurons recorded in vitro from guinea-pig slices whereas deple-
tion of H

2
O

2
 decreased firing rate and regularity. We also found 

a minor inhibitory role for H
2
O

2
-sensitive K

ATP
 channels that was 

magnified in the presence of TRP-channel blockers. Further, we 
found that the firing of SNr GABAergic neurons recorded in vitro 
from slices obtained from mouse was suppressed by H

2
O

2
, indi-

cating that the mode of H
2
O

2
 regulation of these neurons may 

be species specific. Overall, our results provide the first evidence 

in control aCSF, which was not significantly different from the 
control firing rate in this sample (F

(2,4)
 = 17.43; p < 0.05; control vs.

washout p > 0.05).

dIscussIon
Here we report regulation of SNr GABAergic neuron activity by 
the emerging neuromodulator H

2
O

2
. Elevation of endogenous 

H
2
O

2
 increased the spontaneous firing rate of SNr GABAergic 

FiGuRe 7 | H2O2 can alter SNr GABAergic neuron activity via both TRP 
and KATP channels. (A) Spontaneous firing of a SNr GABAergic neuron under 
control conditions, (B) with TRP channels blocked by FFA (20 μM), and (C) 
with H2O2 (1.5 mM) in the continued presence of FFA. (D) Following blockade 
of TRP channels, exogenous H2O2 suppressed SNr neuron firing. In some 
cases [as in (C)] a marked hyperpolarization was seen that was sufficient to 
silence the neuron. (e) This suppression of firing was prevented by the KATP 

channel blocker glibenclamide (Glib; 3 μM). (F) Recording from another SNr 
GABAergic neuron under control conditions, (G) with FFA (20 μM), and (H) 
with MCS (1 mM) in the continued presence of FFA. (i) Amplifying 
endogenous H2O2 levels with MCS caused a suppression of firing rate when 
TRP channels were blocked with FFA. (J) The MCS-induced suppression of 
neuronal activity was also prevented by glibenclamide. (NS not significant; 
*p < 0.05; **p < 0.01).
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(Seutin et al., 1995). Similarly, a predominantly inhibitory effect 
of H

2
O

2
 has been reported for guinea-pig and rat SNc DAergic 

neurons and guinea-pig striatal DAergic axons that is mediated 
by K

ATP
 channels (Avshalumov and Rice, 2003; Avshalumov et al., 

2003, 2005; Freestone et al., 2009). However, there is also evidence 
for excitatory effects of H

2
O

2
 in guinea-pig and rat GABAergic 

striatal MSNs, mediated by an FFA-sensitive channel (Smith 
et al., 2003; Bao et al., 2005). Moreover, rat SNr GABAergic 
neurons have been shown to exhibit both inward and outward 
currents in response to rotenone, with the majority of neurons 
exhibiting a presumed TRP-channel mediated inward current 
(Freestone et al., 2009).

The studies of neuronal TRP channel activation by H
2
O

2
 noted 

above used exogenous peroxide or rotenone, a mitochondrial inhib-
itor, to elevate H

2
O

2
 levels and activate a FFA-sensitive conductance 

(Smith et al., 2003; Bao et al., 2005; Freestone et al., 2009). We 
show here not only that milder H

2
O

2
 elevation by GSH peroxidase 

inhibition activates TRP channels in SNr GABAergic neurons, but 
also that the activity of these cells is regulated by tonically produced 
H

2
O

2
. The predominantly excitatory effect of H

2
O

2
 on guinea-

pig SNr GABAergic neurons, despite the presence of functional 
H

2
O

2
-sensitive K

ATP
 channels, may reflect the relative density of 

TRP  channels to K
ATP

 channels in these cells. Overall, these results 
suggest that differential responsiveness of basal ganglia neurons to 
H

2
O

2
 may be based largely on the ratio of TRP to K

ATP
 channels.

Evidence for presumed TRP channel involvement in H
2
O

2
-

dependent regulation of SNr GABAergic neurons comes from sev-
eral complementary results reported here. First, two distinct agents 
that block TRP channels, FFA and 2-APB, similarly reversed the 
increase in firing rate induced by H

2
O

2
. Second, although blocking 

tonically active TRP channels alone which decreases the firing rate 
of SNr GABAergic neurons (Zhou et al., 2008; results here) could 
contribute to these results, we also showed that when TRP channels 
were first blocked by FFA, resulting in a decrease in firing rate, appli-
cation of H

2
O

2
 with FFA causes a further suppression of firing rate. 

If H
2
O

2
 and FFA were acting at separate conductances, it is unlikely 

that a suppression of firing rate would have been observed; rather 
an increase in firing rate would be expected. Third, application of 
FFA following a decrease in firing rate induced by catalase did not 
result in a further decrease in firing rate. If FFA were acting on a 
non-H

2
O

2
-sensitive channel, a further change in firing rate would 

have been expected. It should be noted that in all experiments, we 
limited off-target actions of FFA by using low concentrations: con-
centrations used were similar or lower than those used previously 
to examine the role of TRP channels in modulating SNr neuron 
firing (Zhou et al., 2008), and lower than concentrations shown 
to cause non-specific effects (Takahira et al., 2005; Wang et al., 
2006; Gardam et al., 2008; Yau et al., 2010). Given this strong and 
consistent pharmacological evidence, we are pursuing additional 
approaches to identify the precise TRP-channel subtype(s) mediat-
ing H

2
O

2
-induced increases in firing rate in these neurons, with the 

caveat that we cannot rule out the possibility that H
2
O

2
 is acting 

on another channel class with similar pharmacological properties.
Mechanisms of H

2
O

2
-dependent ion-channel activation are not 

completely understood. There is evidence for direct action at some 
TRP channels, namely TRPM2 (Wehage et al., 2002; Eisfeld and 
Lückhoff, 2007), and K

ATP
 channels (Ichinari et al., 1996; Tokube 

that H
2
O

2
 fine-tunes the firing rate and regularity of basal ganglia 

output neurons through TRP channels, which appear to be the 
primary targets of H

2
O

2
-dependent modulation in guinea-pig 

SNr GABAergic neurons.

h2o2 sIgnalIng VIa Ion-channel actIVatIon
A key source of cellular H

2
O

2
 production is the mitochondrial elec-

tron transport chain, in which H
2
O

2
 is formed from O

2
 during the 

process of oxidative phosphorylation to produce ATP (Boveris and 
Chance, 1973; Peuchen et al., 1997; Liu et al., 2002). Mitochondria 
are the primary source of H

2
O

2
 for rapid neuronal signaling via 

ion-channel activation (Bao et al., 2009), although other sources 
of H

2
O

2
 contribute to slower signaling processes, including down-

stream effects of growth factors (Rhee et al., 2005; Miller et al., 
2007). As shown here, the metabolic demand of neurons in the SNr 
during spontaneous activity governs H

2
O

2
 generation, as seen in the 

marked attenuation of MCS-enhanced DCF FI in SNr GABAergic 
neurons when neuronal activity was silenced by TTX relative to 
that seen during spontaneous firing. These findings are consistent 
with the previously reported link between neuronal activity and 
mitochondrial metabolism (Kann et al., 2003).

The present findings complement earlier studies of the effects 
of H

2
O

2
 on neuronal excitability, in which both inhibitory and 

excitatory effects have been observed. For example, an H
2
O

2
-

dependent hyperpolarization of CA1 pyramidal neurons has 
been reported that is mediated by an  unidentified K+ channel(s) 

FiGuRe 8 | exogenous H2O2 suppresses the firing of SNr GABAergic 
neurons in mouse slices. (A) Whole-cell current clamp recording from a 
mouse SNr GABAergic neuron recorded in vitro under control conditions. (B) 
The same neuron recorded in the presence of exogenous H2O2 (750 μM) 
exhibited decreased firing rate and eventual hyperpolarization leading to 
cessation of spontaneous firing. (C) H2O2 caused a significant decrease in 
firing rate in SNr GABAergic neurons from mouse. (**p < 0.01).
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In addition to these possible physiological functions of endog-
enous H

2
O

2
, aberrant H

2
O

2
 signaling could contribute to the path-

ological changes in firing of SNr GABAergic neurons that is seen in 
Parkinson’s disease (PD). In human PD and in PD animal models, 
increased SNr output causes abnormal inhibition of thalamocorti-
cal neurons (Albin et al., 1989; DeLong, 1990; MacLeod et al., 1990; 
Wichmann and DeLong, 1996, 2006; Murer et al., 1997; Bergman 
et al., 1998; Hurtado et al., 1999; Hutchison et al., 2004). Linking 
these observations to the present findings, PD is associated with 
impaired activity of mitochondrial complex I and increased oxida-
tive stress possibly including elevated H

2
O

2
 production in the SN 

(Parker et al., 1989; Schapira et al., 1990; Greenamyre et al., 2001; 
Turnbull et al., 2001; Dauer and Przedborski, 2003; Dawson and 
Dawson, 2003; Lin and Beal, 2006). Most studies of the contribu-
tion of H

2
O

2
 and other reactive oxygen species to the pathogenesis 

of PD have focused on the contribution of these molecules to 
DAergic neurodegeneration through oxidative damage (Jenner 
and Olanow, 1998; Zhang et al., 2000). The present findings sug-
gest a more dynamic role for H

2
O

2
 as a contributing factor to the 

pathological changes in the activity of SNr GABAergic output 
neurons in PD by increasing the excitability of these cells via TRP-
channel activation.

conclusIon
Overall, the present results from SNr GABAergic neurons build 
on a growing body of evidence supporting a role for H

2
O

2
 as a 

neuromodulator. The primary effect of H
2
O

2
 on guinea-pig SNr 

GABAergic neurons is to maintain and regulate their firing rate 
through presumed TRP-channel activation. An inhibitory effect 
of H

2
O

2
 resulting from K

ATP
-channel activation predominates 

when TRP-channel activity is blocked in guinea-pig SNr, or 
under control conditions in mouse SNr. However, K

ATP
-channel 

blockade alone has no effect on tonic firing rate in guinea-pig 
SNr GABAergic neurons, in contrast to the tonic, inhibitory 
effect of H

2
O

2
 acting via K

ATP
 channels in SNc DAergic neurons in 

the same species (Avshalumov et al., 2005). Activation of inhibi-
tory K

ATP
 channels during H

2
O

2
 elevation is also less effective 

in SNr GABAergic neurons than in striatal MSNs, in which the 
net depolarizing effect of elevated H

2
O

2
 or other reactive oxygen 

species is attenuated significantly by concurrent activation of 
H

2
O

2
-sensitive K

ATP
 channels (Calabresi et al., 1999; Bao et al., 

2005). Together with the present data, these findings indicate 
that H

2
O

2
 is an important signaling molecule throughout the 

basal ganglia, with effects determined by the relative responsive-
ness of H

2
O

2
-sensitive excitatory TRP channels and inhibitory 

K
ATP

 channels that defines the specificity of signaling by this 
diffusible messenger.
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et al., 1998). However, recent studies argue against direct TRP 
 channel activation by H

2
O

2
 (Toth and Csanady, 2010) and suggest 

that activation may be mediated by H
2
O

2
-dependent elevation of an 

intracellular signaling molecule (Kolisek et al., 2005; Perraud et al., 
2005; Lange et al., 2008; Hecquet and Malik, 2009). Intracellular 
calcium can also be elevated by H

2
O

2
 (Freestone et al., 2009). This 

could lead to activation of a calcium-activated conductance such 
as that mediated by the TRPC3 channel (Zitt et al., 1997), which 
is reported to be the sole TRP channel in neonatal mouse SNr 
neurons (Zhou et al., 2008). Our finding that young adult mouse 
SNr neurons are inhibited rather than excited by H

2
O

2
 suggests that 

the nature of H
2
O

2
-dependent modulation of SNr neurons may be 

species- and/or developmentally determined, possibly reflecting 
different complements of H

2
O

2
-sensitive channels.

IMplIcatIons oF ModulatIon oF snr neuron actIVIty 
By endogenous h2o2

Basal activity-dependent H
2
O

2
 generation in SNr GABAergic 

neurons contributes to the maintenance of tonic firing rate in 
these cells, with a decrease in firing rate and regularity after H

2
O

2
 

depletion by catalase that is similar to the effect of blocking TRP 
channels reported previously (Zhou et al., 2008). These results 
suggest that TRP-channels are tonically active, at least in part 
through a mechanism involving H

2
O

2
. However, these channels 

are not maximally active at rest as evidenced by the ability of 
H

2
O

2
, as reported here, as well as other neuromodulators, includ-

ing dopamine, to increase the firing rate of these neurons via 
further TRP-channel activation (Zhou et al., 2009). The decrease 
in firing rate and increase in CV observed when TRP channels 
are blocked by FFA (Zhou et al., 2008; results here) or when tonic 
H

2
O

2
-dependent activation is lost in the presence of catalase 

reflects the removal of a tonic depolarizing influence on these 
neurons. Indeed, a slight hyperpolarization of these neurons by 
direct current injection causes a similar decrease in firing rate 
and decrease in regularity of firing (Zhou et al., 2006). Further, 
the slight changes in spike parameters observed in the presence 
of H

2
O

2
 or MCS are consistent with those observed in response 

to injection of a slight depolarizing current in SNr GABAergic 
neurons (Lee et al., unpublished observations).

The ability of H
2
O

2
 to modulate the firing rate of SNr neurons 

raises the possibility that H
2
O

2
 might influence network interac-

tions in the SNr. As a neutral, membrane-permeable molecule, 
H

2
O

2
 is not confined to the cell in which it is produced, but rather 

leaves cells by diffusing through the lipid membrane or through 
membrane aquaporins (Bienert et al., 2007). Thus, increased 
activity in one SNr neuron might lead to increased H

2
O

2
 pro-

duction and subsequent excitation of neighboring cells, resulting 
in feed-forward excitation. Such local effects could be even more 
far reaching through circuit interactions. For example, much of 
the inhibitory input to SNc DAergic neurons is from axon col-
laterals of SNr GABAergic neurons (Tepper and Lee, 2007; Lee 
and Tepper, 2009). Previous studies have shown that H

2
O

2
 eleva-

tion inhibits somatodendritic release of DA in the SNc (Chen 
et al., 2002); one contributing factor could be increased inhibitory 
input to those neurons from H

2
O

2
-enhanced excitation of SNr 

GABAergic neurons.

Lee et al. H2O2 regulation of SNr neurons

Frontiers in Systems Neuroscience www.frontiersin.org April 2011 | Volume 5 | Article 14 | 10

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


reFerences
Albin, R. L., Young, A. B., and Penney, J. 

B. (1989). The functional anatomy 
of basal ganglia disorders. Trends 
Neurosci. 12, 366–375.

Atherton, J. F., and Bevan, M. D. (2005). 
Ionic mechanisms underlying 
autonomous action potential gen-
eration in the somata and dendrites 
of GABAergic substantia nigra pars 
reticulata neurons in vitro. J. Neurosci. 
25, 8272–8281.

Avshalumov, M. V., Bao, L., Patel, J. C., and 
Rice, M. E. (2007). H

2
O

2
 signaling in 

the nigrostriatal dopamine pathway 
via ATP-sensitive potassium channels: 
issues and answers. Antioxid. Redox 
Signal. 9, 219–231.

Avshalumov, M. V., Chen, B. T., Koós, T., 
Tepper, J. M., and Rice, M. E. (2005). 
Endogenous hydrogen peroxide 
regulates the excitability of midbrain 
dopamine neurons via ATP-sensitive 
potassium channels. J. Neurosci. 25, 
4222–4231.

Avshalumov, M. V., Chen, B. T., Marshall, 
S. P., Peña, D. M., and Rice, M. E. 
(2003). Glutamate-dependent inhi-
bition of dopamine release in stria-
tum is mediated by a new diffusible 
messenger, H

2
O

2
. J. Neurosci. 23, 

2744–2750.
Avshalumov, M. V., Patel, J. C., and Rice, M. 

E. (2008). AMPA receptor-dependent 
H

2
O

2
 generation in striatal medium 

spiny neurons, but not dopamine 
axons: one source of a retrograde sig-
nal that can inhibit dopamine release. 
J. Neurophysiol. 100, 1590–1601.

Avshalumov, M. V., and Rice, M. E. (2003). 
Activation of ATP-sensitive K+ (K

ATP
) 

channels by H
2
O

2
 underlies gluta-

mate-dependent inhibition of striatal 
dopamine release. Proc. Natl. Acad. Sci. 
U.S.A. 100, 11729–11734.

Bao, L., Avshalumov, M. V., Patel, J. C., 
Lee, C. R., Miller, E. W., Chang, C. J., 
and Rice, M. E. (2009). Mitochondria 
are the source of hydrogen peroxide 
for dynamic brain-cell signaling. J. 
Neurosci. 29, 9002–9010.

Bao, L., Avshalumov, M. V., and Rice, 
M. E. (2005). Partial mitochondrial 
inhibition causes striatal dopamine 
release suppression and medium spiny 
neuron depolarization via H

2
O

2
 eleva-

tion, not ATP depletion. J. Neurosci. 25, 
10029–10040.

Barry, P. H. (1994). JPCalc, a software 
package for calculating liquid junction 
potential corrections in patch-clamp, 
intracellular, epithelial and bilayer 
measurements and for correcting 
junction potential measurements. J. 
Neurosci. Methods 51, 107–116.

Beckstead, R. M., and Frankfurter, A. 
(1982). The distribution and some 
morphological features of substan-
tia nigra neurons that project to the 

thalamus, superior colliculus and 
 pedunculopontine nucleus in the 
monkey. Neuroscience 7, 2377–2388.

Bergman, H., Raz, A., Feingold, A., Nini, 
A., Nelken, I., Hansel, D., Ben-Pazi, H., 
and Reches, A. (1998). Physiology of 
MPTP tremor. Mov. Disord. 13, 29–34.

Bienert, G. P., Møller, A. L., Kristiansen, K. 
A., Schulz, A., Møller, I. M., Schjoerring, 
J. K., and Jahn, T. P. (2007). Specific 
aquaporins facilitate the diffusion of 
hydrogen peroxide across membranes. 
J. Biol. Chem. 282, 1183–1192.

Boveris, A., and Chance, B. (1973). The 
mitochondrial generation of hydrogen 
peroxide. General properties and effect 
of hyperbaric oxygen. Biochem. J. 134, 
707–716.

Calabresi, P., Marfia, G. A., Centonze, D., 
Pisani, A., and Bernardi, G. (1999). 
Sodium influx plays a major role in 
the membrane depolarization induced 
by oxygen and glucose deprivation in 
rat striatal spiny neurons. Stroke 30, 
171–179.

Cebrián, C., Parent, A., and Prensa, L. 
(2005). Patterns of axonal branching 
of neurons of the substantia nigra pars 
reticulata and pars lateralis in the rat. J. 
Comp. Neurol. 492, 349–369.

Chen, B. T., Avshalumov, M. V., and 
Rice, M. E. (2001). H

2
O

2
 is a novel, 

endogenous modulator of synaptic 
dopamine release. J. Neurophysiol. 85, 
2468–2476.

Chen, B. T., Avshalumov, M. V., and 
Rice, M. E. (2002). Modulation of 
somatodendritic dopamine release 
by endogenous H

2
O

2
: susceptibility 

in substantia nigra but resistance in 
VTA. J. Neurophysiol. 87, 1155–1158.

Clapham, D. E. (2007). SnapShot: mam-
malian TRP channels. Cell 129, 220.

Clapham, D. E., Julius, D., Montell, C., 
and Schultz, G. (2005). International 
Union of Pharmacology. XLIX. 
Nomenclature and structure-function 
relationships of transient receptor 
potential channels. Pharmacol. Rev. 
57, 427–450.

Clapham, D. E., Montell, C., Schultz, G., 
and Julius, D. (2003). International 
Union of Pharmacology. XLIII. 
Compendium of voltage-gated ion 
channels: transient receptor potential 
channels. Pharmacol. Rev. 55, 591–596.

Dauer, W., and Przedborski, S. (2003). 
Parkinson’s disease: mechanisms and 
models. Neuron 39, 889–909.

Dawson, T. M., and Dawson, V. L. (2003). 
Molecular pathways of neurodegen-
eration in Parkinson’s disease. Science 
302, 819–822.

DeLong, M. R. (1990). Primate models of 
movement disorders of basal ganglia 
origin. Trends Neurosci. 13, 281–285.

Deniau, J. M., and Chevalier, G. (1992). 
The lamellar organization of the 
rat substantia nigra pars reticulata: 

distribution of projection neurons. 
Neuroscience 46, 361–377.

Deniau, J. M., Hammond, C. , 
Riszk, A., and Feger, J. (1978). 
Electrophysiological properties of 
identified output neurons of the rat 
substantia nigra (pars compacta and 
pars reticulata): evidences for the 
existence of branched neurons. Exp. 
Brain Res. 32, 409–422.

Dunn-Meynell, A. A., Rawson, N. E., and 
Levin, B. E. (1998). Distribution and 
phenotype of neurons containing the 
ATP-sensitive K+ channel in rat brain. 
Brain Res. 814, 41–54.

Eisfeld, J., and Lückhoff, A. (2007). 
TRPM2. Handb. Exp. Pharmacol. 
179, 237–252.

Freestone, P. S., Chung, K. K., Guatteo, E., 
Mercuri, N. B., Nicholson, L. F., and 
Lipski, J. (2009). Acute action of roten-
one on nigral dopaminergic neurons – 
involvement of reactive oxygen species 
and disruption of Ca2+ homeostasis. 
Eur. J. Neurosci. 30, 1849–1859.

Gardam, K. E., Geiger, J. E., Hickey, C. M., 
Hung, A. Y., and Magoski, N. S. (2008). 
Flufenamic acid affects multiple cur-
rents and causes intracellular Ca2+  
release in Aplysia bag cell neurons. J. 
Neurophysiol. 100, 38–49.

Grace, A. A., and Onn, S. P. (1989). 
Morphology and electrophysi-
ological properties of immunocyto-
chemically identified rat dopamine 
neurons recorded in vitro. J. Neurosci. 
9, 3463–3481.

Greenamyre, J. T., Sherer, T. B., Betarbet, 
R., and Panov, A. V. (2001). Complex 
I and Parkinson’s disease. IUBMB Life 
52, 135–141.

Gulácsi, A., Lee, C. R., Sík, A., Viitanen, T., 
Kaila, K., Tepper, J. M., and Freund, T. 
F. (2003). Cell type-specific differences 
in chloride-regulatory mechanisms 
and GABA

A
 receptor-mediated inhibi-

tion in rat substantia nigra. J. Neurosci. 
23, 8237–8246.

Guyenet, P. G., and Aghajanian, G. K. 
(1978). Antidromic identification of 
dopaminergic and other output neu-
rons of the rat substantia nigra. Brain 
Res. 150, 69–84.

Hainsworth, A. H., Röper, J., Kapoor, 
R., and Ashcroft, F. M. (1991). 
Identification and electrophysiology 
of isolated pars compacta neurons 
from guinea-pig substantia nigra. 
Neuroscience 43, 81–93.

Hajós, M., and Greenfield, S. A. (1994). 
Synaptic connections between pars 
compacta and pars reticulata neurons: 
electrophysiological evidence for func-
tional modules within the substantia 
nigra. Brain Res. 660, 216–224.

Hara, Y., Wakamori, M., Ishii, M., Maeno, 
E., Nishida, M., Yoshida, T., Yamada, 
H., Shimizu, S., Mori, E., Kudoh, 
J., Shimizu, N., Kurose, H., Okada, 

Y., Imoto, K., and Mori, Y. (2002). 
LTRPC2 Ca2+ -permeable channel 
activated by changes in redox status 
confers susceptibility to cell death. 
Mol. Cell 9, 163–173.

Hecquet, C. M., and Malik, A. B. (2009). 
Role of H

2
O

2
-activated TRPM2 cal-

cium channel in oxidant-induced 
endothelial injury. Thromb. Haemost. 
101, 619–625.

Herson, P. S., and Ashford, M. L. (1997). 
Activation of a novel non-selective 
cation channel by alloxan and H

2
O

2
 

in the rat insulin-secreting cell line 
CRI-G1. J. Physiol. 501, 59–66.

Hill, K., Benham, C. D., McNulty, S., and 
Randall, A. D. (2004). Flufenamic 
acid is a pH-dependent antagonist of 
TRPM2 channels. Neuropharmacology 
47, 450–460.

Hurtado, J. M., Gray, C. M., Tamas, L. B., 
and Sigvardt, K. A. (1999). Dynamics of 
tremor-related oscillations in the human 
globus pallidus: a single case study. Proc. 
Natl. Acad. Sci. U.S.A. 96, 1674–1679.

Hutchison, W. D., Dostrovsky, J. O., 
Walters, J. R., Courtemanche, R., 
Boraud, T., Goldberg, J., and Brown 
P. (2004). Neuronal oscillations in 
the basal ganglia and movement dis-
orders: evidence from whole animal 
and human recordings. J. Neurosci. 24, 
9240–9243.

Ibáñez-Sandoval, O., Carrillo-Reid, L., 
Galarraga, E., Tapia, D., Mendoza, E., 
Gomora, J. C., Aceves, J., and Bargas, 
J. (2007). Bursting in substantia nigra 
pars reticulata neurons in vitro: pos-
sible relevance for Parkinson disease. 
J. Neurophysiol. 98, 2311–2323.

Ichinari, K., Kakei, M., Matsuoka, T., 
Nakashima, H., and Tanaka, H. (1996). 
Direct activation of the ATP-sensitive 
potassium channel by oxygen free rad-
icals in guinea-pig ventricular cells: its 
potentiation by MgADP. J. Mol. Cell. 
Cardiol. 28, 1867–1877.

Jenner, P., and Olanow, C. W. (1998). 
Understanding cel l  death in 
Parkinson’s disease. Ann. Neurol. 44, 
S72–S84.

Kann, O., Schuchmann, S., Buchheim, K., 
and Heinemann, U. (2003). Coupling 
of neuronal activity and mitochondrial 
metabolism as revealed by NAD(P)H 
fluorescence signals in organotypic 
hippocampal slice cultures of the rat. 
Neuroscience 119, 87–100.

Kolisek, M., Beck, A., Fleig, A., and 
Penner, R. (2005). Cyclic ADP-ribose 
and hydrogen peroxide synergize 
with ADP-ribose in the activation of 
TRPM2 channels. Mol. Cell 18, 61–69.

Lacey, M. G., Mercuri, N. B., and North, 
R. A. (1989). Two cell types in rat 
substantia nigra zona compacta dis-
tinguished by membrane properties 
and the actions of dopamine and opio-
ids. J. Neurosci. 9, 1233–1241.

Lee et al. H2O2 regulation of SNr neurons

Frontiers in Systems Neuroscience www.frontiersin.org April 2011 | Volume 5 | Article 14 | 11

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Lange, I., Penner, R., Fleig, A., and Beck, 
A. (2008). Synergistic regulation of 
endogenous TRPM2 channels by ade-
nine dinucleotides in primary human 
neutrophils. Cell Calcium 44, 604–615.

Lee, C. R., and Tepper, J. M. (2007a). 
Morphological and physiological 
properties of parvalbumin- and 
calretinin-containing gamma-ami-
nobutyric acidergic neurons in the 
substantia nigra. J. Comp. Neurol. 500, 
958–972.

Lee, C. R., and Tepper, J. M. (2007b). A cal-
cium-activated nonselective cation con-
ductance underlies the plateau potential 
in rat substantia nigra GABAergic neu-
rons. J. Neurosci. 27, 6531–6541.

Lee, C. R., and Tepper, J. M. (2009). Basal 
ganglia control of substantia nigra 
dopaminergic neurons. J. Neural. 
Transm. Suppl. 73, 71–90.

Lin, M. T., and Beal, M. F. (2006). 
Mitochondrial dysfunction and oxi-
dative stress in neurodegenerative 
diseases. Nature 443, 787–795.

Liu, Y., Fiskum, G., and Schubert, D. 
(2002). Generation of reactive oxygen 
species by the mitochondrial electron 
transport chain. J. Neurochem. 80, 
780–787.

MacLeod, N. K., Ryman, A., and 
Ar buthnot t , G . W. (1990) . 
Electrophysiological properties 
of nigrothalamic neurons after 
6-hydroxydopamine lesions in the 
rat. Neuroscience 38, 447–456.

Mana, S., and Chevalier, G. (2001). The 
fine organization of nigro-collicular 
channels with additional observations 
of their relationships with acetylcho-
linesterase in the rat. Neuroscience 106, 
357–374.

Matsuda, Y., Fujimura, K., and Yoshida, S. 
(1987). Two types of neurons in the 
substantia nigra pars compacta stud-
ied in a slice preparation. Neurosci. Res. 
5, 172–179.

Miller, E. W., Tulyathan, O., Isacoff, E. Y., and 
Chang, C. J. (2007). Molecular imaging 
of hydrogen peroxide produced for cell 
signaling. Nat. Chem. Biol. 3, 263–267.

Murer, M. G., Riquelme, L. A., Tseng, K. Y., 
and Pazo, J. H. (1997). Substantia nigra 
pars reticulata single unit activity in nor-
mal and 6OHDA-lesioned rats: effects 
of intrastriatal apomorphine and sub-
thalamic lesions. Synapse 27, 278–293.

Nakanishi, H., Kita, H., and Kitai, S. T. 
(1987). Intracellular study of rat sub-
stantia nigra pars reticulata neurons in 
an in vitro slice preparation: electrical 
membrane properties and response 
characteristics to subthalamic stimula-
tion. Brain Res. 437, 45–55.

Nambu, A. (2007). Globus pallidus inter-
nal segment. Prog. Brain Res. 160, 
135–150.

Parker, W. D., Boyson, S. J., and Parks, 
J. K. (1989). Abnormalities of the 

 electron transport chain in idiopathic 
Parkinson’s disease. Ann. Neurol. 26, 
719–723.

Perraud, A. L., Takanishi, C. L., Shen, 
B., Kang, S., Smith, M. K., Schmitz, 
C., Knowles, H. M., Ferraris, D., 
Li, W., Zhang, J., Stoddard, B. L., 
and Scharenberg, A. M. (2005). 
Accumulation of free ADP-ribose 
from mitochondria mediates oxida-
tive stress-induced gating of TRPM2 
cation channels. J. Biol. Chem. 280, 
6138–6148.

Peuchen, S., Bolaños, J. P., Heales, S. J., 
Almeida, A., Duchen, M. R., and Clark, 
J. B. (1997). Interrelationships between 
astrocyte function, oxidative stress and 
antioxidant status within the central 
nervous system. Prog. Neurobiol. 52, 
261–281.

Redgrave, P., Marrow, L., and Dean, P. 
(1992). Topographical organization 
of the nigrotectal projection in rat: 
evidence for segregated channels. 
Neuroscience 50, 571–595.

Rhee, S. G., Kang, S. W., Jeong, W., Chang, 
T. S., Yang, K. S., and Woo, H. A. (2005). 
Intracellular messenger function of 
hydrogen peroxide and its regulation 
by peroxiredoxins. Curr. Opin. Cell 
Biol. 17, 183–189.

Richards, C. D., Shiroyama, T., and Kitai, 
S. T. (1997). Electrophysiological and 
immunocytochemical characteriza-
tion of GABA and dopamine neu-
rons in the substantia nigra of the rat. 
Neuroscience 80, 545–557.

Rick, C. E., and Lacey, M. G. (1994). Rat 
substantia nigra pars reticulata neu-
rons are tonically inhibited via GABAA

, 
but not GABA

B
, receptors in vitro. 

Brain Res. 659, 133–137.
Schapira, A. H., Cooper, J. M., Dexter, D., 

Clark, J. B., Jenner, P., and Marsden, 
C. D. (1990). Mitochondrial complex 
I deficiency in Parkinson’s disease. J. 
Neurochem. 54, 823–827.

Schwanstecher, C., and Panten, U. (1993). 
Tolbutamide- and diazoxide-sensitive K+ 
channel in neurons of substantia nigra 
pars reticulata. Naunyn Schmiedebergs 
Arch. Pharmacol. 348, 113–117.

Seutin, V., Scuvée-Moreau, J., Massotte, 
L., and Dresse, A. (1995). Hydrogen 
peroxide hyperpolarizes rat CA1 
pyramidal neurons by inducing an 
increase in potassium conductance. 
Brain Res. 683, 275–278.

Shen, K. Z., and Johnson, S. W. (2006). 
Subthalamic stimulation evokes com-
plex EPSCs in the rat substantia nigra 
pars reticulata in vitro. J. Physiol. 573, 
697–709.

Smith, M. A., Herson, P. S., Lee, K., 
Pinnock, R. D., and Ashford, M. L. 
(2003). Hydrogen-peroxide-induced 
toxicity of rat striatal neurones involves 
activation of a non-selective cation 
channel. J. Physiol. 547, 417–425.

Stanford, I. M., and Lacey, M. G. (1996). 
Electrophysiological investigation of 
adenosine trisphosphate-sensitive 
potassium channels in the rat substan-
tia nigra pars reticulata. Neuroscience 
74, 499–509.

Takahira, M., Sakurai, M., Sakurada, N., 
and Sugiyama, K. (2005). Fenamates 
and diltiazem modulate lipid-sensitive 
mechano-gated 2P domain K+ chan-
nels. Pflugers Arch. 451, 474–478.

Takakusaki, K., Habaguchi, T., Ohtinata-
Sugimoto, J., Saitoh, K., and Sakamoto, 
T. (2003). Basal ganglia efferents to the 
brainstem centers controlling postural 
muscle tone and locomotion: a new 
concept for understanding motor 
disorders in basal ganglia dysfunction. 
Neuroscience 119, 293–308.

Tepper, J. M., and Lee, C. R. (2007). 
GABAergic control of substantia 
nigra dopaminergic neurons. Prog. 
Brain Res. 160, 189–208.

Togashi, K., Inada, H., and Tominaga, M. 
(2008). Inhibition of the transient recep-
tor potential cation channel TRPM2 by 
2-aminoethoxydiphenyl borate (2-APB). 
Br. J. Pharmacol. 153, 1324–1330.

Tokube, K., Kiyosue, T., and Arita, M. 
(1998). Effects of hydroxyl radicals 
on K

ATP
 channels in guinea-pig ven-

tricular myocytes. Pflugers Arch. 437, 
155–157.

Toth, B., and Csanady, L. (2010). 
Identification of direct and indirect 
effectors of the transient receptor poten-
tial melastatin 2 (TRPM2) cation chan-
nel. J. Biol. Chem. 285, 30091–30102.

Turnbull, S., Tabner, B. J., El-Agnaf, O. M., 
Moore, S., Davies, Y., and Allsop, D. 
(2001). alpha-Synuclein implicated in 
Parkinson’s disease catalyses the for-
mation of hydrogen peroxide in vitro. 
Free Radic. Biol. Med. 30, 1163–1170.

Wang, D., Grillner, S., and Wallén, P. 
(2006). Effects of flufenamic acid on 
fictive locomotion, plateau poten-
tials, calcium channels and NMDA 
receptors in the lamprey spinal cord. 
Neuropharmacology 51, 1038–1046.

Wehage, E., Eisfeld, J., Heiner, I., Jüngling, 
E., Zitt, C., and Lückhoff, A. (2002). 
Activation of the cation channel long 
transient receptor potential channel 
2 (LTRPC2) by hydrogen peroxide. A 
splice variant reveals a mode of acti-
vation independent of ADP-ribose. J. 
Biol. Chem. 277, 23150–23156.

Wichmann, T., and DeLong, M. R. (1996). 
Functional and pathophysiological 
models of the basal ganglia. Curr. 
Opin. Neurobiol. 6, 751–758.

Wichmann, T., and DeLong, M. R. (2006). 
Basal ganglia discharge abnormali-
ties in Parkinson’s disease. J. Neural. 
Transm. Suppl. 70, 21–25.

Wilson, C. J., Young, S. J., and Groves, P. M. 
(1977). Statistical properties of neuro-
nal spike trains in the substantia nigra: 

cell types and their interactions. Brain 
Res. 136, 243–260.

Xu, S. Z., Zeng, F., Boulay, G., Grimm, 
C., Harteneck, C., and Beech, D. J. 
(2005). Block of TRPC5 channels 
by 2-aminoethoxydiphenyl borate: a 
differential, extracellular and voltage-
dependent effect. Br. J. Pharmacol. 145, 
405–414.

Yau, H. J., Baranauskas, G., and Martina, 
M. (2010). Flufenamic acid decreases 
neuronal excitability through modula-
tion of voltage-gated sodium channel 
gating. J. Physiol. 588, 3869–3882.

Yung, W. H., Häusser, M. A., and Jack, 
J. J. (1991). Electrophysiology of 
dopaminergic and non-dopaminergic 
neurons of the guinea-pig substantia 
nigra pars compacta in vitro. J. Physiol. 
436, 643–667.

Zhang, Y., Dawson, V. L., and Dawson, T. 
M. (2000). Oxidative stress and genet-
ics in the pathogenesis of Parkinson’s 
disease. Neurobiol. Dis. 7, 240–250.

Zhou, F. W., Jin, Y., Matta, S. G., Xu, M., 
and Zhou, F. M. (2009). An ultra-short 
dopamine pathway regulates basal gan-
glia output. J. Neurosci. 29, 10424–10435.

Zhou, F. W., Matta, S. G., and Zhou, F. M. 
(2008). Constitutively active TRPC3 
channels regulate basal ganglia output 
neurons. J. Neurosci. 28, 473–482.

Zhou, F. W., Xu, J. J., Zhao, Y., LeDoux, M. 
S., and Zhou, F. M. (2006). Opposite 
functions of histamine H

1
 and H

2
 

receptors and H
3
 receptor in substantia 

nigra pars reticulata. J. Neurophysiol. 
96, 1581–1591.

Zitt, C., Obukhov, A. G., Strübing, C., 
Zobel, A., Kalkbrenner, F., Lückhoff, 
A., and Schultz, G. (1997). Expression 
of TRPC3 in Chinese hamster ovary 
cells results in calcium-activated 
cation currents not related to store 
depletion. J. Cell Biol. 138, 1333–1341.

Conflict of Interest Statement: The 
authors declare that the research was con-
ducted in the absence of any commercial 
or financial relationships that could be 
construed as a potential conflict of interest.

Received: 01 January 2011; accepted: 05 
March 2011; published online: 04 April 
2011.
Citation: Lee CR, Witkovsky P and Rice ME 
(2011) Regulation of substantia nigra pars 
reticulata GABAergic neuron activity by 
H

2
O

2
 via flufenamic acid-sensitive channels 

and K
ATP

 channels. Front. Syst. Neurosci. 
5:14. doi: 10.3389/fnsys.2011.00014
Copyright © 2011 Lee, Witkovsky and Rice. 
This is an open-access article subject to a 
non-exclusive license between the authors 
and Frontiers Media SA, which permits 
use, distribution and reproduction in other 
forums, provided the original authors and 
source are credited and other Frontiers con-
ditions are complied with.

Lee et al. H2O2 regulation of SNr neurons

Frontiers in Systems Neuroscience www.frontiersin.org April 2011 | Volume 5 | Article 14 | 12

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive

	Regulation of substantia nigra pars reticulata GABAergic neuron activity by H2O2 via flufenamic acid-sensitive channels and KATP channels
	Introduction
	Materials and Methods
	Slice preparation
	Visualized whole-cell recording
	Fluorescent imaging of H2O2
	Drugs and chemicals
	Data analysis

	Results
	H2O2 increases the spontaneous firing rate of guinea-pig SNr GABAergic neurons
	SNr GABAergic neurons are excited by elevated levels of endogenous H2O2
	H2O2 produced during spontaneous activity maintains firing rate and regularity of firing
	H2O2-induced increases in SNr GABAergic neuron firing rate are reversed by FFA
	H2O2 suppresses firing via KATP channel activation in the presence of fFa
	H2O2 suppresses firing in GABAergic neurons recorded in mouse SNr

	Discussion
	H2O2 signaling via ion-channel activation
	Implications of modulation of SNr neuron activity 
BY endogenous H2O2

	Conclusion
	Acknowledgments
	References




