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Encoding of complexity, shape, and curvature by macaque 
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We recorded responses of macaque infero-temporal (IT) neurons to a stimulus set of 
Fourier boundary descriptor shapes wherein complexity, general shape, and curvature were 
systematically varied. We analyzed the response patterns of the neurons to the different stimuli 
using multidimensional scaling. The resulting neural shape space differed in important ways 
from the physical, image-based shape space. We found a particular sensitivity for the presence 
of curved versus straight contours that existed only for the simple but not for the medium and 
highly complex shapes. Also, IT neurons could linearly separate the simple and the complex 
shapes within a low-dimensional neural shape space, but no distinction was found between 
the medium and high levels of complexity. None of these effects could be derived from physical 
image metrics, either directly or by comparing the neural data with similarities yielded by two 
models of low-level visual processing (one using wavelet-based filters and one that models 
position and size invariant object selectivity through four hierarchically organized neural layers). 
This study highlights the relevance of complexity to IT neural encoding, both as a neurally 
independently represented shape property and through its influence on curvature detection.
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than along others (Kayaert et al., 2005a). These differences in sensi-
tivity vary between neurons, being part of each neuron’s individual 
response profile.

However, there is also a general tendency, averaged across neu-
rons, for some shape changes to yield higher neural modulation 
than others. This has been shown for changes in non-accidental 
properties (NAPs; Vogels et al., 2001; Kayaert et al., 2003, 2005b). 
NAPs are stimulus properties that are relatively invariant with ori-
entation in depth, such as whether a contour is straight or curved 
or whether a pair of edges is parallel or not or whether a part 
is present or not (e.g., Lowe, 1987a; Wagemans, 1992; Wagemans 
et al., 2000). These properties can allow efficient object recogni-
tion at different orientations in depth not previously experienced, 
despite drastic image changes at the new orientations (Biederman, 
1987; Lowe, 1987b; Biederman and Gerhardstein, 1993; Logothetis 
et al., 1994; Biederman and Bar, 1999). The shape selectivity of IT 
neurons may thus reflect to some degree the subject’s recognition 
and categorization demands, particularly in the challenges posed 
in differentiating objects and object categories at arbitrary orienta-
tions in depth (Vogels, 1999; Sigala and Logothetis, 2002; De Baene 
et al., 2008). Kayaert et al. (2005b) have also shown that neurons 
can show selectivity for certain NAPs (i.e., curved versus straight 
edges), across different stimuli. Thus, neurons can be responsive 
to, e.g., curved edges across different shapes.

In this study, we want to investigate IT selectivity for another 
shape property, i.e., the complexity of the shapes. Complexity has 
figured in different theories on shape perception, mostly as a factor 
that hampers shape perception and recognition (e.g., Hochberg 
and McAlister, 1953; Attneave and Frost, 1969; Leeuwenberg, 1969; 
Perkins, 1976; Van der Helm and Leeuwenberg, 1996). It has been 

Introduction
Inferior temporal (IT) cortex is the last unimodal region in the 
ventral stream, which is a succession of brain regions essential 
for object recognition and categorization. IT neurons respond 
to complex shape features (i.e., pieces of shapes consisting of at 
least multiple lines, or entire shapes; Gross et al., 1972; Tanaka, 
1996). Although they respond selectively, with substantial response 
variation between stimuli, it is usually possible to record strong 
responses to several relatively dissimilar stimuli, making it dif-
ficult to describe IT response profiles in terms of a single optimal 
shape feature as in, e.g., V1 (e.g., Brincat and Connor, 2004). It 
has been hypothesized that these distributed response profiles as 
well as IT selectivity to complex rather than simple shape features 
stem from the integration of input signals from multiple neurons 
in lower-level ventral stream regions (see Connor et al., 2007 for 
an overview).

The response strength of IT neurons can be systematically mod-
ulated by shape changes within a shape space. Thus, if one records 
neural responses to a stimulus set of different shapes that differ 
systematically in their shape features [e.g., the amount of curvature 
of their main axis, or, when shapes are defined by Fourier bound-
ary descriptors (FBDs), the parameters of the FBDs], then there 
will be a gradual decrease in response from the (locally) optimal 
stimulus along different shape dimensions (e.g., Op de Beeck et al., 
2001, Kayaert et al., 2003, 2005a, De Baene et al., 2007). For any 
individual neurons, the slope of this decrease differs between shape 
dimensions, with more sensitivity along some shape dimensions 
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shown that IT neurons are sensitive to the difference between simple 
and complex FBD-based shapes (Kayaert et al., 2005b). We want to 
know whether this reflects a systematic encoding of the complexity 
of a shape, i.e., can IT neurons represent the amount of complexity 
of a shape in the same systematic way as they can represent, e.g., 
the amount of curvature of the main axis of a shape (Kayaert et al., 
2003, 2005a)?

Our second research question concerns the influence of com-
plexity on IT sensitivity to shape changes. It has been shown that IT 
sensitivity to shape changes depends on the kind of shape changes 
(e.g., NAPs versus metric changes) but can it also depend on the 
complexity of the shape that is changing? Psychophysical studies 
have found a higher sensitivity for shape changes in simple versus 
complex shapes during (delayed) shape matching (Vanderplas and 
Garvin, 1959; Pellegrino et al., 1991; Larsen et al., 1999; Kayaert 
and Wagemans, 2009). We will assess whether this difference in 
sensitivity is also reflected in the responses of IT neurons.

We studied these questions in two experiments. The stimulus set 
of Experiment 1 is presented in Figure 1. There are three groups of 
stimuli, each with a different level of complexity (simple – medium 
complex – highly complex). Within each complexity group, there 
are five series of four shapes (the horizontal rows). The differences 
between those shapes are carefully calibrated in order to make com-
parisons in IT sensitivity between the different complexity groups 
possible (see Materials and Methods for details on stimulus crea-
tion and calibration). We will investigate IT sensitivity to two kind 
of shape changes: changes in the phase of the FBDs [reflected by 

the difference in response to the shapes in column C1 and S1 (see 
Figure 1) compared to the shapes in respectively column C2 and S2] 
and changes in the presence versus absence of curvature (reflected 
by the difference in response to the shapes in column C1 and C2 
compared to the shapes in respectively column S1 and S2).

It should be noted that no significantly higher neural sensitivity 
for simple versus complex FBD-based shapes regarding differences 
in phase of the FBDs was found in the Kayaert et al. (2005a) study. 
However, that study was not specifically designed to assess differ-
ences in sensitivity to phase changes in low versus high complexity 
FBD-based shapes and a possible effect in this study could have 
been masked by several factors. The differences between the com-
plex shapes were larger physically (pixel-wise) than the differences 
between the simple shapes. The complex shapes contained (at least 
in some cases) more salient features than the simple shapes, because 
the amplitude of their FBDs could be higher. Also, the complex 
shapes could differ in the number and/or frequency of the FBDs as 
well as in their phase, and in one case differed even in global orien-
tation, while the simple shapes only differed in phase of the FBDs.

We manipulated complexity through the number of concavi-
ties and convexities of the shapes, an image property that corre-
lates with most if not all definitions of complexity (e.g., Attneave, 
1954; Leeuwenberg, 1969; Zusne, 1970; Chipman, 1977; Hatfield 
and Epstein, 1985; Richards and Hoffman, 1985; De Winter and 
Wagemans, 2004). We increased the number of concavities and 
convexities of the shapes by increasing the number and frequency 
of the FBDs. The simple shapes were used as a basis to create the 

Figure 1 | Stimulus set used in Experiment 1. The set is subdivided in three 
groups of 20 shapes that are approximately equal in complexity; Co1, Co2 and Co3, 
with increasing numbers denoting increasing complexity. The rows contain five 
calibrated sets of shapes that can be used to compare neural sensitivity to either 
changes in the phase of the FBDs or the presence of curved versus straight 
contours, as a function of complexity. The shapes in columns C1 and C2 are curved 
and differ in the phase of their FBDs. The shapes in columns S1 and S2 are created 

by replacing the curves of the shapes in respectively C1 and C2 with straight lines. 
Within each series, we measured the sensitivity of IT neurons to changes in the 
phase of the FBDs by computing the difference in response to the shapes in 
column C1 and S1 compared to the shapes in column C2 and S2, respectively. And 
we measured the sensitivity of IT neurons to the presence versus absence of 
curvature by computing the difference in response to the shapes in column C1 and 
C2 compared to the shapes in column S1 and S2, respectively.
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in IT, the representation of the shape differences by this model is 
expected to resemble the neural sensitivities more than the pixel-
based differences.

Secondly, we will compare our neural modulations with the 
Euclidean distances between the C2-units of the HMAX model 
(described in Riesenhuber and Poggio, 1999 and downloaded from 
http://www.ai.mit.edu/people/max/ on July 9, 2003). The first layer 
of HMAX is closely related to the Lades model but the following 
layer (C2) is designed to extract features from objects, irrespective 
of size, position and their relative geometry in the image, and is 
hypothesized to correspond to either V4 or TEO neurons. So, we 
might expect a closer qualitative and quantitative relationship of 
the HMAX model with the neural modulations compared to the 
Lades model.

In Experiment 2, we partially replicate the results of Experiment 1, 
using different but similar stimuli and two rather than three com-
plexity levels. The stimulus set is presented in Figure  2. In this 
experiment, the stimuli are presented in two sizes; they can either 
be the same size as in Experiment 1, or they can be twice as large. 
Thus, the line segments of the large complex shapes are on average 

more complex shapes (see Materials and Methods) thereby ensur-
ing that the shapes in the different complexity levels are as related 
to each other as possible (see Materials and Methods for details on 
stimulus creation).

We calibrated the physical differences between the members of 
the shape pairs using the Euclidean distance between pixel gray-
levels (see Materials and Methods). The physical distance between 
shapes, defined this way, determines to a large extent visual sen-
sitivity to the shape change and is therefore often used as a null 
hypothesis against which more specific perceptual hypotheses can 
be tested (e.g., Cutzu and Edelman, 1998; Grill-Spector et al., 1999; 
Op de Beeck et al., 2001, 2003; Vogels et al., 2001; James et al., 2002; 
Vuilleumier et al., 2002; Kayaert et al., 2003, 2005a,b; Kayaert and 
Wagemans, 2009).

In addition to the pixel-based calibration, we computed simi-
larities among the stimuli using two models of visual processing. 
The first model, using wavelet-based filters, is an adapted version 
of the model described in Lades et  al. (1993; see Materials and 
Methods). This model imitates columns of complex V1-neurons, 
and therefore, to the extent that V1-like properties are preserved 

Figure 2 | Stimulus set used in Experiment 2. The set contains two groups 
differing in complexity; Co1b and Co2b (roughly corresponding in complexity 
with the shapes in Co1 and Co2 of the stimulus set in Figure 1). The rows 
contain five calibrated sets of shapes that can be used to compare neural 
sensitivity to either changes in the phase of the FBDs or the presence of curved 
versus straight contours, as a function of complexity. The shapes in columns 

C1b and C2b are curved and differ in the phase of their FBDs. The shapes in 
columns S1b and S2b are created by replacing the curves of the shapes in 
respectively C1b and C2b with straight lines. We used small and large versions 
of each of the stimuli, and during the recordings the set was divided in two 
subsets: 1 containing the first three rows of the global set and 1 containing the 
two last rows.
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fixation periods. As long as the monkey was fixating, stimuli 
were presented with an interval of approximately 1 s. Fixation 
breaks were followed by a 1-s time-out period before the fixation 
target was shown again.

Responsive neurons were searched while presenting the stimuli 
of one of the stimulus sets. All stimuli of this set were shown ran-
domly interleaved. The number of interleaved presentations of a 
given shape was at least 4 for a given neuron (median number of 
presentations per stimulus: 12).

Stimuli
The stimuli we used are made using a FBD formalization of 
shape, in which the shape boundary function is expanded in 
a Fourier series. This kind of shapes has been used in several 
studies on IT neural selectivity (Schwartz et  al., 1983; Op de 
Beeck et al., 2001; Kayaert et al., 2005b; De Baene et al., 2007). 
Each shape can be fully described by its set of FBDs which can 
differ in phase, frequency, and amplitude. We manipulated the 
frequency of the FBDs to create shapes of different complexity, 
and we varied the phase of the FBDs to vary the general shape of 
the different stimuli. One can also manipulate the amplitude of 
the FBDs, which would result in more pronounced indentations 
but we did not do this in this study; all FBDs had the same ampli-
tude. We did, however, manipulate the presence of curvature in 
the contour by replacing the curves in the contour by straight 
sides. For this, the line-endings were handpicked (in Photoshop 
5.5), after which their exact position was optimized to minimize 
the physical distance with the curved shapes (with physical dis-
tance defined as the Euclidean distance between the pixels, like 
our other calibrations, see further in the Section “Materials and 
Methods”). The optimization was done using a custom made 
program in MATLAB, version 5.3.

All stimuli were filled with a random noise-pattern, consisting 
of black and white dots, as in Op de Beeck et al. (2001). We incor-
porated the restriction that the number of black and white dots 
should be equal for 2 × 2 squares in the texture, so the textures were 
highly uniform. All stimuli were made using MATLAB, version 5.3. 
Stimuli were presented on a gray background. The background had 
a mean luminance of 6.4 cd/m2 and the black and white pixels a 
luminance of 0 and 20 cd/m2, respectively. Stimuli were shown at 
the center of the screen.

Experiment 1
The stimuli used in Experiment 1 are presented in Figure 1. The 
set consisted of 60 shapes, created by means of different FBDs. The 
shapes extended approximately five visual degrees (with consider-
able variance between the shapes). They are subdivided in three 
groups of increasing complexity (Figure 1). The groups will be 
called simple, medium complex, and highly complex shapes in 
the text and denoted Co1, Co2, and Co3 in the figures. Each group 
consists of 10 shapes that are approximately equal in complex-
ity. The stimuli in the medium and highly complex shape groups 
were created by adding higher frequency FBDs to the stimuli in 
the simple and the medium complex shape groups, respectively. 
The number of the FBDs in the different complexity groups was 
respectively 4, 5, and 6, and their frequencies were respectively 
[1;2;3;4], [1;2;3;4;7], and [1;2;3;4;7;11].

as long as the line segments of the small simple shapes. This allows 
us to check to which degree an effect of complexity can be attributed 
to the length of the line segments of the shapes.

Materials and Methods
Single cell registrations
Subjects
Two male rhesus monkeys served as subjects. Before conducting 
the experiments, a head post for head fixation was implanted, 
under Isoflurane anesthesia and strict aseptic conditions. In addi-
tion, we implanted a scleral search coil in one monkey. After train-
ing in the fixation task, we stereotactically implanted a plastic 
recording chamber using coordinates based on anatomical MRIs 
of each monkey. The recording chambers were positioned dorsal 
to IT, allowing a vertical approach, as described by Janssen et al. 
(2000). During the course of the recordings, we obtained in each 
monkey anatomical MRI scans and CT scans with the guiding 
tube in situ. This, together with depth ratings of the white and 
gray matter transitions and of the skull basis during the record-
ings, allowed reconstruction of the recording positions before the 
animals were sacrificed. All surgical procedures and animal care 
was in accordance with the guidelines of NIH and of the K.U. 
Leuven Medical School.

Apparatus
The apparatus was similar to that described by Vogels et  al. 
(2001). The animal was seated in a primate chair, facing a com-
puter monitor (Panasonic PanaSync/ProP110i, 21 inch display) 
on which the stimuli were displayed. The head of the animal was 
fixed and eye movements were recorded using either the magnetic 
search coil technique or the non-invasive, infrared video-based 
ISCAN eye position measurement device. Stimulus presenta-
tion and the behavioral task were under control of a computer, 
which also displayed the eye movements. A Narishige microdrive, 
which was mounted firmly on the recording chamber, lowered 
a tungsten microelectrode (1–3 Mohm; Frederick Hair) through 
a guiding tube. The latter tube was guided using a Crist grid 
that was attached to the microdrive. The signals of the electrode 
were amplified and filtered, using standard single cell recording 
equipment. Single units were isolated on line using template-
matching software (SPS). The timing of the single units and the 
stimulus and behavioral events were stored with 1  ms resolu-
tion by a PC for later offline analysis. The PC also showed raster 
displays and histograms of the spikes and other events that were 
sorted by stimulus.

Fixation task and recording
The monkey was placed in front of the display, at a distance of 
75 cm. Trials started with the onset of a small fixation target 
at the display’s center on which the monkey was required to 
fixate. After a fixation period of 300 ms, the fixation target was 
replaced by a stimulus for 200 ms, also shown at the center of the 
screen. If the monkey’s gaze remained within a 1.5–2° fixation 
window, the stimulus was replaced again by the fixation spot, 
and the monkey was rewarded with a drop of apple juice. When 
the monkey failed to maintain fixation, the trial was aborted 
and the stimulus was presented during one of the subsequent 
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were much smaller for the shape pairs where the members differ 
in the presence versus absence of curvature than for the shape 
pairs where the members differ in phase of the FBDs. The physical 
difference within the pairs becomes slightly larger as shape com-
plexity increases. Therefore, any higher sensitivity to simple shapes 
must originate in the visual system and cannot be due to physical 
differences.

All the following calibrations were done on the silhouettes of 
the stimuli, i.e., without the random noise filling. We computed 
the Euclidean distance between the gray-level values of the pixels 
of the images as follows: [ ( ) / ] /Σi

n
i iG G n1 2 2 1 2−  with G1 and G2 the 

gray levels for picture 1 and 2 and n the number of pixels. The 
Euclidean distances presented in the result section were computed 
with position-correction. For instance, we computed the Euclidean 
distance for 99 by 99 different relative positions of the stimuli 
(maximum position shift: 50 pixels or 14% of the images), and 
then withheld the smallest value. We also did a calibration without 
position-correction, and because some neurons might be mainly 
sensitive to low spatial frequencies, we performed a low-pass filter-
ing on the images using convolutions with Gaussian filters with a 
standard deviation of either 8 or 15 arc’.

The pixel-based differences for the different calibrated compari-
sons between shapes are presented in Figure 3B for Experiment 
1 and in Figure 9C for Experiment 2. The differences were much 
smaller for the shapes differing in the presence versus absence of 
curvature than for the shapes differing in phase of the FBDs. We 
also made sure that on average the pixel difference increased as the 
complexity increased for each kind of shape difference and this for 
all our measurements (i.e., the position-corrected and the ordinary 
measurements, the latter on the normal as well as on the filtered 
images). There was no tendency for the differences between the 
complex shapes to become relatively smaller with low-pass filtering.

Wavelet-based filters
The first model, using wavelet-based filters, is an adapted version of 
the model described in Lades et al. (1993). The Lades et al. (1993) 
model produces wavelet-based image measures. It filters the images 
using a grid of Gabor jets and then computes the difference between 
the outputs of the different Gabor jets for the images of a pair. In the 
present implementation, the square grid consisted of 10 × 10 nodes 
with a node approximately every 10 pixels, horizontally and verti-
cally, as the images are rescaled to be squares of 128 pixels (instead 
of the original 350  pixels). Each Gabor jet consists of 40 Gabor 
filters. They can have five possible spatial frequencies which are 
logarithmically scaled. The lowest spatial frequency filter covers a 
quarter of the image while the highest-frequency filter covers about 
4 pixels on each side. They can have eight possible orientations. At 
each node, a Gabor jet can be described as a vector of 40 Gabor filter 
outputs. The similarity of a pair of images is computed as an average 
of local similarities between corresponding Gabor jets. The local 
similarity is given by the cosine of the two vectors, thereby discard-
ing phase parts. The grids were positioned on the stimuli in such 
a way as to maximize similarity between pairs of images. We used 
Lades model dissimilarities in order to facilitate comparison with 
the neural distances. The former dissimilarities are computed by 
subtracting the Lades model similarities from 1. Figure 3C shows the 
Lades dissimilarities for the complexity groups depicted in Figure 1.

Each of the five rows in each complexity group (Figure  1) 
consists of four shapes that are matched in size and aspect-ratio. 
The first two stimuli (columns C1 and C2) differ in the phase of 
their FBDs, thus creating differences in the configuration of the 
curves. The next two stimuli (columns S1 and S2) were created by 
replacing the curves of the shapes in C1 and C2, respectively, with 
straight lines, thereby taking care to preserve the general shape of 
the stimuli. Hence, the differences between the stimuli in S1 and 
S2 are also configurational differences but now between stimuli 
with straight contours. But the difference between the stimuli in 
C1 and S1 and the stimuli in C2 and S2 is the presence of curved 
or straight edges, respectively.

Thus, each complexity group has 5 pairs of curved shapes dif-
fering in the configuration of their features (“C1” versus “C2”), 5 
pairs of straight shapes also differing in the configuration of their 
features (“S1” versus “S2”), and 10 pairs of shapes that differ by 
having either curved or straight contours (“C1” versus “S1” and 
“C2” versus “S2”).

Experiment 2
Figure 2 shows the collection of stimuli that were used in the second 
experiment. It was made in a completely analogous fashion as the 
stimuli in Figure 1 but contains only two complexity groups. The 
number of FBDs in the different complexity groups was respec-
tively 4 and 5, and their frequencies were respectively [1;2;3;4] and 
[1;2;3;4;6]. In order to examine the influence of size, each stimulus 
was shown in two versions; one that was roughly the same size as the 
stimuli in Figure 1 (extending ±5°) and one that was twice as large 
(extending ±10°). Thus, in total, this second collection comprised 
80 stimuli. This is a large set to record from single neurons, as we 
can only record from a particular neuron for a limited amount of 
time. Thus, in order to increase the number of presentations within 
each individual neuron, we divided the stimuli in two subsets: the 
first (sub)set contained the first three rows and the second (sub)
set contained the last two rows.

Number of image features
Adding higher frequency FBDs to the more complex shapes resulted 
in an increase in the number of concavities and convexities in the 
curved shapes and an increase in the number of corners in the 
straight shapes. This was quantified by instructing 10 naïve subjects 
to mark either the convexities and concavities or the corners on 
print-outs of the stimuli (size: 6.4 cm × 6.4 cm). Both the average 
and the median correlation between subjects (over stimuli) of the 
number of items marked was 0.98. The number of features was 
defined as the median number of items marked by the subjects. 
The average number of features of the shapes in the first stimulus 
set (Figure 1) was 8, 14, and 21, for the simple, medium and highly 
complex shapes, respectively. Regarding the stimuli of the other 
two sets (Figure 2), the numbers were 8 and 13 for the simple and 
complex shapes, respectively.

Image-similarity measures
Pixel-based differences
We calibrated the physical differences between the members of 
the shape pairs using the Euclidean distance between pixel gray-
levels. Throughout all complexity levels, the physical differences 
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HMAX C2 layer outputs
We computed the Euclidean distances between the outputs of 
C2-units of the HMAX model (described in Riesenhuber and 
Poggio, 1999 and downloaded from http://www.ai.mit.edu/people/
max/ on July 9, 2003). This hierarchical, feature-based model con-
sists of five layers. The units of the first four layers show a greater 
degree of position and size invariance and respond to increas-
ingly more complex features at hierarchically higher layers. The 
fifth layer consists of units that are made to respond optimally to 
particular views of particular objects. We computed the similarity 
between the shapes using the output of the fourth, C2 layer. These 
units are designed to extract moderately complex features from 
objects, irrespective of size, position, and their relative geometry 
in the image, and are hypothesized to correspond to either V4 or 
TEO neurons (see Riesenhuber and Poggio, 1999 for more details). 
Image similarity was computed as the Euclidean distance between 
the outputs of the 256 C2 units. Figure 3D shows the Euclidean 
distances between HMAX C2 outputs for the complexity groups 
depicted in Figure 1.

Analyses
Since the reported effects in this study were mirrored in the data 
of both monkeys, we presented our data pooled across monkeys.

The response of a neuron was defined as the number of spikes 
during a time interval of 250 ms, starting from 40 to 120 ms after 
stimulus onset. The starting point of the time interval was cho-
sen independently for each neuron to best capture its response, by 
inspecting the peristimulus time histograms, but was fixed for a 
particular neuron. Each neuron showed significant response modu-
lation to the stimulus set, which was tested by an ANOVA.

The degree of response modulation to each possible stimulus 
pair was assessed by calculating the normalized Euclidean distance 
between the response over each of the 119 neurons, using the fol-
lowing formula: [ ( ) / ] /Σi

n
i iR R n1 2 2 1 2−  with Ri

1the average response of 
neuron i to stimulus 1 and n the number of neurons. The resulting 
distance matrix allowed inferences as to the representation of the 
shapes of the different stimulus sets in IT. We obtained similar 
results when we used a distance matrix based on the normalized 
responses of the neurons. The responses of each neuron were nor-
malized by dividing the average response to a stimulus by the maxi-
mum average response of that neuron across the different stimuli.

We used non-parametric statistical tests to compare response 
modulations to different stimulus pairs.

Multidimensional scaling-analyses
Multidimensional scaling (MDS) analyses were done using 
Statistica software (StatSoft, Tulsa, OK, USA). We employed the 
standard non-metric MDS-algorithm (Shepard, 1980) using 
a matrix of the distances between each pair of shapes as input. 
The distances were computed using either neural modulations 
[Euclidean distance (see above); same procedure as Young and 
Yamane, 1992; Op de Beeck et al., 2001; Vogels et al., 2001; Kayaert 
et al., 2005a; De Baene et al., 2007), or the different image-simi-
larity measures (see above). The MDS-algorithm will arrange the 
stimuli in a low-dimensional space while trying to maintain the 
observed distances. This low-dimensional configuration can be 
freely translated, scaled, and rotated.

Figure 3 | (A) Neural sensitivities for the different kinds of shape differences. 
The kind of shape difference is presented on the abscissa using the column 
notations of Figure 1 (respectively shape differences within curved shapes, 
shape differences within straight shapes and curved versus straight contours) 
while the complexity of the stimuli is represented by circles, squares, and 
triangles for shapes from respectively Co1, Co2, and Co3. Curved versus 
straight comparisons were first averaged within the rows (according to the 
formula (|C1 − S1| + |C2 − S2|)/2), thus also their standard errors are on five 
data points. Vertical bars denote standard errors. (B) Pixel-based 
dissimilarities, (C) Lades model dissimilarities, and (D) Euclidean distance 
between HMAX C2-layer outputs.
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given a certain configuration of neural or model distances, but 
based on random group membership. The expected separations 
and the p-values presented in the result section are based on these 
randomizations.

We also did a complementary randomization test in which we 
randomized the neural responses of each neuron separately over 
all stimuli, before doing MDS. This results in a completely random 
configuration, and all reported effects were equally significant using 
this randomization. Also the latter randomization was repeated 
1000 times and we computed the proportion of random configu-
rations that yielded a separation at least as great as the separation 
under testing. The test was significant when the latter proportion 
was smaller than 0.05.

Results
During Experiment 1, we recorded the responses of 62 anterior TE 
neurons from two monkeys (32 in monkey 1 and 30 in monkey 
2) that showed significant modulation to the stimuli presented 
in Figure  1 (ANOVA, p  <  0.05). Their average firing rate was 
24 spikes/s for the shapes in the simple group and 23 spikes/s for 
the shapes in both the medium and high complexity groups. Table 1 
gives some further response characteristics of the neurons.

Figure 4 shows examples of some of the neurons we recorded. 
Figures 4A and 5B are examples of neurons that were selective 
to both a particular level of complexity, and the shape variations 
within this level. The neuron in Figure 4A was highly selective and 
responsive to shape variations in the simple shapes, responding 
much less to the shape variations in complex shapes. And in each 
group the average response was strongest for the straight shape. 
The neuron in Figure 4B preferred some of the highly complex 
shapes but also responded slightly to the medium complex shapes, 
and there was no response to the simple shapes. The neuron in 
Figure  4C was mainly tuned to the global shape of a stimulus, 
preferring the stimuli in the third row of Figure 1. The neuron in 
Figure 4D was tuned to curvature, preferring curved over straight 
shapes. However, also these latter two neurons could be used to 
represent complexity, as the maximum response within each com-
plexity group decreased as complexity increases. Thus, complexity 
was represented by these neurons, but it was done so orthogonal 
to shape representation, with both variables intermingled in indi-
vidual neurons.

We used MDS analyses to visualize the representation of the 
shapes in our stimulus sets, but also to establish the degree to 
which the neurons and the image measurements can separate 
the shapes according to a particular shape property, e.g., com-
plexity, curved versus straight edges, etc. The amount of separa-
tion was operationalized as the amount to which we could, based 
on the neural data, separate two groups of shapes that differ in 
their value on the shape property under investigation. So, we 
attempted to separate the curved from the straight shapes, the low 
complexity from the moderate complexity shapes, the moderate 
complexity from the high complexity shapes, etc. This was done 
by rotating the MDS-solution in such a way to find a maximum 
separation between the groups under investigation along one of 
the dimensions.

This was done in two steps. First, we determined the num-
ber of dimensions we would use to explore the responses to 
the stimulus groups under investigation. We based our decision 
on visual inspection of the scree plot and took care to choose 
a manageable number of dimensions that would still explain 
most of the variance in the data (the exact number depend-
ing on the stimuli under investigation, but fluctuating around 
90%). Secondly, we rotated the resulting MDS-solution in such 
a way to find a maximum separation between the groups under 
investigation along one of the dimensions. The rotation was 
done systematically using a custom written Matlab algorithm. It 
orthogonally rotates the configurations in steps of 1° and at each 
step calculates the overlap between the members of the groups 
along each dimension. Finally, it withholds the rotation at which 
the overlap between the members of groups along one of the 
dimensions was the smallest. Within this final low-dimensional 
solution, one can easily determine along which of the dimensions 
the groups are best separated.

We used randomization statistics to assess whether the separa-
tions we found were significantly different from those obtained 
from a random configuration of two sets of an equal number of 
points without a priori separation. We used two complementary 
randomizations to do this. In a first randomization, we randomized 
the stimulus labels within the MDS-solution. Thus, the points 
were arbitrarily divided in two groups, and this was repeated 1000 
times. Thus, we could assess the odds of a complete separation (or 
a separation with equal or less mismatches as present in the data) 

Table 1 | Distribution of some neural response characteristics, in spikes/s.

Response 

to best 

stimulus 

(Exp. 1)

Response 

range* 

(Exp. 1)

Selectivity 

index** 

(Exp. 1)

Response to 

best stimulus 

(Exp. 2, 

subset 1)

Response 

range 

(Exp. 2, 

subset 1)

Selectivity 

index 

(Exp. 2, 

subset 1)

Response to 

best stimulus 

(Exp. 2, 

subset 2)

Response 

range 

(Exp. 2, 

subset 2)

Selectivity 

index 

(Exp. 2, 

subset 2)

Minimum 8 7.6 0.17 6.7 6.7 0.14 12 7.3 0.21

First quartile 19.6 16.2 0.52 24.9 19.7 0.49 23.7 15.3 0.46

Median 31.2 24.7 0.8 36 30.1 0.69 30.1 24.5 0.68

Third quartile 49.7 38.7 0.95 64 38.8 0.94 56.7 41.9 0.91

Maximum 190.7 159 1 198.7 98 1 173 123.6 1

*Response best − response worst stimulus.
**(Response best − response worst)/(response best + response worst).
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Materials and Methods for formula) between the neural responses 
to the stimuli in Figure 1. The number of dimensions had to be 
modest to make the solution interpretable. We used a 2-D solu-
tion, because this already included the dimension of interest (e.g., a 

Categorical representation of simple versus complex shapes
In order to disentangle the influence of complexity from other 
shape sensitivities and to analyze the data on a population level, 
we conducted an MDS analysis on the Euclidean distances (see 

Figure 4 | Responses of five neurons (A–D) to the stimulus set in Figure 1. The darker the depiction of the shapes, the stronger the response. The calibration 
bars underneath each of the sets indicate the response (in spikes/s) corresponding to the different shades.
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dimension that segregates the stimuli according to membership of 
the complexity groups) and higher-dimensional solutions did not 
yield more insight in the data. We do not claim that the response 
pattern of our neural population is necessarily 2-D in nature; the 
“real” number of dimensions would correspond to the number of 
independent stimulus characteristics the different neurons extract, 
and this is certainly higher. Nevertheless, the observed modula-
tions to the stimulus pairs (the neural distances) were well pre-
served within the low-dimensional space (explained variance of 
2-D solution: r2 = 0.86).

The MDS-solution is presented in Figure 5A. The circles rep-
resent simple shapes, the squares medium complex shapes and 
the triangles highly complex shapes. The numbers at each data 
point refer to the rows within each group in Figure 1. The first 
dimension (shown on the horizontal axis) is probably related to 
the global shape of the stimuli, as it separates the vertically ori-
ented stimuli in row 4 from the other, more horizontally oriented 
stimuli. The second dimension (shown on the vertical axis) ranks 
the stimuli according to their complexity group. The simple shapes 
were roughly separated from the complex shapes. However, there 
was no segregation between the medium and highly complex 
shapes, and we did not find such a segregation in any dimension 
in a higher-dimensional solution (up to four dimensions) either. 
The segregation (with merely two shapes situated on the “wrong” 
side of the border) between the simple and complex shapes was 
higher than what would be expected based on a random configura-
tion (p < 0.001, randomization statistics). Thus, within this low-
dimensional MDS-solution, IT neurons can differentiate the simple 
from the medium complex shapes but not the medium from the 
highly complex shapes.

Comparisons of the neural representation of complexity with different 
models
We compared the neural representation of our shapes to a hypo-
thetical representation that faithfully reflects the physical overlap 
between the stimuli (i.e., the pixel-based differences, see Materials 
and Methods). We choose a 2-D solution for this pixel-based rep-
resentation. The explained variance of the MDS-solution was 0.92, 
even higher than that of the neural solution. Adding more dimen-
sions to the model resulted in a small decrease in stress but the 
scree plot pointed to a 2-D solution. None of the possible higher 
dimensions showed a shape ranking that might be related to com-
plexity. The position of the stimuli in the 2-D space is presented in 
Figure 5B. The stimuli were segregated according to their global 
shape, with the stimuli in row 1 and 4 being segregated from each 
other and from the stimuli in the other rows. The absence of a segre-
gation of the shapes according to their complexity in the pixel-based 
configuration demonstrates that the representation of complexity 
in the neural data is not merely a faithful reflection of the physical 
differences between the stimuli but indicates further processing 
specifically related to the complexity levels of our stimuli.

We also compared our representation with that of two mod-
els designed to mimic neural responses, i.e., a wavelet-based 
model (Lades et al., 1993) and the Euclidean distances between 
the C2-units of the HMAX model (Riesenhuber and Poggio, 
1999; see Materials and Methods for the implementation of both 
models). Figures 5C and 5D represent the 2-D MDS-solutions of 

Figure 5 | Two-dimensional MDS-solutions for the shapes represented 
in Figure 1. The circles represent simple shapes, the squares medium 
complex shapes and the triangles highly complex shapes. The numbers at 
each data point indicate to which row in Figure 1 the shape belongs. (A) 
Solution for the neural Euclidean distances, (B) solution for the pixel-based 
distances, (C) solution for the wavelet-based distances, and (D) solution for 
the HMAX C2-layer distances.
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compared to the straight shape (t-test, p < 0.05), relative to the total 
number of curved versus straight shape pairs. This proportion was 
calculated for each complexity group separately, including in the 
analyses only those neurons that modulated significantly to the 
shape changes in general (ANOVA, p < 0.05; note that most shape 
changes were by far larger than the curvature differences, which 
resulted in a large probability that a neuron would only be selec-
tive to a shape change not involving curvature difference). The 
proportions were 37, 17, and 15% for the simple, medium and 

the wavelet-based and HMAX model distances. The explained vari-
ances were 90 and 96% for the wavelet-based model and HMAX 
respectively. In agreement with the neural data, one dimension can 
be seen as encoding global shape In accordance with the neural 
data the shapes in row 4 were best segregated from the others, 
especially using the wavelet filters that in this respect seemed to be 
more related to the pixel-based differences.

Also in agreement with the neural data, the second dimension 
in both models represented the differences in complexity between 
the stimuli. However, the better separation of the simple versus 
medium complex compared to the medium versus highly com-
plex shapes found in the neural data was completely absent. Both 
models roughly separated the simple from the medium complex 
shapes (HMAX has 4 errors and the wavelet-based model has 10, 
but to the defense of the latter it must be said that it roughly pre-
serves the ranking within the different series) but they separated 
the medium complex shapes even better from the highly complex 
shapes (complete separation in HMAX and two errors in Lades).

The effect of complexity on the sensitivity for shape changes
Modulation to shape pairs differing in either presence of curvature or 
phase of the FBDs
We could use the responses of the neurons to the shape pairs within 
this stimulus set to measure the neural sensitivity for the phase of 
the FBD’s as well as for the presence of curved versus straight edges, 
and this as a function of the complexity of the shapes. The neural 
sensitivities are presented in Figure 3A. There was no influence 
of complexity on the modulation to configurational shape differ-
ences, but there was a significant influence on the modulation to 
absence versus presence of curvature (with higher modulation in 
the simple than in the complex shapes, Wilcoxon matched pairs test, 
p < 0.02 in both cases, over all curved versus straight comparisons, 
n = 10). This was illustrated by the neuron in Figure 4D, which 
responded more to curved compared to straight shapes, but only 
for the simple shapes.

Sensitivity to presence of curvature as a dimension in shape space
This was assessed by doing an MDS analysis within each of the 
three complexity groups separately. The solutions were 3-D and 
explained 94, 96, and 98% of the variance, respectively. In each case, 
we rotated the 3-D space so that one of the dimensions separated 
the curved and the straight shapes with as little errors as possible. 
The solutions are shown in Figure 6. There was a separation within 
the simple shape group, with the number of errors (1) signifi-
cantly lower than chance (p < 0.02), but not within the complex 
shape groups where the number of errors (5 and 4, respectively) 
did not lie significantly underneath the four errors expected by 
chance (p > 0.05).

Sensitivity to the presence of curvature in the medium and highly 
complex shapes
The effect of complexity on the modulation to straight versus 
curved contours was confined to the transition between simple and 
medium complex shapes. In order to establish whether the neurons 
could still detect the differences between the curved and the straight 
shapes at the second level of complexity, we determined the number 
of times a neuron responds significantly differently to the curved 

Figure 6 | Representation of two dimensions of a 3-D MDS-solution for 
the shapes within each complexity group of Figure 1, using the neural 
Euclidean distances. Circles indicate curved shapes, squares indicate 
straight shapes. The horizontal axis shows the dimension that best separates 
the curved from the straight shapes. (A–C) Contain the solutions for 
complexity groups 1–3.
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on the scree plot and was sufficient to explain 96 and 98% of the 
variance. The solutions are presented in Figures 7A,B for the sub-
set containing the first three rows of the global stimulus set and 
in Figures  7C,D for the subset containing the last two rows of 
the global stimulus set. The dimensions in these solutions could 
perfectly separate the small from the large stimuli. They could rea-
sonably well separate the simple from the complex shapes with two 
and three errors, respectively (p < 0.01, randomization statistics). 
There was also a certain amount of curvature encoding (with the 
curved version of a shape systematically getting a higher load on 
the dimension that separates the simple from the complex shapes), 
which was, however, more ambiguous and only present for the 
simple shapes.

This global representation was reflected by the individual neu-
rons shown in Figure 8. The neuron in Figure 8A was mainly per-
forming complexity encoding, with a consistently higher response 
to the complex compared to the simple stimuli. The same neuron 
was also very sensitive to size. Regarding the same subset, the neuron 
in Figure 8B encoded curved versus straight, but only for the simple 
shapes. The neuron in Figure 8C was recorded using the second 
subset and behaved similarly as the neuron in Figure 8B, only this 
one extended the curvature encoding to the complex shapes, albeit 
to a lesser degree. In both Figures 8B,C, the preference for either 
curved or straight shapes was preserved over shape variations.

The effect of complexity on shape sensitivity was similar to 
the effect obtained in Experiment 1, as is shown in Figure 9A for 
the small and Figure 9B for the large versions of the shapes for the 
normalized Euclidean distances, averaged over the comparisons in 
the rows of Figure 6 (curved versus straight comparisons were first 
averaged within the rows, thus also their standard errors are on 
five data points). There was generally no influence of complexity 
on the modulation to configurational shape differences (p > 0.05, 
Wilcoxon matched pairs test, for both the straight and the curved 
shapes and both the large and the small stimuli over all shape pairs, 
n = 5), but there was a significant influence on the modulation to 
absence versus presence of curvature (p < 0.05, Wilcoxon matched 
pairs test, for both the large and the small stimuli, over all curved 
versus straight comparisons, n = 10).

In line with the results of Experiment 1, there was a complete 
separation between curved and straight shapes in the simple groups 
for subset 1 (small and large stimuli separately, on 3-D solutions, 
explained variances 81 and 98% respectively, p  >  0.05, random 
configuration resulted in on average two errors) and 2 (small and 
large stimuli separately, on 2-D solutions, explained variances 92 
and 88% respectively, p < 0.05, random configuration resulted in on 
average one error). However, the corresponding numbers of errors 
within the complex groups are 2, 1, 0, and 1 for the small and large 
stimuli of subsets 1 and 2, respectively (also 3- and 2-D solutions, 
with explained variances of 94, 92, 98, and 98%; not significantly 
different from chance).

These general effects are illustrated by the neurons in 
Figures 8B,C, which responded more strongly to the curved and 
the straight shapes within each series, and this segregation was more 
pronounced within the simple than within the complex group.

The modulation to differences in size could be very pronounced, 
as is illustrated by the neuron in Figure 8A. This modulation played 
an important role in the MDS-solution and the mean absolute 

highly complex shapes, respectively; all significantly different from 
5% (according to the binomial distribution, p < 0.05, n = 550, 540, 
and 520, respectively).

In this context, it should be noted that the differences between 
the curved and straight stimuli, although subtle on paper, were 
perfectly visible on our monitor.

Influence of complexity on the shape sensitivity of the different 
models
The model distances on the calibrated shape pairs are shown 
in Figures 3B–D, in a similar fashion as the neural distances in 
Figure 3A. As is expected from the calibration, the pixel-based dis-
tances (Figure 3B) were smaller for the difference between curved 
and straight edges than for the global shape changes, and generally 
slightly increased with increasing complexity. The wavelet-based 
model (Lades et al., 1993; Figure 3C) was best related to the neural 
data, as there is a slightly higher sensitivity to curvature differences 
for the simple shapes. HMAX however showed an increase in sen-
sitivity with higher complexity, in accordance with the pixel data 
but opposite to the neural data (Figure 3D).

Also for the model distances, we performed MDS analyses 
within each of the three complexity groups separately. There was 
no separation whatsoever in any of the pixel-based configurations 
(errors are 7, 6, and 6 for the three complexity groups, respec-
tively; explained variances are 79, 72, and 72%1). Within the pixel-
based MDS-solutions, the curved and the corresponding straight 
shapes were actually placed upon each other as the pixel-differences 
between curved and straight were extremely small compared to the 
shape differences.

In accordance with the pixel distances and contrary to the neural 
data, 3-D MDS-solutions of the Lades and HMAX models on the 
simple shapes (explained variance twice 98%) yielded no linear 
separation between curved and straight whatsoever (both six errors 
which is above the four errors expected by chance).

Experiment 2: Replicating the effect of complexity on neural 
sensitivity for stimuli extending 5 and 10 visual degrees
We wanted to see whether the effects of complexity would also 
hold for a stimulus set in which the line segments for the com-
plex shapes were as long as for the simple shapes we used in our 
first physiological experiment, so we replicated the experiment for 
stimuli extending 5 and 10 visual degrees. To this means, we cre-
ated a second stimulus set, presented in Figure 2 (see Materials 
and Methods). We recorded the responses of 55 (31 in monkey 1 
and 24 in monkey 2) and 52 (30 in monkey 1 and 22 in monkey 
2) anterior TE neurons for each subset, respectively. Table 1 gives 
some response characteristics of the neurons.

We performed an MDS on both subsets of neurons to get a 
global idea of how the neurons represented the dimensions within 
the subset. The number of dimensions (4 and 3) was chosen based 

1These relatively low explained variances are due to the property of the MDS-algo-
rithm to reduce stress rather than explained variance. The stress values in the three 
cases are really low (0.0005899, 0.000039, and 0.0000049) indicating that the num-
ber of dimensions chosen by far exceeds the number of dimensions necessary. In 
the latter cases MDS tends to extremely cluster the data. We nevertheless choose to 
equate the number of dimension to that used with the neural data, in order to avoid 
missing a very subtle separation at a higher (although superfluous) dimension.
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difference between the small and the large stimuli was 8 spikes/s. 
Nevertheless, in general the shape selectivity remained preserved 
over the size variation, as shown in Figures 10A,B for the first and 
the second subset, respectively.

Discussion
The present findings agree with those of Kayaert et al. (2005a): the 
responses of IT neurons can be used to linearly separate simple 
from more complex shapes. We extend these findings by show-
ing that there is no linear separation possible between shapes of 
medium and high complexity. Thus, the visual system seems to be 
more sensitive to the distinction between our simple and complex 
shapes than to the distinction between different higher levels of 
complexity.

We found that the higher sensitivity for the distinction between 
curved and straight contours compared to shape changes within 
either the curved or straight shape group is only present in sim-
ple shapes and not in more complex shapes. Despite the more 
rigorously controlled stimulus set, which allowed for a better 
comparison of shape changes within the different complexity 

groups, there was still no effect of complexity on shape changes 
within either the curved or straight shape group. The effects in our 
study could not be predicted from either the physical differences 
between the shapes or from wavelet-based measures or HMAX 
C2 layer outputs.

The lack of influence of complexity on the neural sensitivity 
to changes in the phase of the FBDs is at odds with psychophysi-
cal studies measuring a higher sensitivity for shape changes in 
simple versus complex shapes during (delayed) shape matching 
(Vanderplas and Garvin, 1959; Pellegrino et al., 1991; Larsen et al., 
1999; Kayaert and Wagemans, 2009). This is especially the case for 
the study of Kayaert and Wagemans (2009), which found the speed 
and accuracy of delayed shape matching to be inversely correlated 
with complexity, using the same stimulus set as the current study. 
One reason for this discrepancy might be a difference in familiarity 
with the stimuli. The subjects in the Kayaert and Wagemans (2009) 
study only saw the stimuli during a 1-h experimental session while 
the monkeys in this study saw the stimuli continuously during the 
recordings, which could last 3–4 h a day for several weeks. It has 
been shown in various tasks that the effects of complexity can fade 

Figure 7 | Representations of the MDS-solutions for the subsets of 
shapes used in Experiment 2. Curved shapes are presented in black, straight 
shapes in gray; simple shapes are denoted by filled symbols, complex shapes by 
open symbols; larger shapes are presented by larger symbols; the row of the 

shape in Figure 2 is represented through the shape of the symbol (see legend). 
(A,B) The four dimensions of the solution for subset 1 (first three rows in 
Figure 2), (C,D) the three dimensions of the solution for subset 2 (last two rows 
in Figure 2).
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away relatively quickly after training (Vanderplas and Garvin, 1959; 
Pellegrino et al., 1991; Goldstone, 2000). Training can also lead to 
a more holistic representation of two-part objects in monkey IT 
cortex (Baker et al., 2002). Even mere exposure to stimuli causes 
subjects to bind together different features that occur together, 
which could enhance the representation of more complex shapes 
(Fiser and Aslin, 2001; Orbàn et al., 2008).

Our data do show a clear effect of complexity on the detection of 
curved versus straight shapes. This effect is confined to the transi-
tion between simple and medium complex shapes. The curvature 
change is however still detectable in the highly complex shapes, 
which excludes a floor effect. Since the contours of the simple shapes 
contain longer line segments than the contours of the complex 
shapes, the effect might be related to spatial summation, i.e., the 

Figure 8 | Responses of three neurons (A–C) to shapes from the set of 
Figure 2. The calibration bars underneath each of the sets indicate the 
response (in spikes/s.) corresponding to the different shades. The responses to 
the shapes on the left depict the responses to the small size versions of the 

shapes, those to the shapes on the right depict the responses to the large 
versions of the shapes. (A,B) Show responses to shapes in the first three rows 
of Figure 2, while (C) shows responses to the shapes in the last two rows 
of Figure 2.

Figure 9 | (A,B) Average neural modulation for the different kinds of shape 
comparisons in Experiment 2. The kind of shape difference is presented on the 
abscissa using the column notations of Figure 2 (respectively shape differences 
within curved shapes, shape differences within straight shapes and curved 
versus straight contours) while the complexity of the shape is represented by 
the different symbols (circles and squares for shapes from respectively Co1b 

and Co2b). Curved versus straight comparisons were first averaged within the 
rows (according to the formula: (|C1 − S1| + |C2 − S2|)/2, thus also their standard 
errors are on five data points. Vertical bars denote standard errors. (A) Shows 
the neural modulation for the small size versions of the shapes and (B) the 
neural modulation for the large versions. (C) Pixel-based dissimilarities for the 
different kinds of shape comparisons.
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tendency of non-endstopped V1-neurons to fire more strongly as 
a line becomes longer, up to a certain length (Schiller et al., 1976). 
However, greatly enlarging the line segments by doubling the size 
of the shapes, as was done in Experiment 2, did not lift the neural 
sensitivities of the larger complex shapes to the level of the smaller 
simple shapes, implying other factors as well.

The detection of the presence versus absence of curvature along 
the contours of the shapes in our stimulus set demands greater 
acuity than the detection of the other shape changes. Therefore, 
our curvature-specific complexity effect, could, irrespective of its 
origins, be related to studies that find enhanced detectability of 
the contours of smooth, simple shapes as well as greater acuity 
along these contours. It is, for instance, easier to detect a contour 
of Gabor patches when it is part of a closed shape (Kovacs and 
Julesz, 1993) but only when the contour does not curve too much 
(Pettet et al., 1998). In general, detection of a closed Gabor contour 
is negatively affected by the magnitude (Field et al., 1993; Hess and 
Dakin, 1997; Hess et al., 1998) and the number (Pettet, 1999) of its 
curves. These effects have also been shown to play a role in more 
complex shapes (Machilsen and Wagemans, 2011), in Gaborized 
outlines of everyday objects (Nygård et al., 2009; Sassi et al., 2010), 
and in fragmented outlines of everyday objects (Panis et al., 2008; 
Panis and Wagemans, 2009). Moreover, similar results have been 
found in discrimination studies where the discrimination of small 
deformations between closed circular contours was enhanced only 
in contours containing up to about five local curvature extrema 
(Wilkinson et al., 1998; Loffler et al., 2003). This corresponds with 
our data, making it feasible that the neural mechanisms underlying 
these effects could also explain our findings regarding the influence 
of complexity on neural curvature discrimination (see Loffler, 2008 
for an extensive review of the neural mechanisms hypothesized to 
underlie contour integration effects).

The linear separability of simple versus complex shapes as well as 
the linear separability for curved versus straight contours in simple 
shapes, can support categorization based on this properties. The 
partitioning of different items that are linearly separated in a low-
dimensional space is computationally straightforward and could 

easily be accomplished by appropriately weighting the connections 
to downstream brain areas (e.g., Vogels, 1999; Ashby and Ell, 2001; 
Vogels et al., 2002; Freedman et al., 2003; Tanaka, 2003). The possi-
bility of completely separating the groups by extracting orthogonal 
dimensions from the data also suggests that IT neurons code for 
different aspects of a shape in a separable manner. For example, 
the MDS analyses of the IT population responses to the different 
groups of stimuli in Experiment 2 indicate that the neurons are 
sensitive to size and complexity as well as the global shape of the 
stimuli. These shape properties seem to be encoded independently, 
in correspondence to the independent encoding of simple shape 
dimensions determined by Kayaert et al. (2005b). Analogously, the 
separation between simple shapes with curved and simple shapes 
with straight contours will appear only if at least most of the neu-
rons show a general preference for either curved or straight shapes, 
although the selectivity might in some stimuli be reduced or even 
absent depending on other shape aspects.

We have shown that IT neurons have the ability to extract certain 
shape properties from FBD-based shapes, and it seems reason-
able that this ability would extend to other, more familiar shapes. 
Categorizing shapes according to, e.g., the presence of curvature in 
their contours can have a number of uses. It has, e.g., been shown 
that the presence of curvature in a shape makes it more likable, 
irrespective of its other properties [like its meaning (or lack of 
meaning)], which could be part of an automatic strategy to avoid 
sharp objects (Bar and Neta, 2006).

There was a linear separation between simple versus medium 
complex, but not between medium and highly complex shapes. 
Thus, complexity as a shape property was explicitly represented 
by these neurons, but with a relatively higher emphasis on the 
transition between simple versus medium complex compared 
to the transition between medium and highly complex. This 
relatively higher emphasis could not be predicted from the way 
we constructed the stimulus groups. We defined complexity 
by the number of convexities and concavities in the shapes, an 
image property that correlates with most if not all definitions 
of complexity (e.g., Attneave, 1954; Leeuwenberg, 1969; Zusne, 

Figure 10 | Average preservation of the selectivity of the IT neurons over changes in size. Stimuli are sorted according to the response strengths for the small 
versions of the stimuli, for each neuron separately, and the average response is shown for either the small versions (circles) or the large versions (squares). (A) For 
the stimuli in subset 1 (the first three rows of Figure 2). (B) For the stimuli in subset 2 (the last two rows of Figure 2).
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threshold of complexity. The reported ability to distinguish straight 
from curved contours, despite their small physical difference, in 
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also agrees with the role of NAPs within this theory.

In summary, we have shown that IT neurons are sensitive to 
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simple and moderately complex shapes is more important than 
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The importance of complexity shows itself in the capability of IT 
neurons to linearly separate simple from complex shapes and in 
the influence of complexity on curvature detection.

Acknowledgments
This work was supported by the Human Frontier Science Program 
Organization (HFSP), the Geneeskundige Stichting Koningin 
Elisabeth (GSKE), Geconcerteerde Onderzoeksactie (GOA), and 
the interuniversitaire attractiepolen (IUAP) to Rufin Vogels, the 
Methusalem program (METH/08/02) to Johan Wagemans, and 
a postdoctoral fellowship from the Fund for Scientific Research 
(FWO Flanders) to Greet Kayaert.

1970; Chipman, 1977; Hatfield and Epstein, 1985; Richards and 
Hoffman, 1985; De Winter and Wagemans, 2004), and we increased 
this number linearly along the complexity groups. It is also at odds 
with the way complexity influences delayed shape matching, since 
research with exactly the same stimuli shows that speed decreases 
linearly along the different complexity groups while accuracy is 
even slightly more affected by the transition from the medium to 
the highly complex groups (Kayaert and Wagemans, 2009). And 
there is a clear deviation in the way complexity is represented in the 
neural space compared to how it is represented by the models. Both 
HMAX (Riesenhuber and Poggio, 1999) and the wavelet-based 
Lades et al. (1993) model show a more gradual representation of 
complexity, dividing all groups.

The relatively higher emphasis on the distinction between simple 
and medium complex shapes compared to medium versus highly 
complex shapes fits within the recognition-by-components theory 
of Biederman, which places an emphasis on the importance of sim-
ple shapes within object recognition (Biederman, 1987). Within this 
theoretical framework, our visual system would be less adapted to 
recognize (or differentiate between) all shapes exceeding a certain 

Kayaert et al.	 Complexity encoding in infero-temporal cortex

Frontiers in Systems Neuroscience	 www.frontiersin.org	 July 2011  | Volume 5  |  Article 51  |  15

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Wagemans, J. (1992). Perceptual use of 
nonaccidental properties. Can. J. 
Psychol. 46, 236–279.

Wagemans, J., Van Gool, L., Lamote, C., 
and Foster, D. H. (2000). Minimal 
information to determine affine shape 
equivalence. J. Exp. Psychol. Hum. 
Percept. Perform. 26, 443–468.

Wilkinson, F., Wilson, H. R., and Habak, 
C. (1998). Detection and recognition 
of radial frequency patterns. Vision 
Res. 38, 3555–3568.

Young, M. P., and Yamane, S. (1992). 
Sparse population coding of faces in 
the inferotemporal cortex. Science 256, 
1327–1331.

Zusne, L. (1970). Visual Perception of 
Form. London: Academic Press.

Conflict of Interest Statement: The 
authors declare that the research was 
conducted in the absence of any com-
mercial or financial relationships that 
could be construed as a potential conflict 
of interest.

Received: 18 January 2011; paper pending 
published: 26 February 2011; accepted: 06 
June 2011; published online: 04 July 2011.
Citation: Kayaert G, Wagemans J and 
Vogels R (2011) Encoding of complexity, 
shape, and curvature by macaque infero-
temporal neurons. Front. Syst. Neurosci. 
5:51. doi: 10.3389/fnsys.2011.00051
Copyright © 2011 Kayaert, Wagemans 
and Vogels. This is an open-access arti-
cle subject to a non-exclusive license 
between the authors and Frontiers Media 
SA, which permits use, distribution and 
reproduction in other forums, provided 
the original authors and source are cred-
ited and other Frontiers conditions are 
complied with.

Shepard, R. N. (1980). Multidimensional 
scaling, tree-fitting, and clustering. 
Science 210, 390–398.

Sigala, N., and Logothetis, N. K. (2002). 
Visual categorization shapes feature 
selectivity in the primate temporal 
cortex. Nature 415, 318–320.

Tanaka, K. (1996). Inferotemporal cortex 
and object vision. Annu. Rev. Neurosci. 
19, 109–139.

Tanaka, K. (2003). Columns for complex 
visual object features in the inferotem-
poral cortex: clustering of cells with 
similar but slightly different stimulus 
selectivities. Cereb. Cortex 13, 90–99.

Van der Helm, P. A., and Leeuwenberg, 
E. L. J. (1996). Goodness of visual 
regularities: a nontransformational 
approach. Psychol. Rev. 3, 429–456.

Vanderplas, J. M., and Garvin, E. A. (1959). 
Complexity, association value, and 
practice as factors in shape recognition 
following paired-associates training. J. 
Exp. Psychol. 57, 155–163.

Vogels, R. (1999). Categorization of com-
plex visual images by rhesus monkeys. 
Part 2: single cell study. Eur. J. Neurosci. 
11, 1239–1255.

Vogels, R., Biederman, I., Bar, M., and 
Lorincz, A. (2001). Inferior temporal 
neurons show greater sensitivity to 
nonaccidental than to metric shape 
differences. J. Cogn. Neurosci. 13, 
444–453.

Vogels, R., Sáry, G., Dupont P., and Orban, 
G. (2002). Human brain regions 
involved in visual categorization. 
Neuroimage 16, 401–414.

Vuilleumier, P., Henson, R. N., Driver, J., 
and Dolan, R. J. (2002). Multiple levels 
of visual object constancy revealed by 
event-related fMRI of repetition prim-
ing. Nat. Neurosci. 5, 491–499.

organization and identification of 
fragmented object outlines. J. Exp. 
Psychol. Hum. Percept. Perform. 35, 
661–687.

Pellegrino, J. W., Doane, S. M., Fischer, S. 
C., and Alderton, D. (1991). Stimulus 
complexity effects in visual com-
parisons: the effects of practice and 
learning context. J. Exp. Psychol. Hum. 
Percept. Perform. 17, 781–791.

Perkins, D. N. (1976). How good a bet 
is good form? Perception 5, 393–406.

Pettet, M. W. (1999). Shape, and contour 
detection. Vision Res. 39, 551–557.

Pettet, M. W., McKee, S. P., and 
Grzywacz, N. M. (1998). Constraints 
on long range interactions mediat-
ing contour detection. Vision Res. 
38, 865–879.

Richards, W., and Hoffman, D. D. (1985). 
Codon constraints on closed 2D 
shapes. Comput. Vision Graph. Image 
Process. 31, 265–281.

Riesenhuber, M., and Poggio, T. (1999). 
Hierarchical models of object rec-
ognition in cortex. Nat. Neurosci. 2, 
1019–1025.

Sassi, M., Vancleef, K., Machilsen, B., 
Panis, S., and Wagemans, J. (2010). 
Identification of everyday objects on 
the basis of Gaborized outline ver-
sions. i-Perception 1, 121–142.

Schiller, P. H., Finlay, B. L., and Volman, 
S. F. (1976). Quantitative studies of 
single-cell properties in monkey stri-
ate cortex. I. Spatiotemporal organiza-
tion of receptive fields. J. Neurophysiol. 
39, 1288–1319.

Schwartz, E. L., Desimone, R., Albright, 
T. D., and Gross, C. G. (1983). Shape 
recognition, and inferior temporal 
neurons. Proc. Natl. Acad. Sci. U.S.A. 
90, 5776–5778.

Logothetis, N. K., Pauls J., Bülthoff, H. H., 
and Poggio, T. (1994). View-dependent 
object recognition by monkeys. Curr. 
Biol. 4, 401–414.

Lowe, D. G. (1987a). The viewpoint con-
sistency constraint. Int. J. Comput. 
Vision 1, 57–72.

Lowe, D. G. (1987b). Three-dimensional 
object recognition from single two-
dimensional images. Artif. Intell. 31, 
355–395.

Machilsen, B., and Wagemans, J. (2011). 
Integration of contour and surface 
information in shape detection. Vision 
Res. 51, 179–186.

Nygård, G. E., Van Looy, T., and Wagemans, 
J. (2009). The influence of orientation 
jitter and motion on contour saliency 
and object identification. Vision Res. 
49, 2475–2484.

Op de Beeck, H., Wagemans, J., and 
Vogels, R. (2001). Inferotemporal neu-
rons represent low-dimensional con-
figurations of parameterized shapes. 
Nat. Neurosci. 4, 1244–1252.

Op de Beeck, H., Wagemans, J., and 
Vogels, R. (2003). The effect of cat-
egory learning on the representation 
of shape: dimensions can be biased but 
not differentiated. J. Exp. Psychol. Gen. 
132, 491–511.

Orbàn, G., Fiser, J., Aslin, R. N., and 
Lengyel, M. (2008). Bayesian learning 
of visual chunks by human observ-
ers. Proc. Natl. Acad. Sci. U.S.A. 105, 
2745–2750.

Panis, S., De Winter, J., Vandekerckhove, 
J., and Wagemans, J. (2008). 
Identification of everyday objects on 
the basis of fragmented versions of 
outlines. Perception 37, 271–289.

Panis, S., and Wagemans, J. (2009). Time-
course contingencies in perceptual 

Kayaert et al.	 Complexity encoding in infero-temporal cortex

Frontiers in Systems Neuroscience	 www.frontiersin.org	 July 2011  | Volume 5  |  Article 51  |  16

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive

	Encoding of complexity, shape, and curvature by macaque infero-temporal neurons
	Introduction
	Materials and Methods
	Single cell registrations
	Subjects
	Apparatus
	Fixation task and recording

	Stimuli
	Experiment 1
	Experiment 2

	Number of image features
	Image-similarity measures
	Pixel-based differences
	Wavelet-based filters
	HMAX C2 layer outputs

	Analyses
	Multidimensional scaling-analyses


	Results
	Categorical representation of simple versus complex shapes
	Comparisons of the neural representation of complexity with different models

	The effect of complexity on the sensitivity for shape changes
	Modulation to shape pairs differing in either presence of curvature or phase of the FBDs
	Sensitivity to presence of curvature as a dimension in shape space
	Sensitivity to the presence of curvature in the medium and highly complex shapes
	Influence of complexity on the shape sensitivity of the different models

	Experiment 2: Replicating the effect of complexity on neural sensitivity for stimuli extending 5 and 10 visual degrees

	Discussion
	Acknowledgments
	References




