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Modulation of striatal NOS activity by dopamine D1 
and D2 receptor activation
Remarkably consistent outcomes have been reported in studies 
examining the impact of DA D1- and D2-like receptor agonists/
antagonists on striatal NOS activity and cGMP production (Altar 
et al., 1990; Morris et al., 1997; Di Stefano et al., 2005; Sammut et al., 
2006, 2007b; Siuciak et al., 2006; Park and West, 2009; Hoque et al., 
2010). Early studies by Altar et al. (1990) were the first to show that 
D1-like receptor activation induced by SKF 38393 increases striatal 
tissue levels of cGMP, whereas antagonism of this receptor with 
SCH 23390 decreases similar measures of cGMP. In the same study 
these authors reported that the D2 receptor antagonists haloperidol 
and sulpiride robustly elevated striatal tissue levels of cGMP. These 
findings have been confirmed and extended in more recent studies 
(Di Stefano et al., 2005; Siuciak et al., 2006). Thus, consistent with 
the above work, D2-like receptor agonism was shown to decrease 
striatal tissue levels of cGMP (Di Stefano et al., 2005). Moreover, 
work by Schmidt and colleagues showed that the facilitatory effects 
of D1-like receptor agonist and D2 receptor antagonist on striatal 
tissue levels of cGMP are abolished in nNOS−/− (i.e., knockout) 
mice (Siuciak et  al., 2006). Together, the above studies confirm 
that both D1- and D2-like receptor activation strongly regulates 

NO signaling in the striatum
Nitric oxide (NO) is a gaseous neuromodulator and is implicated 
in the regulation of numerous physiological and pathophysiologi-
cal processes in both the peripheral and central nervous system 
(Boehning and Snyder, 2003; Bredt, 2003; Garthwaite, 2008). Since 
its discovery in 1987 as the “endothelial derived relaxation factor” 
(EDRF) in peripheral blood vessels (Palmer et al., 1987), three dis-
tinct isoforms of the NO-producing enzyme nitric oxide synthase 
(NOS; brain/neuronal NOS, inducible NOS, endothelial NOS) have 
been described (Alderton et al., 2001; Garthwaite, 2008). Of par-
ticular interest is the neuronal NOS (nNOS), which is ubiquitously 
distributed throughout the brain and relatively abundant in the 
dorsal striatum and nucleus accumbens (Bredt et al., 1990; Vincent, 
1994). Striatal NO is synthesized primarily in nNOS-containing 
interneurons, which are readily revealed using NADPH-diaphorase 
histochemical staining (Figures 1A,B) as well as nNOS immuno-
histochemical labeling (Hope et al., 1991; Kawaguchi, 1993; Gracy 
and Pickel, 1997). The remainder of this review will focus in detail 
on how NO synthesis is regulated by DA D1- and D2-like recep-
tors and their interactions with glutamate inputs/receptors, and 
how nitrergic signaling then affects striatal output in normal and 
parkinsonian animals.
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istration of D1-like receptor antagonist decreases enzyme activity, 
whereas D2-like receptor antagonists have the opposite effect (Morris 
et al., 1997; Hoque et al., 2010). Similar to our above studies using 
NO microsensor recordings, pretreatment with the D2 receptor 
agonist quinpirole abolished the facilitatory effect of SKF 81297 on 
NADPH-diaphorase staining/nNOS activity (Hoque et al., 2010). 
These studies indicate that D1- and D2-like receptor activation has 
opposing effects on striatal nNOS activity (reviewed in West, 2010).

Impact of dopamine–glutamate interactions on 
neuronal NOS activity
Reciprocal functional interactions between D1 and NMDA receptors 
are believed to occur in a variety of neurons in the CNS via direct 
physical interactions and following activation of second messengers 
(Cepeda and Levine, 2006). In the striatum, DA–glutamate inter-
actions involved in the regulation of nNOS activity are likely to be 
complex as these transmitter systems converge both at the level of 
the NOS interneurons (Fujiyama and Masuko, 1996; Hidaka and 
Totterdell, 2001) and the principle medium-sized spiny neurons 
(MSNs; Morello et al., 1997; Sancesario et al., 2000; Hidaka and 
Totterdell, 2001). We have recently begun to study the interaction 
between DA and glutamate as it pertains to striatal NOS activity 
using NO microsensor recordings combined with local reverse 
microdialysis for intrastriatal drug delivery (Park and West, 2009). 
These studies found that local infusion of D1 agonist potentiates 
nNOS activity elicited via electrical stimulation of cortical afferents 
(Park and West, 2009). Interestingly, both the effects of electrical 
stimulation and D1 agonist were blocked by local D1 antagonist 

striatal nNOS activity, albeit in opposing manners (i.e, D1 receptor 
activation is facilitatory, D2 receptor activation is inhibitory), and 
identify a critical role of nNOS–NO signaling in the generation of 
striatal cGMP. 

Consistent with the above studies of striatal cGMP synthesis, our 
laboratory has reported that electrical and chemical stimulation of 
the substantia nigra and systemic administration of the D1 receptor 
agonist SKF 81297 all robustly increase amperometric measures 
of striatal NO efflux via nNOS and D1-like receptor-dependent 
mechanisms (Sammut et al., 2006, 2007a; Park and West, 2009). 
Interestingly, the facilitatory effects of nigrostriatal DA cell activa-
tion and SKF 81297 on striatal NO efflux were both attenuated 
by systemic administration of the D2-like receptor agonist quin-
pirole, whereas administration of the D2-like receptor antagonist 
eticlopride augmented evoked NO efflux (Sammut et al., 2007a).

Other work has examined the impact of D1 and D2 receptor 
interactions using histochemical measures of striatal NOS activity 
(NADPH-d staining). Reports from leading laboratories have dem-
onstrated that the catalytic activity of the nNOS enzyme is respon-
sible for producing NADPH-d staining (Dawson et al., 1991; Hope 
et al., 1991) and that measurements of staining in striatal interneu-
rons accurately reflect enzyme activity (Morris et al., 1997; Sancesario 
et al., 2004). Moreover, quantification of NADPH-d staining using 
optical density is a valuable index of striatal nNOS activity which 
can be observed in identified interneurons across striatal subregions 
(Kuo et al., 1994; Morris et al., 1997; Sanceserio et al., 2004; Hoque 
et al., 2010). Studies using NADPH-diaphorase staining as an indi-
rect measure of striatal nNOS activity have also shown that admin-
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Figure 1 | (A,B) Coronal section of the forebrain revealing the presence of 
NADPH-diaphorase staining and NOS-positive interneurons in cortex and striatum. 
(C) Diagram illustrating the major connections of the basal ganglia. The cerebral 
cortex provides the major inputs to the striatum. Both direct (D1/substance P -SP-) 
and indirect (D2/enkephalin -ENK-) striatal output neurons receive modulatory input 
arising from local NOS interneurons. Direct projecting neurons provide axon 

collaterals to the output nuclei of the basal ganglia: internal segment of the globus 
pallidus (GPi) and to the substantia nigra pars reticulata (SNr). Indirect striatal output 
neurons are indirectly connected to the GPi and SNr through connections that 
involve the external segment of the globus pallidus (GPe) and the subthalamic 
nucleus (STN). Feedback pathways to the cortex arise from GABAergic output 
neurons in the GPi and the SNr via the thalamo-cortical circuit.

West and Tseng	 Striatal nitric oxide signaling

Frontiers in Systems Neuroscience	 www.frontiersin.org	 June 2011  | Volume 5  |  Article 55  |  2

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


and Levine, 1998). Moreover, these novel observations indicate 
that reciprocal D1–NMDA and D2–NMDA receptor interactions 
play critical and opposing roles in regulating striatal NOS activ-
ity. Future studies will need to determine which specific modes of 
DA transmission favor D1–NMDA facilitation and which lead to 
D2–NMDA suppression of NOS activity. However, based on the 
above discussion of the effects of D1 and D2 antagonism on nNOS 
activity, we predict that tonic levels of DA act to suppress NMDA 
receptor-mediated nNOS stimulation by activation of D2-like 
receptors. During robust phasic activation of DA transmission 
occurring during burst firing (mimicked by stimulation of the 
substantia nigra and D1 receptor agonist treatment), D1–NMDA 
receptor interactions would facilitate nNOS activity and NO trans-
mission. In the DA-depleted parkinsonian striatum or following D1 
receptor blockade, we predict that loss of D1 tone would prohibit 
activation of nNOS and suppress NO signaling (Park and West, 
2009). As discussed below in our summary of work performed 
in animal models of Parkinson’s disease (PD), currently there is 
evidence in support of and against this model.

Role of NOS interneurons in the regulation of 
corticostriatal transmission
Corticostriatal afferents target two functionally distinct groups of 
MSNs that form the “direct” (striatonigral MSNs) and the “indi-
rect” (striatopallidal MSNs) pathways (Albin et al., 1989; Alexander 
and Crutcher, 1990; Parent, 1990; DeLong and Wichmann, 2007; 
Figure 1C). Corticostriatal projections also provide excitatory input 
to striatal interneurons (Kawaguchi, 1993) which are involved in 
the feed-forward regulation of MSNs by GABA (Tepper et  al., 
2004; Mallet et  al., 2005) and NO (Sammut et  al., 2007a, 2010; 
Ondracek et  al., 2008). While GABA binds to receptors on the 
surface of the plasma membrane, newly synthesized NO diffuses 
past the plasma membrane into the dendrites of striatal MSNs, 
which contain high levels of NO receptors called soluble guanylyl 
cyclases (sGC; Figure 3; Ariano, 1983; Ding et al., 2004). In fact, 
sGC expression and activity are reportedly higher in the striatum 
than in any other brain region (Hofmann et al., 1977; Matsuoka 
et al., 1992). Once generated, NO has been reported to induce or 
modulate various forms of short and long-term corticostriatal syn-
aptic plasticity (Calabresi et al., 1999, 2000; Doreulee et al., 2003; 
West and Grace, 2004; Ondracek et al., 2008; Sammut et al., 2010), 
and alter synchrony within neuronal networks (O’Donnell and 
Grace, 1997; Sammut et al., 2007a; Chepkova et al., 2009). Most 
of these studies indicate that this NO signal is derived from nNOS 
localized to striatal interneurons. However, evidence that LTP of 
corticostriatal transmission is blocked in slices following admin-
istration of a non-selective NOS inhibitor and in mutant mice 
lacking the endothelial NOS gene (Doreulee et al., 2003) indicates 
that NO derived from the vasculature is also capable of modulating 
corticostriatal transmission.

Our studies have shown that in both chloral hydrate and 
urethane anesthetized rats, tonic, and phasic NO–sGC–cGMP 
signaling acts to promote short-term excitatory influences on cor-
ticostriatal synaptic activity recorded in identified MSNs (Figure 3; 
West and Grace, 2004; Ondracek et al., 2008; Sammut et al., 2010). 
Our initial studies examined the impact of tonic NO signaling on 
short-term plasticity induced across corticostriatal synapses during 

infusion, suggesting that D1 receptor co-activation is required for 
NOS stimulation by cortical inputs (Park and West, 2009). Further 
studies revealed that the increase in striatal NO efflux elicited by 
systemic administration of D1 agonist is blocked by intrastriatal 
infusion of the selective nNOS inhibitor 7-nitroindazole, the DA D1 
receptor antagonist SCH 23390, and NMDA receptor antagonists 
(CPP and kynurenic acid), indicating that D1 receptor-mediated NO 
efflux is dependent on concurrent D1 and NMDA receptor activa-
tion (see Figure 2). Our studies using NADPH-diaphorase staining 
as a complementary measure of striatal nNOS activity have also 
shown that systemic administration of the NMDA receptor antago-
nist CPP attenuated staining in the dorsal striatum (Hoque et al., 
2010). As expected NOS activity stimulated by systemic administra-
tion of D1 receptor agonist or D2 receptor antagonist was attenu-
ated by D1 antagonism and D2 agonism, respectively. Moreover, 
pretreatment with an NMDA receptor antagonist blocked the facili-
tatory effects of D1 receptor agonist and D2 receptor antagonist on 
NOS activity. Importantly, in all studies statistical interactions were 
observed between drug pretreatments and D1 agonist/D2 antagonist 
treatments, indicating that the drug pretreatments were acting to 
block the effect of the DA modulation, and not by simply lowering 
overall basal levels of NOS activity in a manner independent of a 
DA receptor-mediated mechanism (Hoque et al., 2010).

Taken together, these findings are consistent with the multi-
tude of studies reporting that D1 receptor activation potentiates 
NMDA-induced responses in cortical and striatal neurons (Cepeda 
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conversion of l-arginine into l-citrulline and NO production. Dopamine release 
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Given that D1/5 receptor tone is also necessary for NMDA receptor activation 
of NOS, it is likely that reciprocal DA and glutamate interactions are crucial for 
the activation of striatal nNOS and NO transmission.
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These studies demonstrated that systemic administration of a 
non-specific NOS and sGC inhibitor (methylene blue) simultane-
ously decreased: (1) NO efflux evoked via cortical stimulation, and 
(2) the peak oscillation frequency (observed within the delta band) 
of local striatal field potential oscillations. These observations are 
consistent with studies using local application of NO–sGC inhibi-
tors which were found to decrease the amplitude of spontaneous 
glutamate-driven up states (West and Grace, 2004). Additionally, 
stimulation of corticostriatal pathways facilitates electrotonic 
coupling between MSNs in rat striatal slices in a manner which 
is blocked by NOS inhibitors and mimicked by bath application 
of an NO generator (O’Donnell and Grace, 1997). NO signal-
ing may therefore induce a functional coupling between MSNs 
and act to synchronize the oscillatory activity of related neuronal 
ensembles. When examined in vivo, disruption of nNOS activity 
increases the magnitude of D2 receptor-mediated STD of cortically 
evoked spike activity induced during phasic stimulation of frontal 
cortical afferents (Ondracek et al., 2008). Thus, in the intact stria-
tum, corticostriatal transmission may be preferentially detected 
and amplified by nNOS interneurons in a feed-forward manner 
which may facilitate the synchronization of local network activity 
with glutamate-driven events. Interruption of NO neuromodula-
tion, therefore, is likely to disrupt the integration of corticostri-
atal transmission, short-term plasticity, and functional coupling 
of MSNs in striatal networks (West and Grace, 2004; Sammut 
et  al., 2007b; Ondracek et  al., 2008). Consistent with this, it is 

paired-pulse stimulation of the frontal cortex (West and Grace, 
2004). In these studies, MSNs were monitored using in vivo intra-
cellular recordings during intrastriatal infusion of either vehicle 
or the NO scavenger CPT-IO. Interestingly, MSNs recorded in the 
presence of the NO scavenger were less responsive to the paired-
pulse stimulation protocol and exhibited lower levels of synaptic 
facilitation during stimulation of corticostriatal pathways (West 
and Grace, 2004). More recently, we have examined the impact of 
high frequency train stimulation of the frontal cortex on evoked 
spike activity in striatal MSNs (Ondracek et  al., 2008; Sammut 
et  al., 2010). Importantly, the stimulation protocol used in our 
studies (train duration = 1 s, pulse frequency = 30 Hz, inter-train 
interval = 2 s) was designed to approximate the natural burst firing 
(spikes per burst, intra-burst frequency, and bursts per second) 
and up and down state activity of corticostriatal pyramidal neu-
rons recorded in anesthetized rats (Cowan & Wilson, 1994). As we 
have discussed above, we have found that this protocol consistently 
produces an intensity-dependent and transient increase in stri-
atal NO efflux (Sammut et al., 2007a; Ondracek et al., 2008; Park 
and West, 2009). Inhibition of this evoked NO efflux was shown 
to eliminate excitatory responses to stimulation and increase the 
short-term depression (STD) of cortically evoked spike activity 
(Ondracek et al., 2008).

Our laboratory has also examined the impact of phasic NO 
signaling on the spontaneous generation of local field poten-
tials recorded in the intact rat striatum (Sammut et al., 2007a). 
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facilitation of corticostriatal transmission. Tonic NO signaling increases 
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dependent mechanism. Similarly, phasic NO–sGC–cGMP signaling also 
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MSNs to this input. Transient increases in intracellular cGMP levels can 

affect MSN activity via activation of PKG and downstream targets (e.g., 
cyclic nucleotide gated channels; CNGC). Numerous phosphodiesterases 
(PDEs), which metabolize cyclic nucleotides, limit the effects of cGMP on 
MSN function. In striatopallidal output neurons (ENK-positive MSN), the 
facilitatory action of cGMP may be directly opposed via D2 receptor 
activation.
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Striatal pathophysiology in Parkinson’s disease: 
Involvement of NO–sGC–cGMP signaling pathways
Parkinson’s disease is associated with a preferential degeneration 
of the nigrostriatal DA pathway (Hornykiewicz, 1975). The loss of 
DA modulation triggers a complex series of neurochemical, ana-
tomical, and electrophysiological alterations that lead to persis-
tent changes in striatal neurons and their signaling pathways. For 
instance, striatonigral MSNs develop D1 receptor supersensitiv-
ity and reduced expression of D1 receptors (Gerfen et al., 1990). 
Elevations in D2 receptor protein and mRNA are also observed 
together with increases in enkephalin expression in striatopallidal 
MSNs (Gerfen et al., 1990). A substantial population of corticostri-
atal terminals also expresses D2 receptors (Wang and Pickel, 2002) 
which become hypersensitive in the absence of DA innervation 
(Calabresi et al., 1993; Bamford et al., 2004; Picconi et al., 2004). 
The loss of DA tone on these D2 heteroreceptors is likely to result 
in enhanced glutamatergic transmission and altered NMDA recep-
tor function (Meshul et al., 1999; Nash et al., 1999; Betarbet et al., 
2004). Alterations in dendritic spine morphology and complexity 
have also been described in both DA-depleted rats and patients with 
PD (Ingham et al., 1989; Stephens et al., 2005) which may occur 
preferentially in striatopallidal MSNs (Day et al., 2006).

Most pathophysiological models and metabolic studies of PD 
predict that the net effect of these alterations is an imbalance in 
striatal output in which the indirect pathway becomes functionally 
hyperactive and the direct pathway is hypoactive (Marsden, 1982; 
Albin et al., 1989; Alexander et al., 1990; Hirsch et al., 2000; see 
Figure 1C). Recent studies using optogenetic control of striatoni-
gral and striatopallidal MSNs have provided substantial evidence 
supporting the validity of this pioneering basal ganglia model 
(Kravitz et  al., 2010). These studies by Kravitz and colleagues 
showed that bilateral activation of striatopallidal MSNs elicits a 
parkinsonian state characterized by freezing, bradykinesia, and 
decreased locomotion. Stimulation of striatonigral MSNs reduced 
freezing and facilitated locomotion. Additionally, stimulation of 
striatonigral MSNs reversed motor deficits observed in parkinso-
nian mice (Kravitz et al., 2010).

The above model has also served as the framework for recent 
studies aimed at understanding how changes in striatal DA trans-
mission impact the temporal dynamics and plasticity of cortico-
basal ganglia transmission. For instance, recent studies have 
suggested that striatopallidal neurons in DA-depleted animals 
become more responsive to corticostriatal inputs and as a result, 
exhibit bursts of spike activity which correlates with cortical oscil-
lations (Tseng et al., 2001; Mallet et al., 2006; Walters et al., 2007). 
Thus, loss of D2 receptor-mediated inhibition of striatopallidal 
neurons and their corticostriatal inputs results in the unfiltered 
spreading of cortical rhythms to the GP and other components of 
the basal ganglia and some of the modifications in neuron activ-
ity that may underlie the pathophysiology of PD (Murer et  al., 
2002). In addition to increased spike activity (Mallet et al., 2006), 
striatopallidal neurons recorded in DA-depleted mice also exhibit 
a selective loss of endocannabinoid-dependent LTD (Kreitzer and 
Malenka, 2007). Further studies by Surmeier et  al. (2009) have 
shown that following DA depletion, the pairing of presynaptic and 
postsynaptic activity, in any order, induced LTD in D1 receptor-
expressing MSNs and LTP in D2 receptor-expressing MSNs in an 

clear that pharmacological or genetic downregulation of striatal 
NOS activity has profound effects on striatal output as measured 
in electrophysiological (West and Grace, 2000; West et al., 2002) 
and behavioral studies (Del Bel et al., 2005).

Interestingly, studies performed in brain slice preparations from 
both rats and mice have frequently reported inhibitory effects (i.e., 
LTD) of NO–sGC–cGMP signaling on excitatory corticostriatal 
transmission (reviewed in Calabresi et al., 2007). A parsimonious 
explanation for this apparent flip flop of the impact of NO on cor-
ticostriatal plasticity observed between in vivo and in vitro prepara-
tions is that corticostriatal pathway stimulation can be processed 
differently in the intact versus reduced striatum, and that in both 
preparations, NO may promote this differential processing. Indeed, 
similar mechanisms are implicated in studies using in vivo and in vitro 
preparations (e.g., sGC and PDEs play a key role in NO-mediated 
effects in all of these studies). Furthermore, the former tenet is sup-
ported by studies showing that stimulation protocols known to pro-
duce LTD of corticostriatal neurotransmission in vitro, produce LTP 
in vivo (Charpier and Deniau, 1997). A similar switch from LTD to 
LTP is observed in vitro following removal of magnesium from the 
bath perfusate (Calabresi et al., 1992). Thus, it is likely that with most 
common protocols cortical stimulation delivered in vivo results in 
greater activation of glutamatergic drive onto postsynaptic AMPA 
receptors and more effective removal of the voltage-dependent mag-
nesium block of NMDA receptors, leading to a state that generally 
favors LTP. In contrast, similar stimulation of corticostriatal signal-
ing in vitro favors LTD in the absence of the removal of magnesium 
block of NMDA receptors. In support of this, most studies show 
that LTD-induction in the mature striatum is not NMDA recep-
tor dependent, whereas LTP requires activation of these channels 
(Reviewed in Surmeier et al., 2009). Like LTP, stimulation of striatal 
NOS activity also requires NMDA receptor activation in both in vivo 
and in vitro preparations (Nishi et al., 2005; Sammut et al., 2007a; 
Park and West, 2009). Given this, it is more readily understandable 
how corticostriatal pathway activation could lead to NO-dependent 
facilitation of synaptic efficacy (i.e., an LTP-like phenomenon). 
However, studies by Calabresi et al. (2007) have produced compel-
ling evidence that facilitation of signaling at any number of key sites 
in the NO–sGC–cGMP–PKG cascade mediates LTD and occludes 
further LTD induced via corticostriatal stimulation. Because these 
studies stimulated cortical areas close to the recording electrode or 
white matter between cortex and striatum (Calabresi et al., 1999), 
it is possible that NMDA receptor stimulation was not required for 
NOS activation in this preparation as these interneurons may have 
been activated by direct current spread within striatum. In any event, 
the information available at this time suggests that, in addition to 
promoting short-term increases in excitatory synaptic transmission, 
NO signaling may act to facilitate and stabilize the dominant state of 
long-term synaptic plasticity occurring across corticostriatal synapses 
(i.e., primarily potentiation when postsynaptic NMDA receptors are 
activated, or depression in the absence of this activation). Because 
NO is a potent vasodilator, it may also function to couple changes 
in synaptic plasticity and blood flow in striatal microcircuits. Future 
studies using new genetic and optical approaches will have to deter-
mine the role of NO in LTP and LTD of synaptic transmission (i.e., 
bidirectional plasticity) at both excitatory and inhibitory synapses 
onto identified striatonigral and striatopallidal MSNs.

West and Tseng	 Striatal nitric oxide signaling

Frontiers in Systems Neuroscience	 www.frontiersin.org	 June 2011  | Volume 5  |  Article 55  |  5

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


and post-mortem tissue from patients with PD (Bockelmann 
et  al., 1994; Eve et  al., 1998). However, studies examining how 
parallel measures of nNOS, sGC, cGMP, PKG, and various PDEs 
change across time following DA depletion are needed to clarify 
the complex pathophysiological and homeostatic changes in this 
signaling pathway in PD.

Given the above findings, it is likely that striatal DA denervation 
results in transient and dynamic alterations in the synthesis (NOS 
and sGC dependent) and degradation (PDE dependent) of striatal 
cyclic nucleotides. These complex changes are likely to be compli-
cated further by l-DOPA treatment. Indeed, in patients with PD, 
serum levels of cGMP are reportedly increased following l-DOPA 
therapy (Chalimoniuk and Stepien, 2004). However, studies in 
DA-depleted rats have shown that l-DOPA-induced dyskinesias 
are associated with decreased striatal cyclic nucleotide levels (Giorgi 
et al., 2008; Picconi et al., 2011). Moreover, the non-selective PDE 
inhibitor zaprinast was shown to reverse decreases in striatal cyclic 
nucleotide levels and abnormal involuntary movements induced 
by l-DOPA administration (Giorgi et  al., 2008; Picconi et  al., 
2011). Calabresi and colleagues also showed that PDE inhibition 
can rescue abnormal synaptic plasticity observed in dyskinetic rats 
(Picconi et al., 2011). On the other hand, studies aimed at decreas-
ing NO signaling (and presumably cGMP levels) have shown that 
co-administration of NOS inhibitors with l-DOPA attenuates 
l-DOPA-induced dyskinesias (Padovan-Neto et  al., 2009). NOS 
inhibition also improved the motor performance of the same ani-
mals on a rotorod test (Padovan-Neto et al., 2009). Taken together, 
the above studies suggest that under some circumstances, drugs 
with opposite pharmacological profiles (PDE inhibitors increase 
cGMP, nNOS inhibitors decrease cGMP) may both be beneficial for 
reversing l-DOPA-induced dyskinesias. Further studies determin-
ing the time course of l-DOPA-induced changes in cyclic nucleotide 
levels in the absence and presence of these inhibitors should open 
new avenues which will be essential for understanding and treating 
PD and side effects associated with l-DOPA therapy.

Conclusion
Studies reported to date indicate that it will be important to clarify 
how NO–sGC–cGMP signaling is dysregulated in hypo- and hyper-
dopaminergic states and how this can be normalized to restore 
function within striatal output pathways. Taken together, the above 
studies indicate that cGMP synthesis and catabolism, as well as the 
temporal and spatial patterning of NO–sGC–cGMP signaling may 
be perturbed in MSNs in the parkinsonian striatum. Moreover, 
these signaling abnormalities are likely to be a reflection of func-
tional disturbances in DA and glutamate interactions and iatrogenic 
effects of chronic l-DOPA treatment. Definitive characterization of 
the impact of NO–sGC–cGMP signaling and downstream targets 
in animal models of parkinsonism and l-DOPA-induced dyskinesia 
should provide key information on how cyclic nucleotide signal-
ing cascades can be modulated as an approach for treating motor 
symptoms in PD and other neurological disorders.
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Chalimoniuk et  al., 2004; Sancesario et  al., 2004; Chalimoniuk 
and Langfort, 2007; Giorgi et al., 2008). Interestingly, PDE mRNA, 
protein, and activity are elevated in DA-depleted rats (Sancesario 
et al., 2004; Giorgi et al., 2008), indicating that cyclic nucleotide 
metabolism is elevated in PD. While speculative, this may be a 
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Sahach et al., 2000; Barthwal et al., 2001; Sancesario et al., 2004) 
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