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Over the last two decades numerous functional imaging studies have shown that
higher order cognitive functions are crucially dependent on the formation of distributed,
large-scale neuronal assemblies (neurocognitive networks), often for very short durations.
This has fueled the development of a vast number of functional connectivity measures
that attempt to capture the spatiotemporal evolution of neurocognitive networks.
Unfortunately, interpreting the neural basis of goal directed behavior using connectivity
measures on neuroimaging data are highly dependent on the assumptions underlying the
development of the measure, the nature of the task, and the modality of the neuroimaging
technique that was used. This paper has two main purposes. The first is to provide an
overview of some of the different measures of functional/effective connectivity that deal
with high temporal resolution neuroimaging data. We will include some results that come
from a recent approach that we have developed to identify the formation and extinction
of task-specific, large-scale neuronal assemblies from electrophysiological recordings at
a ms-by-ms temporal resolution. The second purpose of this paper is to indicate how to
partially validate the interpretations drawn from this (or any other) connectivity technique
by using simulated data from large-scale, neurobiologically realistic models. Specifically,
we applied our recently developed method to realistic simulations of MEG data during a
delayed match-to-sample (DMS) task condition and a passive viewing of stimuli condition
using a large-scale neural model of the ventral visual processing pathway. Simulated MEG
data using simple head models were generated from sources placed in V1, V4, IT, and
prefrontal cortex (PFC) for the passive viewing condition. The results show how closely the
conclusions obtained from the functional connectivity method match with what actually
occurred at the neuronal network level.
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INTRODUCTION
We try to relate present realizations with prior experiences in
numerous daily life activities. For example, imagine a situation
where you encounter a person during a train ride who appears
to be vaguely familiar. Almost instinctively, you try to remem-
ber this person from the near or distant past. Within a short
time, maybe in a few seconds, you come to a decision by match-
ing the current face against a huge sample of faces you have
known as to whether this is somebody you were familiar with
from the past. Outcomes of such a matching endeavor may fur-
ther decide whether you are going to start an informal social
interaction with the person. Such seemingly simple tasks engage
a complicated set of information processing stages in the brain.
Starting with sensory processing of the facial and bodily fea-
tures of the person, the human brain performs face and object
recognition, recollection of short and long-term memories, and
finally decision-making. All this may occur with varying levels
of attention in each occurrence of the event across individu-
als. Brain dynamics underlying these processing stages operate

at a millisecond scale to ensure that the final outcome (decision
to interact) occurs as soon as possible, most likely within sec-
onds. Existing research in sensory visual processing (Prechtl et al.,
1997; Horwitz and Braun, 2004), face and object recognition
(Haxby et al., 1991, 1995; DiCarlo and Cox, 2007), long-term
memory retrieval (Frankland and Bontempi, 2005; Smith et al.,
2010a) and decision-making (Siegel et al., 2011) suggests that
large-scale brain networks are involved in each stage of neu-
ral information processing (Atkinson and Shiffrin, 1968). Hence,
understanding goal directed behavior in humans will require
characterization of network mechanisms at varying spatiotem-
poral scales from neuroimaging data recorded at high temporal
resolution.

The idea of studying networks as substrates of higher order
cognition has gained relatively recent popularity. Human brain
mapping have traditionally relied on functional segregation stud-
ies (Felleman and van Essen, 1991) based on the fact that cortical
areas get preferentially connected in terms of their functional rel-
evance. Functional integration (Luria, 1980), the mechanism that
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refers to integration of information processed in distributed brain
structures, can be studied with modern neuroimaging techniques.
Based on these two mechanisms that govern cognitive func-
tion, it can be hypothesized that neurocognitive networks form
coordinated configurations which vary in size and temporal char-
acteristics (Kelso, 1995; Bressler and Kelso, 2001; McIntosh, 2004;
Horwitz, 2005). Identifying the task-specific variations in size and
temporal characteristics of large-scale neurocognitive networks
is highly non-trivial. Overlapping of the network components,
also known as neural degeneracy (Tononi et al., 1999), presents a
significant challenge for neuroelectromagnetic data analysis and
interpretation as well as quantification of spatiotemporal net-
work boundaries. In order to unravel the temporal structure of
a functionally relevant brain network, two vital questions need
to be addressed simultaneously: (1) How can low dimensional
functional brain networks be defined from high dimensional
electromagnetic recordings? (2) How can the time scales of mod-
ulatory and compensatory network processing mechanisms be
interpreted from neurodynamics? Answering these questions on
a subject-by-subject basis will help us understand the neural basis
of several higher order cognitive tasks.

The purpose of this article is two-fold. First, in the Overview
section we review a set of existing methods that aids in infer-
ring the existence of large-scale networks from imaging data at
high temporal resolution. We also present some existing model-
ing approaches to simulate the dynamics of large-scale networks
and indicate their importance for testing novel connectivity anal-
ysis methods. Second, we review one novel method in detail that
detects the time scales of formation and extinction of large-scale
neurocognitive networks from EEG/MEG data. We applied this
method to simulated MEG data from a biophysically realistic
large-scale neural model of a delayed match-to-sample (DMS)
task to partially validate the time scales of network level pro-
cessing. Only with simulated data does one have the knowledge
of ground truth, and hence data from large-scale neural mod-
els encompassing neural assemblies in both hemispheres provide
an ideal platform to test the efficacy and validity of novel meth-
ods that are being developed to interpret the presence of network
mechanisms.

OVERVIEW OF METHODS TO ASSESS LARGE-SCALE
NETWORK MECHANISMS
Identifying network substrates of higher order cognition poses a
number of significant challenges. The number of nodes in a func-
tional network and their connections can undergo reorganization
within a few milliseconds. At certain instants of time, new areas
may get recruited while subsisting areas disengage. Added to this
is the fact that the total number of possible functional configura-
tions that might exist within a large-scale network is itself a large
number. These configurations may result from the different tem-
poral relationships each node has on the others and are defined
as functional connectivity during a specific task (Friston et al.,
1993b). Alternatively, a large-scale network may need to recruit
additional brain areas for task-specific information processing
(Meredith and Stein, 1983; Damasio, 1989; Calvert and Thesen,
2004). Understanding this orchestra of recruitment-modulation
mechanisms can be formulated as data-driven frameworks for

elucidating neuronal processes (Banerjee et al., 2008; Smith et al.,
2010b). There are several ways to explore the spatiotemporal
features of network evolution which gives us a deeper understand-
ing of the circuit mechanisms underlying ongoing behavior and
emerging brain states. In this section we classify some of the pop-
ular concepts which are applied to neuroimaging data at high
temporal resolution. The first two sections are based on indirect
measurements of network function and the last two are devoted
to direct measures of extracting networks.

REDUCTION OF HIGH DIMENSIONAL DATA TO A LOW
DIMENSIONAL SUBSPACE
Motivated by empirical observation, it can be argued that
dynamics of brain network activations following an exter-
nally presented stimulus becomes low dimensional. This sim-
ply means that a significant proportion of data can be
captured by the dynamics of a few patterns using spa-
tiotemporal mode decomposition techniques, such as princi-
pal component analysis (Friston et al., 1993a; McIntosh et al.,
1996; Kelso et al., 1998), independent component analysis (ICA)
(Bell and Sejnowski, 1995; Makeig et al., 1997; Onton et al., 2006;
Kovacevic and McIntosh, 2007) etc. Hence, the goal of any
dimensional reduction analyses is to explain the maximum pos-
sible variance in the data with the minimum number of modes
(spatial patterns) and corresponding temporal projections. The
spatial patterns can be interpreted as signatures of large-scale
networks that constitute the substrate on which information pro-
cessing occurs. Extracting such spatial patterns by combining
temporal evolution of the corresponding behavioral task and
brain recordings in a covariance matrix, allows one to study
the relationship between behavior and brain signals at the net-
work level (McIntosh et al., 1996). One common method for
extracting such spatial patterns is principle components analy-
sis (PCA). PCA (also known as singular value decomposition
and Karhunen-Loève transform) involves a high dimensional
rotation of the covariance matrix to rank the orthogonal dimen-
sions (components) in the data in order of decreasing variance
explained by each dimension. Hence, data distributions struc-
tured as a high dimensional ellipsoid rather than a sphere is
suitable for PCA analysis. Ranking dimensions in order of vari-
ance becomes ambiguous for a spherically symmetric distribution
(Jollife, 2002). Higher order statistics, e.g., kurtosis and skew-
ness is ignored by PCA and thus any sharp or abrupt changes in
variability wouldn’t be extracted as an independent feature.

The orthogonality of principle components (PCs) is both an
advantage and disadvantage of PCA. Orthogonal PCs provide an
intuitive backdrop of data visualization. Choosing the number
of PCs to use for dimensional reduction can follow quantitative
approaches (Mitra and Pesaran, 1999) rather than handpicking
them based on a priori hypothesis of brain areas involved. On the
other hand, there is no biophysical motivation as to why patterns
of activity spanned by orthogonal PCs have to be functionally rel-
evant. This is the single biggest disadvantage of the PCA method.
However, it is important to note that attributing functional sig-
nificance to individual principal components is where the main
disadvantage of PCA is apparent. Thus, PCA is more suited to
identify the most general features in the signal, characterize the
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overall subspace of neural activity and disambiguate it from the
noise space.

The success of relatively simpler approaches like PCA has
led to the development of more complicated dimension reduc-
tion techniques based on explaining higher order statistics in
the data (variance is only second-order). Commonly known as
ICA (Bell and Sejnowski, 1995) these techniques come in var-
ious flavors (Makeig et al., 1997; Onton et al., 2006). Typically
ICA is based on the assumption that the true underlying gener-
ators of the data are statistically independent (but not necessarily
orthogonal). Hence, ICA maps do not have any preference or
temporal order in which they appear in the neural time series.
However, a “second-order blind identification” (SOBI) approach
(Molgedey and Schuster, 1994) considers relationships between
multiple time points using an autoregressive model in which
sources are assumed to have both differing spatial distributions
and stable power spectra. ICA algorithms can be used as a quan-
titative technique to reject physiological artifacts in the neural
data (Delorme et al., 2007), classify electromagnetic brain activ-
ity from different population groups (Kovacevic and McIntosh,
2007) and characterize task-specific network activations from
whole brain recordings (Makeig et al., 1999). The temporal struc-
ture of task-related network dynamics can also be studied using
ICA (Hong et al., 2005; Grau et al., 2007). However, the challenge
here lies in quantifying the right set of independent components
(ICs) that capture the global properties of the network over a cer-
tain period of time. The major disadvantage of ICA is that a subset
of relevant ICs for explaining a particular function is often chosen
based on a priori hypothesis on the role of certain brain structures
onto the task rather than a quantitative scheme.

There are other options for dimensional reduction meth-
ods that address some of the disadvantages listed here, but
not yet applied consistently to EEG/MEG data analysis. Notable
among these are factor analysis (Everitt, 1984), probabilis-
tic PCA (Tipping and Bishop, 1999), locally linear embedding
(Roweis and Saul, 2000). In summary, there exist several dimen-
sional reduction techniques for developing ways to compare
spatiotemporal network mechanisms underlying two tasks and
identification of the onsets and offsets of task-specific informa-
tion processing. Combining this with behavioral measures of task
performance can give us a comprehensive understanding of the
network mechanisms involved during higher order cognition.

SPECTRAL REPRESENTATIONS OF RAW EEG/MEG DATA
Spectral decomposition of neurophysiological time series has
now become an essential pre-requisite for analysis of multi-
variate EEG/MEG signals. In 1924, Hans Berger observed that
the most dominant contribution in EEG signals came from
8 to 12 Hz oscillations during wakeful relaxation with closed
eyes (Niedermeyer, 1997). He named these “alpha” rhythms
and correspondingly the smaller amplitude faster waves (16–25
Hz) during awake state with eyes open were denoted as “beta.”
Originating in the occipital areas, alpha rhythms have been pro-
posed to reflect the electrical activity of large-scale networks
incorporating neocortical visual areas and thalamus that have
strong bi-directional excitatory connections (Llinas and Pare,
1991). “Beta” rhythms have been related to synchronized firing

activity of long distant brain networks (such as those comprising
frontal and parietal areas) during a perceptual or cognitive task
(Brovelli et al., 2004). Finally, the “gamma” oscillations (>30 Hz)
initially related to processing of complex visual stimuli in pyrami-
dal cell layers of the visual cortex (Gray et al., 1989) are now con-
sidered as a crucial ingredient for consciousness (Crick and Koch,
2003), perceptual binding (Rodriguez et al., 1999) and other
higher order cognitive functions (Buzsáki, 2006).

However, for EEG/MEG time series recorded over a con-
siderable period of time with high temporal resolution, power
spectra may not show clear peaks and indeed such spectra fol-
low a 1/freq distribution (pink noise). This scale free nature of
brain dynamics has been termed self-organized criticality (Kelso,
1995; Linkenkaer-Hansen et al., 2001; Stam and de Bruin, 2004).
Theoretically, the scale free nature of EEG power spectra can
be viewed as counterintuitive to the notion of orderliness in
EEG signals explained by dominance of one or two frequency
bands, but taken together these two notions offer an attrac-
tive explanation for empirically observed brain dynamics, such
as spontaneous transitions of global modes of oscillation in the
absence of external input (for more detailed discussions see Kelso,
1995; Buzsáki, 2006). In this theoretical framework the ordered
brain dynamics constitutes a transiently stable behavior resulting
from the presence of a sensory input or task-processing on top
of the perpetually critical state on which the brain sits. The spa-
tial localization of the power spectra reveals interesting features
of such transient stability. For example, the “mu” rhythm (9–
11 Hz), which seems to originate from network activity involving
thalamus and motor cortex, disappears when there is move-
ment or movement intention (Steriade and Llinas, 1988). “Phi”
rhythm, localized over parietal regions and comprising two sub-
components; Phi1(10–12 Hz) and Phi2(12 Hz) are enhanced dur-
ing social interaction. Phi1 during independent and Phi2 during
coordinated behavior respectively (Tognoli et al., 2007). We will
return to the scale-free nature of brain dynamics and try to relate
it with underlying anatomical connections in a latter section.
However, the key concept here is that identifying the large-scale
network underlying task-related processing may lie in character-
izing the spatial and temporal structure of transiently stable brain
oscillations.

To understand the temporal dynamics of spectral power, time-
frequency spectrograms can be computed. Primarily, this involves
windowing the raw time series in small time windows over
which the power spectrum is computed. To obtain a contin-
uously varying spectrogram (power spectrum across frequency
and time) wavelet (Grossman and Morlet, 1984; Antonini et al.,
1992), and multitaper (Thompson, 1982) analyses techniques
have been employed. One striking result obtained from the
wavelet analysis was the discovery of spontaneous bursts of
EEG/MEG activity in “gamma” band when spectrograms were
computed over single trials (induced power) but not when
they were computed from the trial averaged evoked poten-
tial time series (Tallon-Baudry et al., 1998). In a recent review,
different spectral profiles have been related to different cog-
nitive functions (Donner and Siegel, 2011). According to this
hypothesis, encoding functions (such as the encoding of sen-
sory features or motor plans) involving local computations will
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be reflected in gamma oscillations, whereas integrative func-
tions (such as perceptual inference and decision-making) involv-
ing long-range interactions among distant brain regions will be
reflected in beta band modulation. Time-frequency spectrograms
(Percival and Walden, 1993) also allow the development of effec-
tive connectivity measures that establish the presence of networks
of brain regions which communicate during the task-specific
information processing. We will continue this discussion briefly
in the next section. However, it is important to note that very
few methods exist that quantitatively capture the onset times of
spectral changes (Bokil et al., 2006). How can the onset and off-
set times of transiently stable large-scale oscillatory networks be
computed at millisecond resolution is an open question that will
be the target of future research.

APPLYING DIRECT MEASURES OF CONNECTIVITY ONTO
FUNCTIONAL IMAGING DATA
Functional integration (Luria, 1980) is the cortical organizational
principle by which two or more brain areas can simultane-
ously engage in information processing via modulations of their
interactions. Integration of information across distributed brain
areas is required by higher order cognitive tasks (Luria, 1980;
Horwitz, 1989, 2003; Horwitz et al., 1992; Sporns et al., 2004;
Bressler and Tognoli, 2006; Friston, 2009). Hence, functional
integration as opposed to the mechanism of functional segrega-
tion (Penfield and Erickson, 1941) operates over a larger spatial
scale. Non-invasive neuroimaging techniques EEG/MEG/fMRI
are ideal tools to study functional integration because they can
record from multiple brain areas simultaneously. One way to
measure functional integration would entail computation of sta-
tistical relationships between brain activations across different
brain areas. Comparing the strengths of such connections (func-
tional connectivity) across the entire brain will reveal the func-
tional brain network underlying a specific task (Horwitz et al.,
1992; Friston, 1994). The spatiotemporal scale of functional
integration is an elusive concept (a recurring theme of this
review) as it depends on the context of the experimental design
(Horwitz, 2003; Kim and Horwitz, 2008). Thus a more restricted
measure of functional integration—“effective connectivity”—is
widely used (Friston, 1994; McIntosh et al., 1996; Horwitz et al.,
1995; Horwitz, 2003; Sporns et al., 2004). Effective connectiv-
ity essentially constrains the more general functional connec-
tivity onto a network with specified anatomical connections
(McIntosh et al., 1994) between a relatively small number of
nodes based on a model of the behavior being studied (Friston,
1994; McIntosh and Gonzalez-Lima, 1995; Friston et al., 2003).

In the early days of neuroimaging research, functional and
effective connectivity concepts were primarily developed on
modalities with high spatial resolution but low temporal res-
olution such as PET and fMRI (Friston et al., 1993b, 2003;
Horwitz et al., 1995; Horwitz and Braun, 2004). In principle,
functional connectivity changes of the order of a few millisec-
onds can be measured with EEG and MEG (Breakspear, 2004;
Schnitzler and Gross, 2005; Wendling et al., 2009; Stam, 2010).
However, results obtained from a connectivity analysis are highly
dependent on the algorithms used to quantify a network and task
context (Horwitz, 2003).

Perhaps the simplest measure of connectivity can be defined
in terms of the correlation between neural signals from different
brain areas. If X(t) and Y(t) represent the simultaneous elec-
tromagnetic activity (EEG/MEG) from two sensors at time t,
correlation (CXY) between them is defined as

CXY = cov(X, Y)

σxσy
(1)

where, σx and σy are standard deviations of X(t), X(t) and cov
stands for covariance between X and Y over the time window
of recording. Thus, correlation evaluates the degree of statisti-
cal interdependency between two time series within a given time
window. It is important to note that correlation does not tell us
anything about causality. A correlation analysis can also be per-
formed on latencies of neural events across different brain areas
(DiCarlo and Maunsell, 2005; Banerjee et al., 2010) or between
task variables and parameters of a large-scale neural model
(Daunizeau et al., 2009).

One way to understand the intricate relationship between two
correlated time series can be to explore how correlated they are
at different frequencies. This can be evaluated using coherence
(Bendat and Piersol, 1971; Bressler et al., 1993). Coherence (ρXY)

is defined as

ρXY = |SXY |2
SXXSYY

(2)

where, SXX and SYY are power spectral densities obtained from the
Fourier transforms of X and Y respectively and SXY is the cross-
spectral density. Significance tests on correlation, coherence, cor-
relation differences and coherence differences can be performed
parametrically using Fisher’s Z-transforms (Kleinbaum et al.,
1998) as well as non-parametric tests (Maris et al., 2007) that
involves creating null distributions from shuffled data sets.
Coherence quantifies the degree of synchronization in the oscil-
latory responses from multiple brain areas. Functional brain
networks can be extracted by setting thresholds on coherence
values from whole brain analysis of EEG and MEG data. A
potential problem with pair-wise correlation and coherence mea-
sures magnify when dealing with multivariate recordings such as
EEG/MEG. Significant correlation between two time series does
not overrule the fact that such a relationship may arise from a
common input driving two regions, rather than two indepen-
dent regions working harmoniously over time. To address this
issue, both correlation and coherence can be computed invok-
ing multivariate considerations and the corresponding quantities
are called partial correlation and coherence (Fisher, 1924). Here,
the inter-relationship between two time series can be conditioned
on the activations of all other sensors. Several other measures of
functional connectivity are used for EEG/MEG data analysis such
as nonlinear coherence (Lopes da Silva et al., 1989), phase syn-
chrony (Rodriguez et al., 1999; Pikovsky et al., 2001) and general-
ized synchronization index (Arnhold et al., 1999). Typically each
method is tuned to detect a specific feature of inter-relationships,
however, the simpler regression based methods (correlation and
coherence) seem to be the most robust in detecting the underlying
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neural coupling (Wendling et al., 2009). To detect the dynam-
ics of coherence, the method of wavelet coherence have been
used (Lachaux et al., 2002). This method holds a lot of promise
in detecting the temporal structure of network evolution during
a task.

GRAPH THEORETIC METHODS FOR ASSESSING NETWORK
DYNAMICS
In previous sections we presented a brief overview of some
of the widely used EEG/MEG-based tools to measure the
strength of inter-relationships between different brain regions.
Here, we briefly present an alternative direct way to con-
struct a functional brain network using graph theoretical tools
(Bullmore and Sporns, 2009; Rubinov and Sporns, 2010). A net-
work is characterized essentially by two components: nodes
(vertices) and connections (links). Nodes in large-scale net-
works represent brain regions or sensors whereas connections
can be anatomical, functional or effective (Horwitz et al., 1992,
1995; Friston, 1994). EEG/MEG records brain activity from
sensors located outside the head and “far away” from the
neural sources. Often cortical source dynamics is estimated
using inverse techniques (Geselowitz, 1967; Gross et al., 2001;
Hillebrand and Barnes, 2005). Hence, graph theoretic tools can
be applied to both sensor level (Bassett et al., 2006; Stam, 2010)
and source level (Palva et al., 2010) data. An overwhelming num-
ber of these studies indicate that the dynamical state of the net-
works lie near the order/disorder transition point, a phenomenon
known as self-organized criticality (Stam and de Bruin, 2004;
Bassett et al., 2006; Kitzbichler et al., 2009). Bassett et al. (2006)
showed that the highest-frequency gamma network had greater
synchronizability, greater clustering of connections, and shorter
path length than networks in lower frequencies. Even though
the global topology or synchronizability was not strongly influ-
enced by the ongoing behavioral state, motor task performance
was associated with emergence of long-range connections in both
beta and gamma networks. Since the task was over a long time
window, this observation fits within the theoretical framework
of self-organized criticality governing the ongoing background
activity of the brain upon which the task-specific transiently
stable dynamics emerges (Buzsáki, 2006). In the future, met-
rics with higher temporal resolution such as wavelet coherence
(Lachaux et al., 2002) may be able to reveal the time scale of tran-
siently stable oscillations. Hypotheses about spectral markers of
cognitive functions (Donner and Siegel, 2011) can be tested using
this framework.

In addition to the number of nodes and connections of a
network, other measures such as modularity, clustering, path
length, and efficiency are often meaningful (Bassett et al., 2009;
Bullmore and Sporns, 2009). Such measures seem to be ideally
tuned to reveal the spatial structure of a large-scale network.
Often complex brain networks are densely connected within
a module and have only a few nodes that have connections
with different modules. Such modes of network organization
can be extracted via the measures of clustering and modularity
(Meunier et al., 2010). Recent studies have tried to address the
dynamics of task-specific processing in large-scale networks using
complexity measures (Palva et al., 2010).

TEMPORAL MICROSTRUCTURE OF LARGE-SCALE CORTICAL
NETWORKS UNDERLYING TASK-RELATED DIFFERENCES
The knowledge of time scales of network level processing has been
used to identify the sequential steps in task processing via feed-
forward and feedback processes (Garrido et al., 2007; Liu et al.,
2009). In neurophysiological studies on non-human primates,
top-down and bottom-up influences on neural information pro-
cessing during higher order cognitive tasks have been disam-
biguated using onset time detection (Hanes and Schall, 1996;
Monosov et al., 2008; Liu et al., 2009). Nonetheless, there are
two major limitations in extending these approaches directly to
multivariate EEG/MEG data. First, task-specific network recruit-
ment cannot be interpreted from a “pure insertion” based
subtraction of brain activity during control from the task condi-
tion, because the possibility of temporal modulation via changes
in the strength of functional connections cannot be easily ruled
out (Friston et al., 1996). Second, the existing analysis methods
are somewhat tuned in an either/or fashion to address the spatial
or temporal aspects of network dynamics.

To circumvent some of these issues, we have recently devel-
oped a computational framework that decodes the temporal
microstructure of spatiotemporal network mechanisms (Banerjee
et al., submitted). Here, dimensional reduction techniques are
used to define control subspaces from an experimental control
dataset (EEG/MEG at the sensor level). Data from an experimen-
tal task condition can be reconstructed from their projections
onto this control subspace. Banerjee et al. (2008) showed how the
goodness of fit of such reconstructions can be used to interpret
the underlying spatiotemporal network mechanisms: “tempo-
ral modulation” where the task relevant large-scale network is
comprised of the network components identified for the base-
line control versus “recruitment” where compensatory network
involvement is required for specific aspects of task processing. In
our current framework (Banerjee et al., submitted)the temporal
evolution of the goodness of fit of such reconstructions is used for
detection of the time scales of task-specific network recruitment
at millisecond resolution. Decoding the temporal microstructure
of task-specific large-scale networks based on quantitative defi-
nitions is of immense practical importance. One may be able to
obtain a network level biomarker for a broad variety of higher
order neural processes where information processing occurs in
stages. Using our approach, quantitative statistical analysis can be
performed on the resulting onset times of network recruitment at
an individual subject level. In a subsequent section, we will dis-
cuss the details of our computational framework and use it to
decode the temporal microstructure of network level processing
on simulated MEG data for a DMS task (Atkinson and Shiffrin,
1968). We have earlier applied this analysis for a paired asso-
ciate long-term memory recall task (Banerjee et al., submitted).
There, we were able to decode the time scale (onset time and
offset time) of task-specific networks required for retrieving an
auditory object (a non-linguistic tonal pattern) paired with a
visual stimuli from the long-term memory at an individual sub-
ject level. A comparison with visual-visual association indicated
that the onset times for long-term memory retrieval networks
appeared after an initial period of sensory processing of about
0–250 ms.
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LARGE-SCALE NEURAL MODELS
We have briefly reviewed a range of techniques that can be used
to estimate the presence and functionality of brain networks
(from EEG/MEG data at high temporal resolution) essential for
task-specific processing. We also reviewed one such method in
detail to illustrate how such methods can be applied to actual
experimental data. The regression based techniques such as cor-
relation and coherence have been shown to be the most robust in
detecting changes in inter-relationships between functional units
(Wendling et al., 2009). However, this is not an isolated result.
Using biophysically motivated neural mass models, each method
was shown to have different sensitivity profiles for functional con-
nectivity estimation in EEG data (David et al., 2004). This, as
well as several other studies (Srinivasan et al., 2007; Deco et al.,
2008; Daunizeau et al., 2009; Coombes, 2010), indicate that large-
scale models can become an important tool to test the valid-
ity of signal processing tools that are being applied to deci-
pher functional connectivity in brain networks at high temporal
resolution.

An important step in understanding large-scale network
mechanisms is to develop an understanding of empirical EEG
and MEG observations at the macroscopic level (Kelso, 1995;
Horwitz et al., 1999; Buzsáki, 2006). Neural field models of
macroscopic EEG/MEG activity have been used primarily to
explain the dynamics of spatial patterns that are observed at the
sensor level (Wilson and Cowan, 1972; Nunez, 1974; Amari, 1977;
Jirsa and Haken, 1996; Robinson et al., 1997; Coombes, 2010).
The underlying neural circuit mechanisms producing the spa-
tiotemporal patterns at the sensor level are harder to address.
One can only rely on the knowledge gained from electrophysi-
ological recordings in non-human primates. Understanding from
animal recordings can then be used to develop biologically realis-
tic simulation frameworks to understand the circuit mechanisms
in humans (Tagamets and Horwitz, 1998; Deco et al., 2004, 2008;
Horwitz and Husain, 2007). These are large-scale approaches that
consider a basic unit of neural processing to consist of excita-
tory and inhibitory populations of neurons within one cortical
column, and the connection topology across several such units
shape the overall network dynamics and ultimately control behav-
ior. The mean field approximation is often employed by these
approaches (Wilson and Cowan, 1972), which essentially means
that overall activity from a population of neurons in one cortical
column in a functionally active area such as V1 for process-
ing elementary visual stimuli can be lumped into one variable
whose temporal dynamics can be studied using differential equa-
tions. This approximation is supported by empirical evidence
from electrophysiology (Mountcastle, 1957; Hubel and Wiesel,
1963). Event related potentials (ERPs), or changes in the brain’s
electromagnetic potential difference (voltage response) follow-
ing the presentation of a visual/auditory/tactile stimulus recorded
from EEG, reflect the collective behavior of neuronal popula-
tions combined with spatial filtering through volume conduc-
tion. Event related fields (ERFs) on the other hand capture the
minute changes in magnetic fields generated from varying inten-
sities of current sources inside the brain from MEG recordings
with minimal volume condition. A combination of collective
behavior and spatial filtering makes the large changes in the

ERPs/ERFs highly correlated across sensors. Mathematically this
makes spatiotemporal analysis of the EEG/MEG signals simpler.
A high dimensional recording can be captured in terms of the
dynamics of few spatial patterns (Friston et al., 1993a; Kelso et al.,
1998; Banerjee et al., 2008). Modeling the collective behavior of
neural networks giving rise to these patterns is of immense practi-
cal importance. They provide a phenomenological understanding
of the laws which govern neurobiological elements that pro-
duce emergent dynamics (Deco et al., 2004, 2008; Assisi et al.,
2005; Stefanescu and Jirsa, 2008) and can be used to validate new
techniques that estimate functional connectivity (Banerjee et al.,
2008).

A major advantage of using simulated large-scale models of
neural dynamics is one can test the effects of different connectivity
topologies on task-specific information processing. A large num-
ber of studies have shown the role of local and global connectivity
in shaping cortical oscillations. For example a simplistic approx-
imation of the feed-forward connectivity between thalamus and
visual areas has been used for explaining the generation of alpha
rhythms (Lopes da Silva et al., 1974). Whereas, detailed models
of excitatory and inhibitory neuronal populations can capture
complex phenomena such as multistability (Freyer et al., 2011),
and epileptic seizures (Breakspear et al., 2006). Synchronization
among distant populations of neurons in the gamma frequency
band has been shown to occur in a network of integrate and fire
neurons with small world connection topology (Bazhenov et al.,
2008). Large-scale models on the role of attention and working
memory encoding in prefrontal cortex (PFC) have been highly
useful for explaining fMRI and PET brain imaging results and
unifying them with animal recordings (Tagamets and Horwitz,
1998; Deco et al., 2004; Horwitz et al., 2005). Similar models
have been extended to understand the neural dynamics underly-
ing perceptual and sequential decision-making (Deco and Rolls,
2005; Deco et al., 2010). Large-scale models have also been
used to explain the role of neural connectivity in bimanual
motor coordination (Jirsa et al., 1998; Daffertshofer et al., 2005;
Banerjee and Jirsa, 2007).

Thus, large-scale models of functional brain networks provide
a unique way to relate brain structure with function. Though
most of the neuromodeling studies we have discussed are at the
network level, numerous studies model the local circuits at the
level of few neurons (Wang, 2008). A detailed overview of some
of these local microcircuits can be found in Wang (2008). This
also presents us an opportunity to unify different levels of neu-
ronal dynamics in a combined theoretical framework (Deco et al.,
2008). Neuroimaging data with high spatial and temporal reso-
lution are highly complex and requires careful interpretation of
brain organization often using multiple methods of data analysis
if possible (Horwitz, 2003).

HOW CAN WE USE LARGE-SCALE NEURAL MODELS TO
TEST NEW NETWORK LEVEL MEASURES?
Often the goal of network level measures is to understand minute
changes in brain network organization during a particular task or
during neurological disorders. Comparisons are drawn between
different populations to reveal the change in functional neural
circuitry and the strength of the results are established based on
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statistical significance tests. Using large-scale models of neural
activity provides us with sample data sets where all underlying
network organizations and parameters are completely under-
stood. Here, one can validate the reliability and sensitivity of a
novel network analysis technique. In the spirit of this approach,
we performed a sensitivity analysis for the temporal microstruc-
ture analysis (Banerjee et al., submitted)presented earlier using
simulated data from a large-scale neural model for a visual DMS
task (Tagamets and Horwitz, 1998).

MODELING THE MEG ACTIVITY DURING A DELAYED
MATCH-TO-SAMPLE (DMS) TASK
DMS tasks involve presentation of two consecutive sensory
stimuli, following which a subject has to respond whether second
stimulus matches the first one (Haxby et al., 1995). They are used
extensively to study working memory with neuroimaging tech-
niques PET/fMRI in humans (Sergent et al., 1992; Haxby et al.,
1995; Courtney et al., 1997; Husain et al., 2006; Schon et al.,
2008) and in single unit electrophysiological recordings in
monkeys (Fuster et al., 1982; Haenny et al., 1988; Fuster, 1990;
Wilson et al., 1993; Miller et al., 1996). Tagamets and Horwitz
(1998) proposed a large-scale neural model incorporating the
major nodes of the ventral visual pathway comprising areas V1,
V4, inferior temporal (IT) and the PFC to generate simulated
data for a visual DMS task. These nodes were observed in PET
and fMRI studies of the ventral visual stream in relation to face
and object recognition (Corbetta et al., 1991; Haxby et al., 1991,
1995; Sergent et al., 1992; Courtney et al., 1997; Connor et al.,
2007). The basic circuit used to represent each cortical column
(the basic neuronal unit in each region) is shown in Figure 1.
The local response and total synaptic activity within a cortical
area depends on the interactions of the afferent connections,
originating from other areas and local connectivity which shapes
the response. Following earlier results (Douglas et al., 1995;
Tagamets and Horwitz, 1998) we have (1) 85% of the synapses in
cortex are excitatory, and (2) of those, 85% are to other excitatory
neurons. This high percentage of excitatory connection has
given rise to the notion of “amplification” of neuronal responses
within a local circuit in response to small amount of afferents.
Following Tagamets and Horwitz (1998) we chose the total
excitatory to excitatory connectivity weight at 0.6, excitatory
to inhibitory connectivity weight at 0.15 and inhibitory to
excitatory connectivity weight at −0.15 (Figure 1). Each pair of
excitatory and inhibitory units is the well-known Wilson-Cowan
unit (Wilson and Cowan, 1972). In our large-scale model, each
brain area is composed of 81 Wilson Cowan units in 9 × 9
configuration (in order to capture complex visual patterns).
We model the MEG activity for the DMS task in three steps. In
the first step, we define the activation equations of membrane
currents for each Wilson-Cowan unit. In the second step, we
sum the activation of excitatory neurons to compute the primary
currents which are the main sources of MEG data. In the third
stage, we obtain the magnetic fields generated by the current
sources outside the brain on a unit hemisphere using a forward
solution for a spherical head (Mosher et al., 1999).

The electrical activity of each of the excitatory (E) and
inhibitory (I) units is governed by a sigmoidal function of the

summed synaptic inputs that arrive at the unit. This corresponds
to average spiking rates from single-cell recordings. The electrical
activity of an E-I pair is mathematically expressed as:

dEi(t)

dt
= �

(
1

1 + e−KE[wEEEi(t)+wIEIi(t)+iniE(t)−τE+N(t)

)
− δEi(t)

(3)

dIi(t)

dt
= �

(
1

1 + e−KI [wEI Ei(t)+iniI (t)−τI +N(t)

)
− δIi(t) (4)

where, Ei(t) and Ii(t) represent the electrical activations of the
ith excitatory and inhibitory elements at time t respectively. KE

and KI are the gains or steepness of the sigmoid functions for
excitatory and inhibitory units respectively, τE and τI are the
input thresholds for the excitatory and inhibitory units, � is the
rate of change, δ is the decay rate, and N(t) is the added noise
term. wEE, wIE, and wEI are the weights within a unit: excitatory-
to-excitatory (value = 0.6), inhibitory-to-excitatory (value =
−0.15) and excitatory-to-inhibitory (value = 0.15) respectively.
iniE(t) and iniI(t) are the total inputs coming from other areas
into the excitatory and inhibitory units at time t.

iniE(t) =
∑

j

wE
jiEj(t) +

∑
j

wI
jiIj(t)

iniI(t) =
∑

k

wE
kiEk(t) +

∑
k

wI
kiIk(t) (5)

where, wE
ji and wI

ji are weights coming from excitatory/inhibitory
unit j in another area into the ith excitatory and inhibitory units
respectively. Electrical activations in the model range between
0 and 1, and can be interpreted as reflecting the percentage
of active units within a local population. For this article we
chose to keep parameter values (KE, KI , τ, δ, �) identical to
Tagamets and Horwitz (1998).

The source of MEG activity is the primary currents across
pyramidal cell assemblies dominated by excitatory connections
(Okada, 1983). To obtain the source activity of magnetic dipoles,
the generators of ERFs, we sum over the total inputs to one
excitatory unit.

Iprim(t) =
∑

i

wEEEi(t) +
∑

i

wEIEi(t) +
∑
k,i

wE
kiEk(t) (6)

where, the first two terms on the right hand side of Equation (6)
represent the contribution of excitatory inputs onto itself (no
axonal delays are considered) and the third term represents the
input from other excitatory units.

The DMS task involves remembering the first stimulus S1 and
responding after a second stimulus S2 with a button press if
S2 matches with S1. We have square patterns of light (S1 and
S2) as external visual stimuli presented consecutively interspersed
with a delay period. A large-scale model of the DMS task is cre-
ated by including brain areas V1, V4, IT, and the PFC as the
magnetic dipole sources (Figure 1A). A local short-term mem-
ory circuit is implemented in the PFC by incorporating different

Frontiers in Systems Neuroscience www.frontiersin.org January 2012 | Volume 5 | Article 102 | 7

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Banerjee et al. Temporal microstructure of network level processing

0.6

-0.150.15 0.1 - 0.2

(total afferents)

D

B

A

Patterns of  

synapt ic 

eff icacies 

determines 

response Divergence 

increases 

about 3 fo ld 

in diameter 

along each 

step in the 

downstream 

pathway

Inhibi tory:  I

Exci tatory:  E

V1

V4
IT

Prefrontal

R

D1, D2, C

Downstream

Upstream

I

E

C

FIGURE 1 | MEG Extension of the Tagamets-Horwitz (1998) large-scale

neural model. (A) Locations in the ventral visual stream where sources
are located for simulating MEG data. The 3-D Talairach coordinates have
been projected to the nearest gray matter on the cortical surface within a
window of 5 mm. The medial surface locations V1 and V4 are shaded in
lighter color, pink whereas the lateral surface locations in inferior temporal
(IT) and prefrontal cortex (PFC) in brighter red. (B) The basic Wilson-Cowan
unit. E represents the excitatory population and I the inhibitory population in
a local assembly such as a cortical column. Local synaptic activity is
dominated by the local excitation and inhibition, while afferents account for
the smallest proportion, as indicated by the synaptic weights shown.

(C) A cortical area is modeled by a 9 × 9 set of basic units. The
excitatory population is shown in bold lines above the inhibitory group,
shown in lighter lines. Individual units in the excitatory and inhibitory
populations within a group are connected as shown in (B). (D) The
working memory circuit in the prefrontal area of the model. It is composed of
different types of units, as identified in electrophysiological studies, and
shown in (C). Each element of the circuit shown is a basic unit, as shown in
(B). Inhibitory connections are affected by excitatory connections onto
inhibitory units. These D2 units also are the source of feedback into earlier
areas. Figures B–D are adapted with permission from
(Tagamets and Horwitz, 1998).
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Table 1 | Talaraich coordinates of the cortical sources used for

simulation of MEG data.

Brain areas (sources) Talaraich coordinates (mm)

X Y Z

V1 −12 −94 4

V4 −12 −84 1

IT −63 −18 −16

C −50 25 4

D1 −50 25 4

D2 −50 25 4

R −50 25 28

sub-modules (Figure 1D). We placed dipoles at the Talairach
coordinates corresponding to each area (Table 1) with electrical
responses as follows:

1. V1/V4/IT become active during stimulation periods S1 and S2.
2. Cue (C) units respond if there is a stimulus present.
3. Delay only (D1) units become active during delay period after

presentation of the first stimulus.
4. Delay + Cue (D2) units become active during presentation of

the stimulus and delay period.
5. Response (R) units show a brief activation if the sec-

ond stimulus matches the first and if the first stimulus is
remembered.

Based on primate electrophysiological recordings
(Funahashi et al., 1990), D1, D2, and C are taken to be
located near one another and hence, share the same Talairach
coordinates. The effect of attention in the model is implemented
by a low-level, diffuse incoming activity to the D2 units as shown
in Figure 1D (from the modulator). While we do not model the
source of this modulation, our model makes it explicit that the
D2 units are the recipients. When the attention level is low there is
very little delay period activity in the D1 and D2 units (Figure 2).
Hence, the prefrontal working memory network is only recruited
for the DMS task during high attention. Two sources of trial-
by-trial variability were incorporated in the model: (1) additive
random noise to each Wilson-Cowan unit, and (2) activity of
the non-specific units at a background rate were added to the
DMS task-specific network (see Horwitz et al., 2005 for details).
The magnetic dipole source dynamics at different brain locations
are plotted in Figure 2. Finally, MEG activity at the sensor level
is computed by applying a forward solution with sources at
the aforementioned locations. We chose a single-shell forward
model of a spherical head with unit conductivity derived by
Mosher et al. (1999). MEG data were generated for DMS task
with low and high levels of attention. The scalp topography of
the simulated data at two different time points (stimulation and
delay period respectively) is shown in Figure 2.

DECODING TEMPORAL MICROSTRUCTURE OF TASK-RELATED
INFORMATION PROCESSING
A key event in the DMS task is the recruitment of the local pre-
frontal circuit to engage the working memory network during the
delay period. This is required for temporarily storing the visual

stimulus S1 until S2 arrives following which a DMS response
is made. The large-scale model is set up such that an effective
recruitment of the prefrontal working memory network only
occurs for high attention scenarios. By applying a recently devel-
oped method to identify the temporal microstructure of task
processing (Banerjee et al., submitted), we sought to decode the
onset times of recruitment of this network and validate if the
decoded onset times correspond to those occurring in the under-
lying neural model. Thus, the main objective here is to illustrate
the usage of large-scale models for providing face validity for con-
nectivity analysis. The temporal microstructure analysis involves
three steps:

1. Defining control subspaces from the control condition
(DMS task during low attention, which amounts to passive
viewing).

2. Reconstructing the experimental task condition (DMS task
during high attention) from their projection onto the control
subspace.

3. Statistical comparison of goodness of fit of reconstruction time
series to detect onset times of recruitment.

In principle, any of the dimensional reduction techniques dis-
cussed in the overview section can be used to compute the control
subspace. However, for the purpose of this example, we chose one
of the simpler methods: principal component analysis. This can
be mathematically expressed as

DMSlow att(X, t) =
n∑

i=1

λi�i(X)ξi(t) (7)

where, DMSlow att are the simulated MEG data at the sensor level
for low attention scenario, �i’s are the principal components, λi

is the eigenvalue that scales component �i, and ξi(t) is the tem-
poral coefficient of the spatial pattern �i. X is a column vector
of all sensors, n is the number of sensors at which MEG data
were simulated (n = 264, matches closely with the 275 channel
CTF MEG system) and t is the instantaneous time. The first
two modes �1 and �2 capture 99.98% of the total variance in
data DMSlow att . Hence, we chose m = 2 to construct the control
subspace.

DMSlow att(X, t) ≈
2∑

i=1

λi�i(X)ξi(t) (8)

The two modes (�1 and �2) are plotted in Figure 3A with
corresponding normalized eigenvalues reflecting percentage con-
tribution to the total variance. The MEG data for high attention
DMShigh att can be reconstructed ms-by-ms by using their pro-
jections onto the vector space spanned by the set of orthogonal
vectors �1 and �2.

DMShigh att(X, t) ≈
2∑

i=1

�
†
i

〈
DMShigh att(X, t)|�〉 (9)
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FIGURE 2 | Temporal and spatial organization of simulated neural

activity: Total currents in each brain location computed using the

large-scale neural model for two different levels of attention (0 and 0.3).

During stimulus S1, the sensory and object identification areas are first
activated (V1, V4 and IT) followed by activations in prefrontal network (D1, D2,
C, and R). For low attention (or zero attention) all units are silent during delay
period because no working memory is required to perform the DMS task. D1
and D2 units have sustained activation (recruited) during delay period if high
attention is required to store the identity of S1 in working memory while the
other units were silent. Neuromagnetic (MEG) activity is simulated at 264

sensors using a forward solution with spherical head model. Topographic
maps of this activity are plotted over a transparent hemisphere at times
t = 15 (within initial S1) and t = 100 (during delay). During S1 similar identical
network organization between passive viewing (low attention) and DMS task
performance (high attention) occurs. However, network organization changes
during the delay period. Discerning by looking at raw topographic maps is
quite hard, as illustrated by closeness of the scalp topography between the
two task conditions during delay period. The temporal microstructure of
cortical network (TMCN) analysis retrieves the onset of recruitment of the
task-specific prefrontal networks at the sensor level.

where, 〈|〉 indicates projection operation, and † represents trans-
pose. The orthogonality of basis vectors is an important require-
ment that is guaranteed by PCA. However, non-orthogonal basis
vectors can be employed in the control subspace by using the
dual basis for reconstruction (Banerjee et al., 2008). Similarly,

DMSlow att can be reconstructed ms-by-ms from the two control
modes.

DMSlow att(X, t) ≈
2∑

i=1

�
†
i 〈DMSlow att(X, t)|�i〉 (10)
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FIGURE 3 | Temporal microstructure analysis. (A) The two principal
components (and corresponding eigenvalues λ) computed from the DMS
task at lowest attention level that spans the control subspace. The sum of the
eigenvalues amounts to the total variance of the control condition that is
capture by these two patterns. (B) The mean goodness of fit of
reconstruction (Gof ) time series plotted as a function of time when the
difference in attention levels is low. The error bars at 95% significance level
are also plotted as a function of time (patches). In this scenario, lack of
significant recruitment results in statistically equivalent Gof over time.
(C) The mean goodness Gof time series from two conditions are plotted as a

function of time when the difference in attention levels is high. The error bars
at 95% significance level are also plotted as a function of time (patches). The
regime of difference in Gof distributions reflect the time scale of recruitment.
(D) Sensitivity analysis for onset time detection: Onset time plotted as
function of different attention levels. For all levels of attention (except the zero
attention scenario) the same prefrontal network (D1, D2) is recruited in the
delay period, with varying degrees of intensity. At low attention (gain < 0.09),
onset time of this prefrontal network recruitment occurs twice by chance.
However, after a threshold level of attention (0.09), onset time is consistently
detected for all higher levels.

Goodness of fit of the reconstruction is computed by the follow-
ing expression

Gofi =
(

1 − DMS
†
i .DMSi

DMS†
i .DMSi

)
× 100% (11)

where, i = low att, high att. We obtained the Gof time series for
low attention and high attention DMS tasks. Using bootstrapping
techniques (Efron, 1979), distributions of these variables can be
derived (Figures 3B,C) for different levels of attention in the DMS
task.

Using the lines of reasoning outlined in Banerjee et al. (2008),
a high goodness of fit occurrence indicates that no additional
nodes compared to the control network is present in the task
network, whereas any depreciation of Gof from 100% will indi-
cate recruitment of additional subspaces. The regimes where the
two Gof ’s significantly differ are identified as the time scales of
recruitment. For example if the zero attention scenario is used as
control and high attention as task, then the time scale of network

recruitment for storing the identity of S1 in working memory is
captured by the onset and offset of significant differences in Gof
(Figure 3C). On the other hand, if the DMS task is performed
at a lower attention level, significant amount of network recruit-
ment is absent and hence, the Gof distributions are statistically
equivalent over time (Figure 3B). The onset time of recruitment
was defined as the first point where the two Gof time series are
significantly divergent with p < 0.05 and remains so for 50 con-
secutive time points. Additionally at least for one point within
this regime p should reach a value of 0.001. Choosing a win-
dow size of 50 time points sets a lower limit on the time scale of
recruitment decoded from this analysis. The choosing of the time
window for control subspace construction is another constraint
on the network to which recruitment is analyzed. For our exam-
ple, we chose to run the PCA on the entire DMS data from start
of S1 to end of S2. However, choosing such time segments can
also be done a posteriori from the experimental design and sta-
bility of onset times may be tested by varying the length of such
windows.

Frontiers in Systems Neuroscience www.frontiersin.org January 2012 | Volume 5 | Article 102 | 11

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Banerjee et al. Temporal microstructure of network level processing

The value of onset time detected by the temporal microstruc-
ture analysis (in Figure 3D) closely matched with the time at
which D1 and D2 units get activated for the delay period in the
high attention scenarios (Figure 2). We performed a sensitivity
analysis for the temporal microstructure method by varying the
attention level for the task condition and correspondingly com-
puting the onset time for each levels of attention (Figure 3D).
For low levels of attention (<0.09) our method was unable
to detect an onset time consistently. However, the onset time
detected after a threshold attention level of 0.09 did not change
significantly when the level was parametrically varied up to 0.3.
Hence, we conclude that statistically significant levels of recruit-
ment occur for this network at a certain attention level beyond
which the DMS task can be actively executed. Once the thresh-
old attention level is reached, recruitment of a large-scale network
is detected and the onset time does not change with further
increases in attention level. The detection of the onset time
of task-specific recruitment amounts to decoding an important
event in the underlying information processing at the large-
scale network level. Using similar statistical thresholds, we can
also decode when the recruitment of additional nodes get disen-
gaged. Changes in functional connectivity via interactions among
overlapping components of control and task networks are not
detected by the temporal microstructure analysis. Hence, the
regimes where, Gof ’s are statistically equivalent can be used as
ideal candidates for applying other functional connectivity tech-
niques described in the overview, such as correlation and coher-
ence. We conclude that the large-scale model provided a partial
validation for the use of temporal microstructure analysis as a
tool to detect spatiotemporal network mechanisms at millisecond
resolution.

An important aspect of the temporal microstructure analysis
that needs immediate attention is that once presence of recruit-
ment is inferred, how can we estimate the spatial localization
of recruited brain areas? This issue will be addressed in future
research. The challenge here is that the residual activity which car-
ries the signatures of spatial localization has higher noise to signal
ratios than the original signals. One way to circumvent this issue
would be to design experiments with a larger number of trials
when the localization question needs to be answered.

The time scales of recruitment decoded from the microstruc-
ture analysis can be used as constraints for building large-scale
models of behavioral tasks. Such models provide a mechanis-
tic understanding of neural information processing. From a
complementary perspective, decoding the timing of information
processing is a key to understanding network mechanisms under-
lying ongoing behavior in action-perception paradigms where
brain dynamics at millisecond resolution controls task process-
ing. Also, in practical scenarios such as in development of neural
prosthetic tools where decoding between two alternative task con-
ditions is the often the main goal, the temporal microstructure
analysis might provide a simple but robust algorithmic frame-
work.

SUMMARY
In this article we have provided an extended overview of meth-
ods that can detect the presence of functional brain networks for

a wide variety of tasks in which information processing occurs at
the network level with rich temporal behavior. EEG/MEG/iEEG
provide high temporal resolution whole brain recordings that
have the ability to record the elemental properties of a large-
scale network. A major challenge in analyzing such giant data
sets is the fact that no consensus exists as to what consti-
tutes a large-scale network. It often depends on the modality
of the imaging technique and the idiosyncrasies of the par-
ticular task that are being studied that ultimately shapes the
patterns observed in the data. In addition each network level
analysis (some of which are discussed in the Overview), may
yield different results, sometimes seemingly conflicting. A classic
example is the observation of temporally ordered brain responses
(Gray et al., 1989; Tallon-Baudry et al., 1998; Tognoli et al., 2007;
Donner and Siegel, 2011) and self-organized criticality (Kelso,
1995; Linkenkaer-Hansen et al., 2001; Stam and de Bruin, 2004)
being simultaneously present as mechanisms of neural informa-
tion processing. Interpreting such results with theoretical frame-
works that allows co-existence of different mechanisms (such as
Kelso, 1995; Buzsáki, 2006) will be a pre-requisite for future sig-
nal processing tools. We have recently developed a computational
framework (Banerjee et al., submitted)which decodes the time
scales of network level processing at high temporal resolution via
characterization of two distinct modes of information process-
ing: modulation of functional connectivity and recruitment of
task-specific networks.

Our second objective in this article was to show how devel-
opment of network analysis can immensely benefit from using
biologically realistic large-scale models of brain activity. It is
relatively easy to implement candidate functional connectivity
topologies in such models at various time scales mimicking
the complexity associated in real neuronal processing, following
which the face validity of a novel method for network analysis
can be tested on simulated data generated by the model. This is
important, because only in simulated data one has the knowl-
edge of the ground truth. Using this approach we have tested
the face validity of our recently developed method to decode
the temporal microstructure of task-specific information process-
ing during a DMS task. Such tasks or its variants are used in
the literature to study a diverse set of questions in higher order
sensory processing (Corbetta et al., 1991; Sergent et al., 1992),
multisensory integration (Haenny et al., 1988; Maunsell et al.,
1991; Colombo and Gross, 1994), working memory processing
(Haxby et al., 1995; Courtney et al., 1997), long-term memory
retrieval (Naya et al., 1996; Smith et al., 2010a) and perceptual
and cognitive decision-making (Bechara et al., 2000; Lamar et al.,
2004). Hence, we believe our simple illustration of decod-
ing network mechanisms during a DMS task may lay out
a strategic framework to answer long-standing questions in
several brain systems. In the future a combined modeling-
decoding approach may help in characterization of timing
of task-specific processing in networks at the level of single
trials.
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