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Attention Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder, being
one of the most prevalent psychiatric disorders in childhood.The neural substrates associ-
ated with this condition, both from structural and functional perspectives, are not yet well
established. Recent studies have highlighted the relevance of neuroimaging not only to pro-
vide a more solid understanding about the disorder but also for possible clinical support.
The ADHD-200 Consortium organized the ADHD-200 global competition making publicly
available, hundreds of structural magnetic resonance imaging (MRI) and functional MRI
(fMRI) datasets of both ADHD patients and typically developing (TD) controls for research
use. In the current study, we evaluate the predictive power of a set of three different fea-
ture extraction methods and 10 different pattern recognition methods.The features tested
were regional homogeneity (ReHo), amplitude of low frequency fluctuations (ALFF), and
independent components analysis maps (resting state networks; RSN). Our findings sug-
gest that the combination ALFF+ReHo maps contain relevant information to discriminate
ADHD patients from TD controls, but with limited accuracy. All classifiers provided almost
the same performance in this case. In addition, the combination ALFF+ReHo+RSN was
relevant in combined vs. inattentive ADHD classification, achieving a score accuracy of
67%. In this latter case, the performances of the classifiers were not equivalent and L2-
regularized logistic regression (both in primal and dual space) provided the most accurate
predictions. The analysis of brain regions containing most discriminative information sug-
gested that in both classifications (ADHD vs. TD controls and combined vs. inattentive),
the relevant information is not confined only to a small set of regions but it is spatially
distributed across the whole brain.
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INTRODUCTION
Attention Deficit/Hyperactivity Disorder (ADHD) is a worldwide
prevalent disorder (Polanczyk et al., 2007) and is characterized by
excessive childhood onset inattention, hyperactivity, and impulsiv-
ity (American Psychiatric Association, 1994) that usually persists
into adulthood (Mannuzza and Klein, 2000).

In recent years, structural magnetic resonance imaging (MRI)
and functional MRI (fMRI) techniques have been extensively used
in the quantitative analysis of the brain in healthy individuals and
patients with psychiatric disorders in an attempt to increase our
understanding of human brain structural and functional networks
(Bassett and Bullmore, 2009; Biswal et al., 2010). In comparison
to typically developing (TD) individuals, structural neuroimaging
studies have shown that ADHD patients present abnormalities in
several regions including the frontal, parietal, and occipital lobes,
the basal ganglia and the cerebellum (Castellanos et al., 1996; Sow-
ell et al., 2003; Seidman et al., 2006). Abnormal brain activation in
the dorsolateral prefrontal cortex, inferior prefrontal cortex, dor-
sal anterior cingulate cortex, basal ganglia, thalamus, and parietal

cortex is also observed in ADHD compared to controls (Dickstein
et al., 2006).

However, despite the enormous increase in the number of stud-
ies using structural and fMRI in the last two decades, applications
in clinical practice and reliability in disease diagnosis are still
not well established. Recently, pattern recognition approaches and
classifiers based on machine learning were proposed for the extrac-
tion of predictive information of structural and fMRI data (Fan
et al., 2005). Misra et al. (2009) explored the clinical value of struc-
tural MRI and pattern recognition methods focusing on Alzheimer
diagnosis and prognosis in mild cognitive impaired patients. Ecker
et al. (2010) have shown that Support Vector Machines (SVM)
combined with computational neuroanatomy can be useful in
autism diagnosis support, achieving a discrimination accuracy of
90%. Sato et al. (2011) investigated the potential of structural
MRI as a clinical tool to identify individuals with psychopathy.
These methods have the potential to translate objective biological
information extracted from neuroimaging data to clinical practice
(Marquand et al., 2008; Zhu et al., 2008; Dosenbach et al., 2010).
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In 2011, the ADHD-200 Consortium, a self-organized, grass-
roots initiative, dedicated to accelerating the scientific commu-
nity’s understanding of the neural basis of ADHD through the
implementation of discovery-based science, launched the“ADHD-
200 Global Competition”1 in which researchers around the world
were invited to develop diagnostic classification tools for ADHD
diagnosis based on structural MRI and fMRI of the brain. The
ADHD-200 Consortium made available datasets aggregated across
eight independent imaging sites that contain resting state fMRI
and structural MRI datasets for individuals diagnosed with ADHD
and TD individuals.

The interdisciplinary research combining classifiers based on
machine learning and clinical applications of neuroimaging has
been shown to be fruitful and innovative. Although several pattern
recognition classifiers are available in the technical literature, there
is not a single optimal classifier for the general case. Furthermore,
there is no single learning algorithm which always lead to the most
accurate learner in all domains. The most usual approach is to
evaluate several classifiers and to choose the one with the best per-
formance on a independent validation set (Alpaydin, 2010, chapter
17). Different classifiers may perform better than others depending
on the neurological/neuropsychiatric disease or the data modality
available. In addition, there are a number of different features (the
predictor variables used for classification) that can be extracted
from resting state fMRI data. Three of the most frequently used
features are the regional homogeneity maps (ReHo, Zang et al.,
2004), fractional amplitude of low frequency fluctuations (ALFF)
maps (fALFF, Zou et al., 2008), and independent component maps
(ICA, Smith et al., 2009).

In the current study, we present a systematic evaluation of
the classification performance of 10 different pattern recogni-
tion classifiers combined with three feature extraction methods.
The features explored in combination with these classifiers were
the ReHo, fALFF, and ICA maps. We evaluated the classification
accuracies for typical controls vs. ADHD patients and also for
inattentive vs. combined ADHD groups. The aims of the current
study are the following: (i) to estimate the accuracy measures of
classification (controls vs. ADHD and inattentive vs. combined
ADHD) based on a large resting state fMRI dataset; (ii) to com-
pare the prediction accuracy of different classifiers and/or penalty
functions; (iii) to identify brain regions containing discriminant
information between groups. The novel findings of this study are
that most classifiers have approximately the same performance and
that the discriminant information is not concentrated in a small
set of regions but distributed in the entire brain.

MATERIALS AND METHODS
A diagram showing a summary of the analysis pipeline is pre-
sented in Figure 1. Basically, after preprocessing the fMRI data,
we extracted the fALFF, ReHo, and resting state networks (RSN)
maps, and calculate the average values of these maps for each
region. The regions were defined by a functional atlas and were
used as an input to the classifiers.

1http://fcon_1000.projects.nitrc.org/indi/adhd200/

PARTICIPANTS AND DATA
The data used in the current study was acquired by the ADHD-
200 Consortium which provided public release of 929 resting
state scans of children and adolescents with ADHD and typical
controls. The data was acquired in eight different sites: Peking
University, Bradley Hospital/Brown University, Kennedy Krieger
Institute, NeuroIMAGE Sample, New York University Child Study
Center, Oregon Health & Science University, University of Pitts-
burgh, and Washington University. This data was released in the
ADHD-200 Competition, coordinated by Prof. Damien Fair and
Prof. Michael Milham, and organized by the Consortium. The
competition released both the structural MRI and fMRI scans of
759 subjects with the respective labels (TD control, inattentive, and
combined ADHD) in order to motivate participants to train and
develop algorithms to predict the group of a single subject, given
his/her neuroimaging data. The data of additional 170 subjects was
then released without the group labels and the competition par-
ticipants were asked to send the predicted labels. The true label of
this test set of subjects was then released after the announcement
of the competition results. All research conducted by ADHD-
200 contributing sites was conducted with local Internal Review
Board approval, and contributed in compliance with local Internal
Review Board protocols. All data distributed via the International
Neuroimaging Data sharing Initiative is fully anonymized in com-
pliance with the HIPAA Privacy Rules. Prior to release, it is ensured
that the 18 patients’ identifiers were removed, as well as face infor-
mation. The complete demographic data is presented in Table 1.
Further details about both the samples and scanning parameters
can be obtained under request to the ADHD-200 consortium.

PREPROCESSING OF IMAGES
The preprocessing of the raw fMRI data was carried out by
Cameron Craddock2 using scripts integrating the packages AFNI3,
FSL4, and the Athena computational cluster at Virginia Tech’s
ARC5. This pipeline was named “The Athena” and the pre-
processed data is available at the Neurobureau website6. In order to
assess quality metrics of the data, the mean and standard deviation
of the volumes were calculated from all the scans and from all the
subjects. These volumes were used to obtain maps of z-score. The
absolute values of the z-scores were cut using a threshold value of
three and summed across all intra-cranial voxels for a quality score
for each image. This information is available at the link7. In this
study, we considered the images from all labeled subjects provided
by the ADHD-200 Competition because the quality metrics were
satisfactory and also to allow comparisons of the performances
with other studies based on the same dataset.

The main focus of The Athena pipeline is a systematic and
homogeneous processing of all resting state fMRI datasets, and
consisted on the following steps: exclusion of the first four echo-
planar (EPI) volumes; slice timing correction; deoblique dataset;

2http://research.vtc.vt.edu/employees/cameron-craddock/
3afni.nimh.nih.gov/afni
4www.fmrib.ox.ac.uk/fsl/
5www.arc.vt.edu
6http://neurobureau.projects.nitrc.org/ADHD200
7http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
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FIGURE 1 | Flow of data processing.The raw fMRI data is preprocessed; the
feature maps for fALFF, ReHo, and RSN are obtained; the average coefficient

of these maps within each ROI are calculated using the CC400 atlas; the data
is then organized in a features matrix which is then input to the classifiers.

Table 1 | Demographic information of the subjects from the ADHD-200

sample.

Group N Males Mean age (SD) – years

TD controls 546 286 (52.4%) 12.29 (3.46)

Combined 249 193 (77.5%) 11.21 (3.02)

Inattentive 122 93 (76.2%) 12.16 (3.00)

Hyper/impulsive 12 10 (83.0%) 12.49 (4.62)

Whole ADHD sample 383 296 (77.3%) 11.56 (2.99)

TD, typically developing. Although the two-sample t-tests comparing TD controls

vs. ADHD (p=0.001) and combined vs. inattentive (p=0.003) indicate statisti-

cal differences in age, these differences were not relevant for classification (total

scores of a logistic regression based solely on age are 0.50 and 0.49, respectively,

i.e., very close to the scores by chance).

correction for head motion (first volume as reference); masking
the volumes to exclude voxels at non-brain regions; averaging the
EPI volumes to obtain a mean functional image; co-registration
of this mean image to the respective anatomic image of the
subject; spatial transformation of functional data into template
space (4 mm× 4 mm× 4 mm resolution); extraction of BOLD

(blood oxygenation level dependent) time series from white mat-
ter (WM) and cerebrospinal-fluid (CSF) using masks obtained
from segmenting the structural data; removing effects of WM,
CSF, motion, and trend using linear multiple regression and hold-
ing the residuals; temporal band-pass filter (0.009 < f < 0.08 Hz);
spatial smoothing the filtered data using a Gaussian filter (full
width at half maximum= 6 mm).

FEATURE EXTRACTION FROM fMRI DATA
In classification problems, “features” are defined as the
input/predictor variables which are used to generate class predic-
tions (e.g., TD or ADHD) for new observations. Here, we evaluated
three different types of features from functional brain imaging:
ReHo, fALFF, and independent component analysis maps.

Regional homogeneity
The ReHo approach (Zang et al., 2004) is based on the calcula-
tion of Kendall coefficient of concordance between a voxel and
its neighbor voxels. The basic idea of this method is to measure
how similar are the BOLD signal of a given voxel and its neigh-
bors, evaluating common local changes in different brain regions.
In other words, ReHo analysis is a massive voxel-by-voxel analy-
sis, for which, at each voxel, it is calculated the similarity between
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the BOLD from the central voxel and the voxels around it. This
measure mirrors the spatial consistency of spontaneous activation
(Zang et al., 2004; Biswal et al., 2010) at a brain region, and this
is why it is named ReHo. In fact, the accurate neurophysiologi-
cal interpretation of ReHo maps is still an open question. Some
anatomical/functional features that may possibly influence ReHo
coefficients are local atrophy and changes in local intrinsic connec-
tivity. Several recent studies in literature have shown the potential
value of ReHo in clinical applications (Qiu et al., 2011; Yan et al.,
2011; Zhang et al., 2012), including ADHD (Zhu et al., 2008).
Further details about technical issues (formulas, algorithms, and
mathematical properties) can be found in the referred literature
(Zang et al., 2004).

The ReHo maps from each subjects of ADHD-200 sample were
provided by the Neurobureau and are available at the referred
website8.

Fractional amplitude of low frequency fluctuations
Fractional amplitude of low frequency fluctuations approach was
introduced by Zou et al. (2008) for the analysis of fMRI resting
state datasets. Basically, the fALFF approach is a voxel-by-voxel
calculation of low-frequencies spectral power (0.01–0.08 Hz) of
BOLD signal. In other words, fALFF measures the relevance of low
frequency fluctuations in the variance of the observed BOLD signal
at each brain region. Although the neurophysiological processes
which generate these fluctuations are not established, fALFF are
usually interpreted as a measure of spontaneous activity during
a resting state session (Zou et al., 2008). Similar to ReHo, several
studies in the literature have explored the clinical value of fALFF
(Hoptman et al., 2010; Han et al., 2011; Xuan et al., 2012). Further
details about this method (formulas, algorithms, and mathemat-
ical properties) can be found in the referred literature (Zou et al.,
2008).

The fALFF maps of ADHD-200 sample are available at the
Neurobureau website.

Independent component analysis maps
Independent component analysis maps depicting functional con-
nectivity were obtained using the approach proposed by Smith
et al. (2009), in which the RSN were estimated using a modi-
fied dual regression approach. The RSN maps of each subject are
available at the ADHD-200 website of Neurobureau. The analy-
sis of the 10 first group ICA maps shows unequivocally that the
fourth component is related to the default mode (positive values)
and task-positive networks (negative values), which are frequently
described as anti-correlated systems (Biswal et al., 2010). The
fourth RSN map of each subject was then considered as a pre-
dictor feature for further classification, since the literature suggest
association between these networks and ADHD (Castellanos et al.,
2008; Fair et al., 2010).

Dimensionality reduction
The obtained number of predictor variables in fALFF, ReHo, and
RSN maps were larger than the number of observations (subjects).

8http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline

Thus, it was necessary to apply a dimensionality reduction pro-
cedure in order to avoid numerical singularities (and in terms
of computing time and optimization) and overfitting problems.
Since neuroimaging data have a very high dimensionality, this
step plays a crucial role in classification studies (Guyon and
Elisseeff, 2003; De Martino et al., 2008). We applied the brain
parcellation defined by the CC400 atlas, which was provided
by the Neurobureau using the method developed by Craddock
et al. (2012). This atlas was created using a functional parcella-
tion of 400 regions of interest based on spectral clustering and
spatial-clustering constraints, grouping neighbor voxels with sim-
ilar frequencies power distribution from a dataset of 650 subjects.
It contains parcellation of cortical and subcortical structures, and
gray and WMs. The atlas is freely available at the link9. The
main advantage of using this atlas, when compared to anatom-
ical (AAL or Talairach) ones, is that the parcellation is based on
functional properties and frequency-domain similarities instead
of structural/morphological characteristics.

The mean value of the coefficients from fALFF, ReHo, and RSN
fourth maps within each ROI defined by CC400 was calculated
and then assumed to be the predictor variables in classification.

METHODS FOR CLASSIFICATION
The main concern of the current study is the performance eval-
uation of different classifiers in predicting controls from ADHD
subjects and inattentive vs. combined ADHD patients. Note that
only the two-class prediction case was explored. We compared the
following 10 classifiers (and abbreviator):

1. AdaBoostM1 (AdaB);
2. Bagging (Bagg);
3. LogitBoost (LogB);
4. L2-regularized L2-loss support vector classification dual

(L2L2SVMd);
5. L2-regularized L2-loss support vector classification primal

(L2L2SVMp);
6. L2-regularized L1-loss support vector classification dual

(L2L1SVMd);
7. L1-regularized L2-loss support vector classification

(L1L2SVMd);
8. L1-regularized logistic regression (L1logR);
9. L2-regularized logistic regression dual (L2logRd);

10. L2-regularized logistic regression (L2logR).

The first three classifiers are available in Weka package for data
mining10 (Hall et al., 2009) and the others are implemented in
liblinear library11 (Fan et al., 2008). The R platform for computa-
tional statistics12 was the environment chosen for implementing
the classification procedures. The libraries RWeka and LiblineaR
provided the integration between R (R Development Core Team,
2011) and the classification routines available in R public libraries.
LiblineaR routines provide linear SVM and logistic regression

9http://www.nitrc.org/frs/downloadlink.php/3424
10www.cs.waikato.ac.nz/ml/weka
11www.csie.ntu.edu.tw/∼cjlin/liblinear/
12www.r-project.org
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with different penalization and optimization functions (and thus
distinct sparsity in coefficients).

The AdaB (Freund and Schapire, 1996) is a machine learning
approach based on boosting, which is a general method to improve
the performance of classifiers. The basic idea is to repeatedly run
a weak learning algorithm (e.g., classification trees) several times
in an interactive manner. In an interactive algorithm, it increases
the weights in observations which are hard to be learnt by the
weak learning procedure. Bagg (Breiman, 1996) is an approach
based on aggregating different versions from the same weak classi-
fier (e.g., classification trees). Usually, multiple versions (multiple
random samples) of the classifier are trained and the prediction
is based on a plurality vote. The original study of Breiman (1996)
have shown that Bagg can increase the accuracy and stability of
the classifier. The LogB was introduced by Friedman et al. (1998)
and it is a boosting algorithm with the same cost function of the
logistic regression.

The other classifiers (from the LiblineaR package) are based
on logistic regression, linear SVM, sparse logistic regression, and
sparse SVM. The basic idea of linear SVM is to find a linear bound-
ary with maximum separation margin between the two groups to
be classified (see Alpaydin, 2010). The boundary is defined by a
linear combination of the predictor variables and is founded in
the structural risk minimization. This method was developed in
order to increase the accuracy when predicting new observations
(generalization power). Logistic regression fits a logistic function
to the probability of group assignment. This logistic curve is a
function of a linear combination of the predictor. Yamashita et al.
(2008) and Ryali et al. (2010) have shown that logistic regression
(mainly in its sparse version) can provide very accurate results in
decoding distinct brain states.

Suppose for each subject j (from a total number of subjects
N ), we have a set of k predictor variables in a vector zj=x1, x2, . . .

xk and the group of this subject is yj (specified by −1 or 1). The
classifiers try to find the best set of coefficients in a vector w which
minimizes the quantity:

0.5 ∗ w’w+
∑N

i
L
(
w; xiyi

)
,

where L is called loss-function. Basically, the SVM, logistic regres-
sion and their variations (sparse solutions) differ on the specifi-
cation of this function. The difference between primal and dual
versions is not in the loss-function, but on the implementation of
the optimization algorithm. A detailed explanation about each
considered loss-functions and the optimization details can be
found in Fan et al. (2008). In addition, the L1-regularized methods
(loss-function) also include an embedded feature selection which
penalizes features with low weights, setting them to zero, conse-
quently, providing a sparse solution. Thus, the predictor features
with non-null coefficients can be interpreted as the ones chosen by
the classifier as containing discriminant information to separate
the groups.

PERFORMANCE COMPARISON
After image preprocessing and features extraction (Figure 1), the
accuracy of each classifier was estimated. The evaluation of the
extracted features and classifiers was carried out by using a total

of 929 fMRI scans, i.e., 759 subjects released as the labeled data to
train the classifiers, and the unlabelled scans of 170 subjects (group
labels released after the competition) used to test the classifiers.
In order to evaluate the stability and variability of the classifiers,
the evaluation was carried out using Monte Carlo subsampling.
At each iteration (from a total of 100), the data of 100 subjects
from the 759 labeled subjects were randomly sampled without
replacement. This subsample was then used as the training data
for each of the 10 classifiers and to predict the label of the 170
subjects of the test data. This approach provided a set of mea-
sures of sensitivity and specificity at each iteration, which were
then used to calculate descriptive statistics for each classifier. We
chose Monte Carlo subsampling instead of leave-one-out cross-
validation because the sample is relatively large, and thus, it may
provide information about the stability (variability) of each classi-
fier. Although the ADHD-200 sample is unbalanced, we prefer to
train the classifiers using random sampling instead of constrain-
ing the groups to have the same size, because we believe this would
be a more realistic scenario. The average sensitivity and specificity
was calculated as an additional measure and we refer to them
as the “total score.” The expected value of the total score in the
case of classification by chance is 0.5. Regarding the combined vs.
inattentive ADHD classification, the same pipeline and evaluation
approach were used to classify the two subtypes. In this case, the
sensitivity refers to the former group and specificity to the latter.
In addition, the scores from the released test set (170 subjects)
when training the classifiers using the whole training sample (759
subjects) were also computed.

IDENTIFICATION OF DISCRIMINATIVE REGIONS
To the best of our knowledge, there is no established approach
to evaluate the relevance of each feature as containing predic-
tive information. Furthermore, since each classifier is based on
different algorithms and concepts, a general optimal approach
applicable to all classifiers is not available. The current study is
neither focused on analyzing how each classifier used each feature
to generate the predictions nor on evaluating or comparing the
relevance of each feature for each classifier. The main objective of
this study was to evaluate the performance of different classifiers.
However, the creation of brain maps depicting the relevant fea-
tures, which are common to all classifiers, might provide insightful
information about neural substrates of ADHD.

We tackle this issue by using a very simple and general approach,
based on feature elimination and classifiers’ voting. All classifiers
were trained using the full set of 759 subjects of the labeled data.
The test data was then used to obtain predictions from each clas-
sifier and the final prediction was based on the most voted label.
After computing the final prediction for each subject from the test
data, the “global accuracy” (in the test data) was calculated. In the
following, the classifiers were then re-trained using the training
data but removing one feature at a time from the feature set. Then,
the predictions for the test data were obtained and the“feature-out
accuracy” based on classifiers vote was calculated. The difference
between the feature-out and global accuracy was then considered
to be the measure of the relevance of each feature left-out in dis-
criminating the two groups of interest. Discriminative brain maps
were then built to depict the 5% most relevant features from this
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general evaluation. When two or more modalities of features (e.g.,
ReHo and fALFF) are being considered as predictors in the same
classifier, the results are displayed in separate brain maps for each
modality for visualization purposes.

RESULTS
Boxplots showing the classifiers performance for controls vs.
ADHD (features: ReHo+fALFF) and combined vs. inattentive
ADHD (features: ReHo+fALFF+RSN4) predictions are presented
in Figures 2 and 3, respectively (see Table 2; Tables A1 and A2 in
Appendix for descriptive measures). The results of performance
when using each feature modality separately can be found in Sup-
plementary Material. Basically, Figures 2 and 3 show the results of
the best combination of the features, when considering the total
score.

In the case of controls vs. ADHD predictions, it was found that
the ReHo and fALFF can separately (see Supplementary Mater-
ial) and jointly (Figure 2) provide some information about the
class of the subjects (median score near 0.54, but 75% of Monte
Carlo resampling resulted in scores greater than 0.5, as shown by
the boxplots). In addition, although the sensitivity and specificity
measures were different between the classifiers (which is expected
since one may compensate the other), the total scores were approx-
imately the same independently of the method used. On the other
hand, contrary to our expectation, the RSN4 was not relevant in
this case, providing results near chance (median of total score
near 0.5).

Regarding the results of combined vs. inattentive ADHD
classification, the total score levels of all classifiers (Figure 3)
were considerably higher than the controls vs. ADHD case
(0.67 for L2logRd and L2logR). However, all three modalities
(ReHo+fALFF+RSN4) were informative in this case, both sep-
arately as well as jointly (see Supplementary Material). In this
case, the classifiers based on SVM and penalized logistic regres-
sion (from LiblineaR package) seem to have superior performance
when compared to AdaB, Bagg, and LogB.

Complementary to the previous results, the scores of the clas-
sifiers trained with the entire training dataset of 759 subjects are
presented in Table 2. Note that these scores are close to the mean
scores of Monte Carlo subsampling described previously. In addi-
tion, Table 2 also suggests that the scores variability of Bagg in
TD vs. ADHD classification was greater than the other methods.
Although not in the scope of the current study, leave-one-subject-
out and K-fold cross-validation results based on the whole sample
(combining both released train and test sets in the same sample)
are described in Table A3 in Appendix.

The discriminant regions for controls vs. ADHD classification
and combined vs. inattentive are shown in Figures 4 and 5, respec-
tively. Apparently, in the control vs. ADHD case, the discriminative
information seems to be distributed in several brain regions both
for ReHo and fALFF maps. To compliment this, the RSN4, ReHo,
and fALFF maps of combined vs. inattentive classification also
depicts several spread brain regions, although the location of the
discriminative information seems to be more focal and sparse than
control vs. ADHD classification. However, each one of the three
maps highlight different brain regions, suggesting that depending

Table 2 | Classification scores (sensitivity+specificity)/2 of the mean

from Monte Carlo subsampling scores (and respective standard

deviation) and when training the classifiers using all released training

sample (759 subjects) and predicting the released test sample (170

subjects).

Monte Carlo (%) SD (%) All training set (%)

TD VS. ADHD

AdaB 53.6 3.9 55.5

Bagg 51.5 10.0 57.9

LogB 53.0 3.7 57.4

L2L2SVMd 52.7 3.6 52.3

L2L2SVMp 52.6 3.8 54.6

L2L1SVMd 52.7 3.6 52.3

L1L2SVM 52.7 3.5 55.8

L1logR 53.0 2.8 53.8

L2logRd 53.3 3.7 57.0

L2logR 53.2 3.8 57.0

COMBINED VS. INATTENTIVE

AdaB 58.6 5.9 55.4

Bagg 58.5 7.1 59.3

LogB 58.4 7.2 60.4

L2L2SVMd 66.0 5.9 64.1

L2L2SVMp 66.0 5.9 63.2

L2L1SVMd 66.0 5.9 64.1

L1L2SVM 62.4 6.5 59.4

L1logR 64.3 6.0 63.2

L2logRd 67.0 5.6 65.1

L2logR 66.9 5.7 64.1

These results are based on ReHo+fALFF features in TD vs. ADHD classification

and ReHo+fALFF+RSN4 in combined vs. inattentive ADHD classification.

on the feature modality, the relevant information is not necessary
in the same regions.

DISCUSSION
In the current study, we investigated the predictive accuracy of
different machine learning and feature extraction algorithms for
the classification of TD controls vs. ADHD patients and com-
bined vs. inattentive ADHD. Our main concern was to compare
the performance of the classifiers and also to evaluate the dis-
criminant information contained in fALFF, ReHo, and RSN maps.
We provided a systematic comparison of these methods using
the ADHD-200 Consortium dataset released by the ADHD-200
competition (in September 2011).

The first point to be discussed is that the scientific commu-
nity had a fundamental role in the implementation of the current
study. The ADHD-200 consortium provided a large multicenter
neuroimaging database and excluding some few exceptions, cur-
rent studies exploring the predictive power of the state-of-the-art
classifiers and neuroimaging in clinical applications report find-
ings from relatively small samples (tens of subjects). In addition,
the community has benefited considerably from the work of the
Neurobureau and several collaborators, which preprocessed the
enormous amount of raw data. These contributions were crucial
since they allowed the participation of researchers from outside of
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FIGURE 2 | Boxplots of the performance measures in control vs. ADHD patients classification when using fALFF+REHO features.

the neuroimaging community and were extremely helpful to the
researchers from the community, facilitating the features extrac-
tion implementation. The Neurobureau and the collaborators who
provided the scripts for image processing motivated an innovative
and multi/interdisciplinary research during the ADHD-200 com-
petition. As described previously, the RSN, ReHo, fALFF maps,
and CC400 atlas, which had a pivotal role in this study, were
obtained via Neurobureau. In addition, the classification routines
were also obtained from the scientific community via libraries Lib-
lineaR and RWeka from the R-project platform for Computational
Statistics.

The main findings of the current study can be summarized
under two aspects: classifiers performance and identification of

discriminative regions. The boxplots presented in Figure 2 suggest
that the feature extraction and classification procedures considered
were not effective in providing relevant information to distinguish
ADHD patients from TD controls. Interestingly, all 10 classifiers
had equivalent performance in this low accuracy rate, which may
suggest that the chosen features were not highly discriminative
at all. One finding which went contrary to our expectation was
the poor accuracy of the classifiers when using the coefficients of
RSN4 as features. Actually, we had chosen this feature inspired by
the results of correlation analysis from Castellanos et al. (2008)
and Weissman et al. (2006), who demonstrated that the posterior
cingulate (PCC), one of the hubs in default-mode-network, has a
pivotal role in attention maintenance and ADHD.
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FIGURE 3 | Boxplots of the performance measures in combined vs. inattentive ADHD patients classification when using fALFF+REHO+RSN4 features.

The classification between combined vs. inattentive ADHD
(Figure 3) seems to be more promising and informative, not only
because the prediction accuracies were considerably higher than
the previous case but also because the performances of the tested
classifiers were not equivalent. The best classifiers in this case were
the L2-regularized logistic regression in dual (L2logRd) and L2-
regularized logistic regression (L2logR), which are basically the
same classifier but with a different implementation of parame-
ters optimization. The median scores were both 0.67, indicating
that the three features explored (ReHo, fALFF, and RSN from ICA
maps) indeed contain relevant information to distinguish the two
groups. Note that each one of these features (see boxplots in Sup-
plementary Material) is discriminative not only in a joint analysis

using the three modalities simultaneously as input to the classi-
fier, but also in separate independent analysis. This is an important
finding which reinforces the existence of quantitative and objective
measures from functional brain images unveiling some charac-
teristics of functional differences between the two subtypes of
ADHD. Interestingly, both regularized SVM and regularized logis-
tic regression methods provided higher accuracies when compared
to Boosting and Bagg methods. We believe that this result can
be explained by the fact that the former have more emphasis in
structural risk minimization and in finding sparse solutions. Thus,
they are more suitable in cases of high dimensionality. In other
words, the way they handle overfitting problems results in better
properties when predicting new observations.
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FIGURE 4 | Brain mapping of 5% regions containing most
discriminative information in control vs. ADHD patients classification
when using fALFF+REHO features.

The discriminant maps in Figures 4 and 5 were built in order
to identify the regions from containing relevant information for
classification. These figures highlight the regions that, if removed
from the features set, will lead to a decrease in prediction accuracy
in most classifiers. However, the brain mapping results suggest
that the predictive information is not restricted to very few and
sparse regions, but it is distributed over the whole brain. One of
the advantages of machine learning classifiers when compared to
massive-univariate t -tests or GLM is the ability to identify and use
spatially distributed subtle differences to make predictions, even
in cases in which different modalities (e.g., ReHo and fALFF) are
combined (Ecker et al., 2010). In this sense, these findings point
toward the investigations of multiple systems spread across the
whole brain and not only the so called “blobology” confined to
single or few regions, which is very common in neuroimaging lit-
erature. This is not an unexpected result, but additional studies
are still necessary in order to obtain sufficient elements that are
essential to the interpretation and comprehension of the implica-
tion of these findings. Since the main aims of the current study is
the evaluation of clinical potential of features extraction and clas-
sifiers in ADHD and not answering a specific question or testing
a neurobiological model, we chose to avoid elaborating conjec-
tures or possible explanations about the regions highlighted in
discrimination maps.

One of the limitations of this study and ADHD-200 sample has
already been pointed out by the results of Alberta Team during the
ADHD-200 competition: the demographic data (age, gender, IQ,

etc) of the samples are not fully matched and thus, may contain
discriminative information for group’s prediction. On the other
hand, we argue that it would be unrealistic (and not meaning-
ful from a clinical perspective) to have a complete homogeneous,
controlled, and perfect matched samples, since it is already know
that some demographic and behavioral data are indeed associated
with ADHD. Actually, we also believe this is not a crucial point,
so long as classification methods are not used as the main diag-
nostic reference but are used to provide complementary evidence
and support. A second limitation to be mentioned is that we did
not consider any brain region masking based on previous infor-
mation from the literature. We chose to apply a more exploratory
(whole brain) approach to investigate discriminant information
in the data. However, the accuracy of the classifier could be higher
if only the features from “a priori” regions known to be relevant
were defined. Since the association between ADHD and the fea-
ture extraction methods are still in the initial stages, we prefer
not to consider spatial constraints in our analysis. Interestingly,
the classification results described in Table A3 in Appendix based
on leave-one-subject-out and K-fold cross-validation using the
whole sample (combining both train and test subjects released by
the competition) indicate: (i) an increase in TD vs. ADHD score
and a better performance of Weka classifiers, and (ii) a decrease
in combined vs. inattentive score, when compared to the scores
presented in Table 1. The results suggest an heterogeneity between
train and test sets released by the competition. Details about the
selection of train and test subjects were not provided by the compe-
tition but it was previously informed that the data from other sites
would be part of the test set. Although the investigation of cohort
effects and heterogeneity between train and test sets is relevant,
in the current study, we limited the exploration to the context of
ADHD-200 competition. Further exploration based on the whole
sample and information about test subjects selection are extense
but necessary to disentagle these issues. Finally, artifacts related
to head and micro movements inside the scanner have been gain-
ing attention in resting state research. Some studies (Power et al.,
2012; Satterthwaite et al., 2012; Van Dijk et al., 2012) suggest that
conventional motion-correction preprocessing are not sufficient
to reduce bias in the analysis. The three features used in the cur-
rent study were extracted using conventional motion-correction
preprocessing (provided by Neurobureau).

The ADHD-200 completion is only the beginning of a new era
of data and expertise sharing. Since the consortium has already
released the complete data, we expect a big wave of studies using
sophisticated data mining methods over the next few years. These
studies will offer a detailed investigation of yet unexplored char-
acteristics of neuroimaging data, which will play a crucial role
to define more sensitive/specific features and also to develop new
feature extraction methods. In this study, only three feature extrac-
tion methods were evaluated (ReHo, fALFF, and ICA) but other
approaches can also be applied to the same data. In addition,
although most classifiers have shown approximately the same
performance, the accuracy was more dependent on the features,
highlighting how crucial is the choice of the predictor variables.
Finally, we hope that the ADHD-200 competition has inaugurated
a new paradigm in Neuroscience research, strongly founded on
public data sharing and interdisciplinary collaborations.
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FIGURE 5 | Brain mapping of 5% regions containing most discriminative information performance in combined vs. inattentive ADHD patients
classification when using fALFF+REHO+RSN4 features.
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APPENDIX

Table A1 | Descriptive statistics of the performance measures inTD control vs. ADHD patients classification when using fALFF+REHO features.

Mean SD Median Ql Q3 Min Max

SPECIFICITY

AdaB 0.680 0.128 0.702 0.585 0.777 0.330 0.947

Bagg 0.807 0.181 0.851 0.766 0.907 0.000 1.000

LogB 0.679 0.102 0.681 0.625 0.747 0.404 0.915

L2L2SVMd 0.616 0.087 0.617 0.561 0.681 0.394 0.819

L2L2SVMp 0.626 0.086 0.617 0.572 0.691 0.404 0.830

L2L1SVMd 0.616 0.087 0.617 0.561 0.684 0.394 0.819

L1L2SVM 0.626 0.096 0.638 0.561 0.691 0.372 0.840

L1logR 0.649 0.102 0.665 0.585 0.713 0.383 0.840

L2logRd 0.602 0.089 0.617 0.543 0.662 0.394 0.809

L2logR 0.603 0.088 0.612 0.543 0.670 0.394 0.819

SENSITIVITY

AdaB 0.392 0.127 0.396 0.286 0.484 0.143 0.688

Bagg 0.222 0.134 0.221 0.117 0.312 0.000 0.532

LogB 0.381 0.106 0.377 0.312 0.445 0.143 0.675

L2L2SVMd 0.438 0.072 0.429 0.390 0.494 0.182 0.610

L2L2SVMp 0.426 0.076 0.429 0.373 0.481 0.182 0.571

L2L1SVMd 0.438 0.072 0.429 0.390 0.494 0.182 0.597

L1L2SVM 0.428 0.087 0.429 0.364 0.497 0.234 0.636

L1logR 0.410 0.094 0.409 0.334 0.468 0.247 0.688

L2logRd 0.464 0.075 0.468 0.425 0.519 0.221 0.649

L2logR 0.462 0.073 0.455 0.416 0.506 0.221 0.649

SCORE

AdaB 0.536 0.039 0.534 0.514 0.561 0.421 0.646

Bagg 0.515 0.100 0.533 0.502 0.560 0.000 0.631

LogB 0.530 0.037 0.532 0.510 0.550 0.435 0.628

L2L2SVMd 0.527 0.036 0.529 0.507 0.550 0.437 0.637

L2L2SVMp 0.526 0.038 0.526 0.503 0.549 0.435 0.633

L2L1SVMd 0.527 0.036 0.528 0.506 0.550 0.437 0.637

L1L2SVM 0.527 0.035 0.526 0.504 0.557 0.440 0.594

L1logR 0.530 0.028 0.531 0.507 0.549 0.462 0.630

L2logRd 0.533 0.037 0.534 0.508 0.561 0.442 0.605

L2logR 0.532 0.038 0.534 0.505 0.562 0.427 0.608
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Table A2 | Descriptive statistics of the performance measures in combined vs. inattentive ADHD patients classification when using

fALFF+REHO+RSN4 features.

Mean SD Median Ql Q3 Min Max

SPECIFICITY

AdaB 0.643 0.114 0.647 0.569 0.706 0.353 0.902

Bagg 0.760 0.117 0.765 0.667 0.843 0.373 0.961

LogB 0.645 0.094 0.647 0.588 0.706 0.373 0.863

L2L2SVMd 0.664 0.097 0.667 0.608 0.745 0.431 0.902

L2L2SVMp 0.660 0.090 0.667 0.588 0.725 0.451 0.902

L2L1SVMd 0.665 0.097 0.657 0.608 0.745 0.431 0.902

L1L2SVM 0.647 0.085 0.647 0.588 0.706 0.451 0.843

L1logR 0.665 0.093 0.667 0.608 0.745 0.451 0.902

L2logRd 0.647 0.094 0.647 0.588 0.706 0.412 0.902

L2logR 0.649 0.094 0.647 0.588 0.706 0.412 0.902

SENSITIVITY

AdaB 0.528 0.166 0.519 0.423 0.625 0.115 0.923

Bagg 0.411 0.188 0.385 0.269 0.538 0.038 0.846

LogB 0.524 0.153 0.538 0.423 0.615 0.192 0.885

L2L2SVMd 0.656 0.123 0.654 0.577 0.769 0.308 0.885

L2L2SVMp 0.660 0.117 0.673 0.577 0.731 0.346 0.923

L2L1SVMd 0.655 0.122 0.654 0.577 0.769 0.308 0.885

L1L2SVM 0.601 0.138 0.615 0.538 0.692 0.192 0.923

L1logR 0.622 0.133 0.615 0.538 0.731 0.269 0.885

L2logRd 0.693 0.117 0.692 0.615 0.769 0.423 0.962

L2logR 0.689 0.117 0.692 0.615 0.769 0.423 0.962

SCORE

AdaB 0.586 0.059 0.588 0.542 0.631 0.447 0.729

Bagg 0.585 0.071 0.585 0.535 0.642 0.429 0.727

LogB 0.584 0.072 0.589 0.544 0.631 0.399 0.737

L2L2SVMd 0.660 0.059 0.665 0.631 0.693 0.438 0.815

L2L2SVMp 0.660 0.059 0.669 0.629 0.689 0.438 0.844

L2L1SVMd 0.660 0.059 0.669 0.631 0.693 0.438 0.815

L1L2SVM 0.624 0.065 0.631 0.592 0.670 0.449 0.757

L1logR 0.643 0.060 0.651 0.602 0.689 0.468 0.748

L2logRd 0.670 0.056 0.670 0.641 0.708 0.515 0.834

L2logR 0.669 0.057 0.674 0.640 0.699 0.476 0.834

Frontiers in Systems Neuroscience www.frontiersin.org September 2012 | Volume 6 | Article 68 | 13

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Sato et al. Pattern recognition methods in ADHD

Table A3 | Classification scores [sensitivity+ specificity]/2 of the leave-one-subject-out (LOSO) and k-fold cross-validation (30 subjects at each

fold) when training the classifiers using all released subjects by ADHD-200 competition (train and test sets).

LOSO (%) k-fold (%)

TD VS. ADHD

AdaB 63.4 59.3

Bagg 61.7 58.2

LogB 64.3 63.7

L2L2SVMd 59.0 60.4

L2L2SVMp 58.9 61.2

L2L1SVMd 59.6 60.1

L1L2SVM 59.9 61.2

L1logR 57.8 61.5

L2logRd 58.4 62.4

L2logR 58.4 62.4

COMBINED VS. INATTENTIVE

AdaB 53.2 56.2

Bagg 60.2 58.4

LogB 58.7 53.0

L2L2SVMd 56.5 54.7

L2L2SVMp 58.0 55.0

L2L1SVMd 56.9 54.7

L1L2SVM 59.1 53.6

L1logR 61.3 54.7

L2logRd 57.6 55.5

L2logR 58.0 57.4

These results are based on ReHo+fALFF features in TD vs. ADHD classification and ReHo+fALFF+RSN4 in combined vs. inattentive ADHD classification.
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