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The prefrontal cortex is activated during working memory, as evidenced by fMRI results

in human studies and neurophysiological recordings in animal models. Persistent activity

during the delay period of working memory tasks, after the offset of stimuli that subjects

are required to remember, has traditionally been thought of as the neural correlate of

working memory. In the last few years several findings have cast doubt on the role

of this activity. By some accounts, activity in other brain areas, such as the primary

visual and posterior parietal cortex, is a better predictor of information maintained in

visual working memory and working memory performance; dynamic patterns of activity

may convey information without requiring persistent activity at all; and prefrontal neurons

may be ill-suited to represent non-spatial information about the features and identity of

remembered stimuli. Alternative interpretations about the role of the prefrontal cortex

have thus been suggested, such as that it provides a top-down control of information

represented in other brain areas, rather than maintaining a working memory trace itself.

Here we review evidence for and against the role of prefrontal persistent activity, with a

focus on visual neurophysiology. We show that persistent activity predicts behavioral

parameters precisely in working memory tasks. We illustrate that prefrontal cortex

represents features of stimuli other than their spatial location, and that this information

is largely absent from early cortical areas during working memory. We examine memory

models not dependent on persistent activity, and conclude that each of those models

could mediate only a limited range of memory-dependent behaviors. We review activity

decoded from brain areas other than the prefrontal cortex during working memory and

demonstrate that these areas alone cannot mediate working memory maintenance,

particularly in the presence of distractors. We finally discuss the discrepancy between

BOLD activation and spiking activity findings, and point out that fMRI methods do not

currently have the spatial resolution necessary to decode information within the prefrontal

cortex, which is likely organized at the micrometer scale. Therefore, we make the case

that prefrontal persistent activity is both necessary and sufficient for the maintenance of

information in working memory.
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INTRODUCTION

Working memory is the ability to maintain and manipulate information in mind, over a time span
of seconds (Baddeley, 2012). Thememory system storing information for a few seconds was termed
“short-term memory” in the classical, three-store model of memory (Atkinson and Shiffrin, 1968).
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The modern definition of working memory emphasizes its
dynamic nature of representing and manipulating information
originating from the environment or retrieved from long-term
memory, rather than being a passive conduit of information
into the long-term memory store (Baddeley, 2003; Smith and
Kosslyn, 2007). In recent years, some authors have reserved
the term “working memory” to refer specifically to complex
information that needs to be manipulated; the term “visual short
termmemory” has been used to denote memory of simple stimuli
(e.g., colored squares) that needs to be maintained without
any further transformation (Todd and Marois, 2004). Although
important in its own right, working memory is a core component
of a number of other cognitive functions, including language,
problem solving, reasoning, and abstract thought (Baddeley,
1992). Its central role in cognitive function explains the intense
research interest that spans several decades.

Studies of lesions in humans and non-human primates first
implicated the cortical surface of the frontal lobe as the site
of working memory function (Jacobsen, 1936; Milner, 1963).
Lesions of the prefrontal cortex (PFC—Figure 1) rendered
subjects unable to perform even simple tasks requiring working
memory. A wide range of impairments in tasks requiring
manipulation of information in memory has been confirmed
in recent lesion studies (Rossi et al., 2007; Buckley et al.,
2009). Subsequently, neurophysiological experiments identified
neurons that not only respond to sensory stimuli, but remain
active during a period after a stimulus was no longer present;
this “persistent activity” therefore provided a neural correlate of
working memory (Fuster and Alexander, 1971; Funahashi et al.,
1989). Visuo-spatial working memory has been a particularly
fruitful model since spatial location can be varied parametrically
and the activity of neurons representing each location can
be studied systematically. Persistent activity in the prefrontal
cortex has been shown to explain many aspects of behavioral
performance in visuo-spatial working memory tasks (Qi et al.,
2015b).

FIGURE 1 | Diagram of the monkey brain, with four cortical regions

implicated in visual working memory labeled: prefrontal cortex (PFC),

posterior parietal cortex (PPC), primary visual cortex (V1), and inferior

temporal cortex (IT).

The role of prefrontal cortex in working memory has
been re-evaluated over the past few years (Sreenivasan et al.,
2014a; D’Esposito and Postle, 2015) as several sources of
experimental evidence have challenged the traditional views on
prefrontal persistent activity. First, neurophysiological studies
have demonstrated that persistent discharges are not limited
to the prefrontal cortex, but are widespread in a network of
cortical and subcortical areas, thus raising questions on the
role of persistent firing in the prefrontal cortex (Constantinidis
and Procyk, 2004; Pasternak and Greenlee, 2005). Secondly,
phenomena such as repetition suppression illustrate that the
activity of neurons may be modulated by prior stimuli in
the absence of persistent activity (Grill-Spector et al., 2006).
Third, human fMRI studies have been successful in decoding
information held in memory from visual cortex (Harrison and
Tong, 2009) and have identified correlates of working memory
capacity in the posterior parietal cortex (Todd and Marois,
2004, 2005; Xu and Chun, 2006). Therefore, alternative models
based on interpretation of BOLD signals (which do not directly
measure spiking activity) ascribe control processes to PFC while
reserving the representation of working memory for the sensory
cortices (Curtis and D’esposito, 2003; D’Esposito and Postle,
2015).

In this review, we examine the role of prefrontal cortex
in working memory. We take a position largely in favor of
the classical model of working memory being represented in
the persistent activity of prefrontal neurons based on evidence
from neurophysiological experiments in non-human primates
and critical evaluation of human imaging studies. We begin by
examining the anatomical basis of working memory and the
specializations of the prefrontal cortical circuit. We then review
the range of phenomena accounted for by persistent activity in
visuo-spatial working memory, illustrating the enduring appeal
of the model. Activation during spatial working memory may
be viewed as equivocal about the role of the prefrontal cortex
because persistent activity might be explained by top-down
control processes as well as by working memory itself. We
therefore discuss the evidence of prefrontal persistent activity for
other content types of workingmemory.We then reviewmemory
models not dependent on persistent activity and posit that these
could only mediate a limited range of working memory tasks.
We finally review activity decoded from brain areas other than
the prefrontal cortex during working memory, concluding that
the ultimate source of this activation is the prefrontal cortex,
and these areas alone are not sufficient for mediating working
memory maintenance.

ANATOMICAL ORGANIZATION OF
WORKING MEMORY CIRCUITS

To understand why prefrontal cortex may represent robustly
remembered information, it is instructive to review the
anatomical basis of persistent activity. The primary source
of sustained excitation is thought to be reverberating activity
through layer II/III horizontal excitatory connections between
prefrontal neurons with similar stimulus tuning (Constantinidis
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and Wang, 2004). PFC neurons receive horizontal connections
from clusters of cells (Figure 2), arranged in stripe-like fashion,
0.2–0.8mmwide (Goldman-Rakic, 1984; Levitt et al., 1993; Lund
and Lewis, 1993; Kritzer and Goldman-Rakic, 1995; Pucak et al.,
1996). Persistent firing between layer II/III neurons also depends
on glutamate stimulating NMDA receptors (Wang et al., 2013).
The relatively slow time constant of NMDA receptors allows the
post-synaptic neuron to remain at a relatively depolarized state
for a longer interval, compared to neurons containing AMPA
receptors alone; without NMDA receptors, an unrealistically
high level of firing rate would be required to sustain persistent
activity (Wang, 2001). Additionally, sharper tuning for spatial
location arises fromGABAergic interneurons, which are essential
in tuning the activity to represent specific spatial information
(Rao et al., 1999, 2000; Constantinidis and Goldman-Rakic,
2002).

Several anatomical specializations endow the prefrontal
cortex with unique properties in maintaining persistent activity.
Prefrontal pyramidal neurons exhibit the most extensive
dendritic trees and highest number of spines of any cortical
neurons, some 23 times higher than the number of spines
of layer III pyramidal cells in V1 (Elston, 2000, 2003). As
a consequence, the spatial spread of functional interactions
between neurons within the prefrontal cortex is more extensive
than of neurons within the posterior parietal cortex (Katsuki
et al., 2014). Additionally, dopaminergic innervation terminates
predominantly in the frontal lobe and can improve the signal-
to-noise ratio of persistent activity, mainly via enhancement of
the NMDA conductance (Yang and Seamans, 1996; Durstewitz
et al., 2000; Seamans et al., 2001; Chen et al., 2004). Specialized
GABAergic types have also been implicated in stabilizing
persistent activity in the face of distraction, and physiological
signatures of these neurons have been specifically identified in
the prefrontal cortex (Wang et al., 2004; Zhou et al., 2012). All
of these specializations suggest that the prefrontal cortex is better

suited to generate and sustain persistent activity than its afferent
areas (Qi et al., 2015b).

PERSISTENT ACTIVITY IN VISUO-SPATIAL
WORKING MEMORY

The most extensively used paradigm to study visuo-spatial
working memory involves the oculomotor delayed response
(ODR) task (Figure 3A), which presents subjects with a brief
stimulus and, after a delay period, requires an eye movement
to its remembered location (Funahashi et al., 1989; Rao et al.,
1999; Constantinidis et al., 2001a). Another common task, the
delayed alternation task, similarly requires a (hand or eye)
movement to one of two locations, alternating in successive trials,
therefore requiring memory for the location of the preceding
choice (Kubota and Niki, 1971; Niki, 1974). Persistent activity
selective for the spatial location of the remembered stimulus
is apparent in a population of prefrontal neurons, comprising
approximately a third of the total prefrontal neurons (Qi and
Constantinidis, 2013). The location of the preceding stimulus
in such tasks is sometimes confounded with the preparation for
the motor response; however, more complex tasks reveal that the
majority of prefrontal neurons represent the former rather than
the latter. For example, when a task requires monkeys to make an
eye movement toward a location other than the location of the
visual stimulus, the majority of prefrontal neurons represent the
location of the preceding stimulus rather than the location of the
impeding saccade. This is the case in the delayed anti-saccade task
(Funahashi et al., 1993b) and the rotational ODR task (Takeda
and Funahashi, 2002).

A recent study revives the idea that persistent activity
generated during ODR tasks represents motor preparation rather
than memory for the stimulus (Markowitz et al., 2015). The
study used two versions of the ODR task, one in which the

FIGURE 2 | Schematic diagram of intrinsic connections between neurons within the prefrontal cortex. Neurons with similar tuning (memory field

representing upper right location) are drawn in red color. Pyramidal neurons excite each other through reciprocal connections. Stripes of neurons with similar spatial

tuning are repeated across the surface of the cortex. Interneurons inhibit other pyramidal neurons with different spatial tuning (memory field representing lower right

location) drawn in blue color.
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FIGURE 3 | (A) Sequence of events in the Oculomotor Delayed Response

(ODR) task. Successive frames represent the fixation period, stimulus

presentation, delay period, and saccade toward the remembered stimulus

location. (B) Delayed Match to Sample task. Monkeys first foveate the fixation

point and pull a lever. They are then presented with a cue stimulus. This is

followed by a random (0–2) number of non-match stimuli, separated by delay

periods. When a match stimulus appears at the same location as the cue, the

monkeys are required to release the lever. (C) Match/Non-match task. While

monkeys fixate, two stimuli are presented in sequence, separated by delay

periods. After another delay period, two choice targets are shown and the

monkey has to saccade to the green target if the second stimulus matched

the cue, and the blue stimulus, otherwise. (D) Schematic diagram of prefrontal

activity elicited by the stimulus that is sustained during the delay period in each

of the previous tasks.

stimulus appeared transiently (as in Figure 3A) and one in
which it remained visible for the entire interval until the motor
response. The conclusion that persistent activity represents
motor preparation was predicated entirely on the assumption
that memory storage is only mediated by neurons that exhibit
persistent activity after the stimulus has been turned off, but do
not continue to respond to the stimulus when it remains visible.
Neurons exhibiting continuous activation by visual stimuli were
considered “preparation” neurons, by default. This premise
is tenuous. Neither direct evidence nor network models are
available that would suggest that memory storage neurons are

not activated continuously by a prolonged stimulus. In turn, this
assumption leads to the conclusion that the activity of “storage
units,” thus defined, has no influence on recall performance or
other aspects of behavior in a memory task (Markowitz et al.,
2015). This is a questionable conclusion, in our view.

Persistent activity tuned for the location of a stimulus appears
in the prefrontal cortex even in tasks where the stimulus
does not immediately allow planning of a movement. In the
spatial delayed-match-to-sample task, subjects are required to
release a lever or press a button when a stimulus appears at a
previously cued location (Figure 3B); in the match/non-match
task, the monkeys have to saccade to a green or blue response
target depending on whether two stimuli presented in sequence
appeared at the same location or not (Figure 3C). In such
tasks, prefrontal neurons generate persistent activity following
the presentation of the original stimulus that is tuned for its
spatial location (Figure 3D), and not the preparation of a motor
response, the direction of which is not known until later in the
trial (Qi et al., 2010, 2011; Goodwin et al., 2012).

Persistent activity is not merely an epiphenomenon of spatial
working memory, either. The most straightforward evidence in
favor of this idea comes from analysis of error trials in the ODR
task, which are characterized by lower levels of delay period
activity (Funahashi et al., 1989; Zhou et al., 2013). In other words,
trials in which persistent activity is diminished are more likely
to result in errors. A near linear relationship between behavioral
performance and persistent activity can be also revealed in
tasks that modulate parametrically the discriminability of two
remembered targets (Constantinidis et al., 2001b).

Computational models provide a detailed picture of the
relationship between behavioral outcomes related to working
memory performance and persistent activity (Figure 4).
Persistent activity can be sustained in such models by virtue of
re-entrant connections between neurons with similar tuning
for stimulus properties, so that activation after afferent input
is maintained in the system (Figure 4A). Drifts in neuronal
activity across the network of prefrontal neurons (Figure 4B)
have been shown to predict precisely the relationship between
several aspects of firing rate and the endpoint of the saccade (the
spatial location being recalled by the monkey) in the ODR task
(Wimmer et al., 2014). For example, persistent activity recorded
from trials in which monkeys make eye movements deviating
clockwise vs. counterclockwise relative to the true location of
the stimulus yields slightly different tuning curves, as would be
expected if the location recalled was determined by the peak of
activity at the end of the delay period (Figure 4C). Similarly,
the variability of a neuron’s delay period activity (estimated by
the Fano factor of spike counts, i.e., the variance divided by the
mean) is maximal for inaccurate saccades to locations at the
flanks of the neuron’s tuning curve but lower for locations in the
peak or tail (Figure 4D). This counterintuitive finding is also
explained if one appreciates that small deviations in saccadic
endpoint correspond to the bump of activity shifting in one
direction or another, and that activity of a single neuron changes
most rapidly if the bump traverses the flank of its tuning curve
rather than its peak or tail. Finally, spike-count correlations of
two simultaneously recorded neurons are lowest and negative
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FIGURE 4 | (A) Simulated, network activity in the ODR task, following presentation of a cue at the 180◦ location. Abscissa represents time during the trial; ordinate

represents different neurons arranged based on their tuning. (B) Network activity illustrating drifts in the peak of activation during the delay period. Axes have been

rotated relative to (A). Color represents firing rate. The black triangle represents the cue position at the beginning of the delay period (encoded population activity on

the bottom graph). The red triangle represents the location decoded by the population activity at the end of the delay period. (C) Left, saccade endpoints in one

behavioral session divided into trials that landed clockwise (red) or counterclockwise (blue) relative to the cue stimulus position. Right, delay-period responses of one

neuron recorded during the same session. The triangles indicate the circular mean of the tuning curve obtained from trials that generated clockwise, or

counterclockwise saccadic deviations. (D) Left, schematic representation of four different delay period population activity profiles to the same 180◦ cue. Red lines

represent trials with saccadic endpoints closer to the target (accurate trials) and green lines represent trials farther from the target (inaccurate trials). Right, difference

between discharge variability in inaccurate and accurate trials depending on the location of the cue. Variability is maximal for cue appearing at the flanks of the

neuron’s tuning curve, where small deviations cause large differences in firing rate. (E) Left, schematic representation of delay period activity of two neurons recorded

simultaneously, whose tuning peaks lie at opposite sides of the activity bump. Right, trial-to-trial correlations are negative between these neurons as a bump in activity

leads to an increase in firing rate of one neuron with a decrease in the other neuron. Panel (A) adapted with permission from Renart et al. (2003); panels (B–E) from

Wimmer et al. (2014).

for inaccurate saccades when the cue appears between the peaks
of their tuning curves (Figure 4E). This result is also consistent
with the idea that working memory inaccuracies are caused by
drifts of persistent activity in the delay period, and when the
bump attractor randomly varies around a location between the
peaks of two neurons, it inevitably causes an increase in firing
rate for one neuron, but a decrease for the other. Importantly,
these findings do not hold for neurons that do not exhibit
persistent discharges, even though the latter are more numerous
in the prefrontal cortex (Wimmer et al., 2014).

Persistent activity in the prefrontal cortex has also been
shown to be subject to developmental changes, with lower levels
of persistent activity present in older monkeys (Wang et al.,
2011). This decline has been linked to alpha-adrenergic receptors.
Drugs targeting these can ameliorate the effects of age-related
cognitive deficits (Arnsten and Goldman-Rakic, 1985; Arnsten
et al., 1988), as well as increase persistent discharges to levels
seen in younger adults (Wang et al., 2011). An important concept
to consider is that persistent activity is not the same as a
generalized increase in neuronal excitability. For example, low

doses of a nicotinic alpha-7 agonist enhance spatially tuned
persistent activity but high doses produce non-specific excitation
that erodes the representation of the remembered spatial location
(Arnsten and Wang, 2016).

PERSISTENT ACTIVITY IN NON-SPATIAL
WORKING MEMORY

Prefrontal neurons generate discharges that represent other types
of information, in addition to spatial location. Ventrolateral
prefrontal cortex receives input from regions of the ventral visual
pathway, most importantly the inferior temporal cortex and
superior temporal gyrus (Petrides and Pandya, 1988; Webster
et al., 1994). Generally, smaller populations of prefrontal neurons
are tuned for object attributes such as geometric shape, color,
or complex features (e.g., specific faces), than spatial location; a
regional specialization is also present, with spatial information
more prevalent in the dorsolateral prefrontal cortex than the
ventrolateral prefrontal cortex (Meyer et al., 2011). Nonetheless,
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robust, stimulus-selective persistent activity has been described
in working memory tasks requiring subjects to remember the
identity and features of stimuli. Examples include stimuli defined
by simple, geometric shapes differing in color or luminance
(Quintana et al., 1988; Hoshi et al., 1998; Constantinidis et al.,
2001b; Sakagami et al., 2001; Averbeck et al., 2003; Inoue and
Mikami, 2006; Genovesio et al., 2009), complex images, such as
real objects and faces, or abstract pictures (Wilson et al., 1993;
Miller et al., 1996; O Scalaidhe et al., 1997, 1999; Rao et al., 1997;
Rainer et al., 1998; Rainer andMiller, 2000; Freedman et al., 2001;
Roy et al., 2014) and the direction of motion of a random-dot
stimulus that is always presented at the same location (Zaksas and
Pasternak, 2006; Mendoza-Halliday et al., 2014).

In recent years, it has been recognized that persistent activity
in the prefrontal cortex also represents information beyond the
characteristics of stimuli. Activity may represent the abstract
rules of the cognitive task subjects are required to perform (White
and Wise, 1999; Wallis et al., 2001), categories (Freedman et al.,
2001; Shima et al., 2007), and numerical quantities (Nieder et al.,
2002). It may be also related to perceptual decisions (Kim and
Shadlen, 1999; Barraclough et al., 2004), reward expectation
(Leon and Shadlen, 1999), and sequences of events or actions
(Averbeck et al., 2002; Inoue and Mikami, 2006; Sigala et al.,
2008; Berdyyeva and Olson, 2010). Persistent activity of single
neurons may represent more information than stimulus features
and task variables simultaneously (Rigotti et al., 2013). For
instance, persistent firing may represent different aspects of the
task demands as they change over time, thus providing dynamic
representations (Mante et al., 2013).

The realization that prefrontal activity is modulated by task
factors to such extent has led to a re-evaluation of the nature
of information represented in persistent activity (D’Esposito
and Postle, 2015). Taken to the extreme, this idea would
suggest that all stimulus-selective information that appears to
be represented in the prefrontal cortex is in fact related to
task rules or categorical judgments between alternatives rather
than representing the memoranda themselves. In an attempt to
pinpoint the nature of information represented in the prefrontal
cortex, some experiments have relied on working memory for
stimuli defined solely by elemental properties, such as direction
of motion or color, and found the ability of prefrontal cortex
to represent such features wanting. In an experiment requiring
subjects to remember the overall direction of motion of an initial
random-dot display and decide if the direction of a following
display was the same or different, prefrontal neurons exhibited
only transient representation of direction information in the
delay period (Zaksas and Pasternak, 2006). Another experiment
that required memory for the color of a stimulus revealed that
very few prefrontal neurons exhibited pure color information,
as opposed to information about its location (Lara and Wallis,
2014).

Ruling out prefrontal cortex as the cortical area mediating
the representation of object information in working memory
based on such negative findings appears premature. More
recent experiments have succeeded in revealing robust persistent
activity representing direction of motion throughout the delay
period of a working memory task in the prefrontal cortex (and

area MST) but not in area MT of the visual cortex, although
MT was robustly activated during the presentation of these
stimuli (Mendoza-Halliday et al., 2014). In the case of color, too,
activation of only a small proportion of prefrontal neurons, in
the order of 5–15% (Lara and Wallis, 2014) may be sufficient for
the representation of stimulus information. It is also possible that
color-selective neurons are concentrated in specific prefrontal
“patches” (Lafer-Sousa and Conway, 2013) and persistent activity
representing color information may be concentrated in such
modules rather than be diffused across the entire prefrontal
surface.

Persistent neuronal firing in prefrontal cortex has been
observed even in the absence of performance of a task, or
even learning of a task, while subjects view stimuli, passively.
Prefrontal neurons have thus been shown to generate persistent
discharges tuned for stimulus location and shape in monkeys
never trained to perform a working memory (or other cognitive)
task (Meyer et al., 2011; Meyers et al., 2012). The fact that
prefrontal neurons generate persistent activity when not required
to perform a working memory task is not incompatible with our
intuition of working memory, either. We are able to recall stimuli
we encounter even when we are not prompted to maintain them
in memory ahead of time (Qi et al., 2015b). Consistent with
this finding, recordings during passive fixation reveal persistent
discharges selective for faces in the ventrolateral prefrontal cortex
(O Scalaidhe et al., 1999). Prefrontal neurons also represent
stimulus features even when they are irrelevant for the task
at hand (Constantinidis et al., 2001b; Lauwereyns et al., 2001;
Donahue and Lee, 2015). This evidence argues that persistent
activity in the prefrontal cortex is sufficient to represent object-
related information in working memory. In Section Alternative
Working Memory Models, we will review the evidence that
prefrontal cortex is also necessary for this role.

ALTERNATIVE WORKING MEMORY
MODELS

In recent years, the role of persistent activity has come into
question by alternative models proposed to mediate working
memory. By some accounts, information can be maintained in
memory over a period of seconds through mechanisms other
than persistent discharges. We will examine three categories
of models here: non-spiking models dependent on synaptic
mechanisms, rhythmic-spiking models conveying information
based on the frequency and phase of discharges without
necessarily an increase in overall activity, and dynamic-spiking
models in which information is represented based on the pattern
of neurons that are active without an elevation of mean firing rate
across the population.

Non-spiking Models
Activity elicited after repeated presentation of the same
stimulus is typically reduced, a phenomenon termed repetition
suppression (Grill-Spector et al., 2006). As a result, the level of
response to a particular stimulus in the context of a working
memory task, such as the delayed match to sample task, can
be informative about whether it was preceded by the same
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stimulus or not; match suppression may signal that the sample
was the same as the match. This suppressed response to a
matching stimulus is observed even though several seconds may
intervene between the sample and match, and it does not require
persistent activity (Miller et al., 1991, 1996). Match suppression
(or enhancement, for some neurons) is observed for stimuli
matching in shape, color, and form, in spatial location, or in
direction of motion, in various cortical areas, including the
prefrontal, posterior parietal, and inferior temporal cortex (Miller
et al., 1991, 1996; Steinmetz et al., 1994; Zaksas and Pasternak,
2006; Woloszyn and Sheinberg, 2009). Furthermore, the extent
of response difference to matching and non-matching stimuli
has predictive power over behavioral performance, as it differs
systematically in correct and error trials (Zaksas and Pasternak,
2006; Qi et al., 2012).

Computational models have been proposed that could
account for such changes via mechanisms that do not depend
on spike generation, but instead involve modification of synaptic
strengths (Mongillo et al., 2008; Sugase-Miyamoto et al., 2008).
Such mechanisms may be mediated by calcium availability at the
presynaptic terminal, whose kinetics have a time constant in the
scale of seconds (Mongillo et al., 2008). The duration and stability
of working memory in such models may still be modulated by
spiking activity.

Repetition suppression is a robust phenomenon observed
across multiple cortical areas and the fact that the match/non-
match effect differs in correct and error trials offers compelling
evidence that memory performance has access to this activity.
However, it is a phenomenon limited to recognition memory
that may not even mediate representation of the identity of
the remembered stimulus, and it cannot account for working
memory performance in other tasks. It is hard to imagine an
equivalent role of synaptic mechanisms for tasks such as the
ODR, delayed alternation, N-back, or free recall tasks. Moreover,
other computational models show that even though preference
for a non-match over a match stimulus may be present in
individual neurons with no persistent activity, the phenomenon
may still be mediated by a network that depends on persistent
activity (Engel and Wang, 2011). It is still an open question,
therefore if synaptic mechanisms have a role in working memory
in the absence of persistent activity.

Oscillatory Models
Rhythmic activity has long been implicated in hippocampal-
dependent memory, and communication between the
hippocampus and prefrontal cortex, in rodents (Buzsaki,
2010). In the human literature, the frequency of oscillations
evident through MEG, EEG, and ECoG recordings has also
been associated with distinct working memory processes (Roux
and Uhlhaas, 2014). Recent neurophysiological studies in
non-human primates have begun to address more specifically
what role rhythmic firing may play in working memory (Siegel
et al., 2009; Buschman et al., 2012; Liebe et al., 2012; Salazar
et al., 2012; Brincat and Miller, 2015). The magnitude, frequency,
and phase of oscillations within the prefrontal cortex and
between the prefrontal cortex and other areas have been shown
to be modulated depending on stimulus and task information

(Buschman et al., 2012; Liebe et al., 2012). Therefore, information
about the stimulus held in memory or task to be performed
may be decoded based on these parameters. For example,
oscillatory synchronization between LFP signals recorded from
different sites within the prefrontal cortex has been shown to
be modulated based on which of two task rules a monkey is
performing (Buschman et al., 2012). The coherence in rhythmic
synchronization between neurons in prefrontal and posterior
parietal cortex has also been reported to be content dependent;
in other words, prefrontal and parietal neurons synchronize their
firing at specific frequencies, for different stimuli held in memory
(Salazar et al., 2012). The phase of rhythmic activity could
also differentiate information representing two sequentially
presented stimuli (Siegel et al., 2009).

Oscillatory activity is not incompatible with persistent activity.
For example, both robust persistent activity and gamma-band
rhythmicity have been reported during the delay period of the
ODR task (Pesaran et al., 2002), as well as the two-item memory
task described above (Siegel et al., 2009). It is an open question
whether oscillatory activity may dictate behavioral performance
in working memory tasks independently of persistent activity.

Dynamic Information Models
Information may be represented dynamically in a neuronal
population without having to be rhythmic. The precise pattern
of activation of different neurons at each time point during a
working memory task can be used to decode the identity of the
stimulus, even though overall activity during the delay period
is not significantly elevated above the baseline (Stokes et al.,
2013). This result provides yet another alternative mechanism of
working memory representation.

The existence of stimulus information that can be decoded by
the dynamic pattern of activation in the prefrontal population
(Stokes et al., 2013) presents challenges to the persistent activity
model. We should consider however that the stimuli used in the
Stokes et al. study are similar to those used in previous studies
where persistent activity was observed (Miller et al., 1996; Rao
et al., 1997; Rainer et al., 1998). It is possible therefore that a
population of neurons did generate persistent activity but might
have been too weak to detect when all neurons were averaged
together. The demonstration of a condition where persistent
activity is truly absent and information is encoded solely by
the dynamic pattern of information in neurons whose activity
is not modulated during working memory is an open question.
Furthermore, dynamic firing models have yet to establish what
aspects of information that can be decoded from the dynamic
representation of stimulus information can predict behavioral
variables, such as recall error rates, accuracy of recall, or reaction
time, to the extent that models of persistent activity have been
successful in doing (Wimmer et al., 2014).

Dynamic patterns of activation across the population of
neurons are not mutually exclusive with persistent activity either.
Dynamic activity informative about stimulus identity and task
rules has been observed even when persistent activity is present
in the population (Crowe et al., 2008; Meyers et al., 2012).
Different populations of neurons may also be active at different
time points of the ODR task representing stimulus attributes
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or response preparation (Markowitz et al., 2015). One possible
resolution to the two seemingly incompatible mechanisms of
information representation is found by analyzing the neuronal
population activity during the ODR task. Principal Component
Analysis reveals a dynamic, low-dimensional representation,
where stimulus location evolves dynamically in time after the
cue presentation, but different locations remain constrained in
separable subspaces (Roy et al., 2013). Persistent firing specific
for the location of a stimulus may thus sweep the population of
neurons, in a specific pattern, during the time course of a trial.

ROLE OF OTHER AREAS IN WORKING
MEMORY

Persistent discharges are not an exclusive property of the
prefrontal cortex. Neurons in premotor, parietal, cingulate, and
temporal association areas generate robust persistent activity,
as do subcortical structures including the basal ganglia and the
mediodorsal nucleus of the thalamus (Constantinidis and Procyk,
2004; Pasternak and Greenlee, 2005). The proposed alternative
mechanisms of memory maintenance reviewed before, and fMRI
findings in humans have expanded the list of potential sites of
memory into even more cortical areas, as early as the primary
visual cortex (Harrison and Tong, 2009). We will next review
the evidence of working memory representation in the posterior
parietal and inferior temporal cortex (for spatial and object
memory, respectively), and in visual cortical areas, including V1.

Posterior Parietal (PPC) and Inferior
Temporal (IT) Cortex
The posterior parietal and inferior temporal cortex represent the
two main cortical afferents of the prefrontal cortex, as they are
strongly interconnected with the dorsolateral and ventrolateral
prefrontal cortex, respectively (Constantinidis and Procyk, 2004).
Posterior parietal and dorsolateral prefrontal cortex share many
functional properties with respect to spatial working memory
(Rawley and Constantinidis, 2009) and both regions are activated
simultaneously in human imaging studies of working memory
(Jonides et al., 1993; Courtney et al., 1997; Owen et al., 1998;
Ungerleider et al., 1998; Marshuetz et al., 2000; Bunge et al.,
2001; Stern et al., 2001). Neurons in posterior parietal cortex
also generate persistent activity (Gnadt and Andersen, 1988),
and this has been shown to represent the remembered locations
of visual stimuli, independent of a planned motor response
(Constantinidis and Steinmetz, 1996). Tested with the ODR task,
virtually identical percentages of neurons exhibiting working
memory responses were observed in posterior parietal and
dorsolateral prefrontal areas (Chafee and Goldman-Rakic, 1998).

Responses of IT neurons related to object memory exhibit
many intriguing parallels with spatial working memory in
the posterior parietal cortex. IT cortex shares a number of
physiological properties with ventrolateral prefrontal cortex and
both exhibit memory-related activation. IT neurons discharge in
a persistent fashion after the offset of visual stimuli and their
activity encodes the features of the remembered stimulus (Fuster
and Jervey, 1981, 1982; Miyashita and Chang, 1988; Miller et al.,

1993; Nakamura and Kubota, 1995; Naya et al., 2001; Sigala and
Logothetis, 2002).

This simultaneous activation of the areas that are
interconnected with the prefrontal cortex during working
memory has inspired views that the prefrontal cortex does not
represent a memory trace for a particular item per se, but rather
an abstract representation, allocation of cognitive resources,
the focus of attention, or other top-down signals (Cowan,
1988; Miller and Cohen, 2001; Hazy et al., 2006; Postle, 2006;
D’Esposito, 2007). In this framework, the contents of memory
may be represented in PPC and IT, instead. Evidence against
this idea comes from memory tasks that require maintenance
in memory of an original item through sequential presentation
of distracting stimuli, such as the delayed match to sample
task. Both object and spatial versions of this task have been
developed. In the context of the object delayed-match-to-sample
task, persistent discharges of IT neurons are interrupted by
non-matching, distractor stimuli presented after the sample
(Miller et al., 1993). Conversely, responses in the ventral
prefrontal cortex are able to represent the actively remembered
sample’s feature throughout the trial regardless of the distractor
stimuli displayed (Miller et al., 1996). Equivalent findings have
been obtained in the posterior parietal cortex for the spatial
delayed-match-to-sample task (Katsuki and Constantinidis,
2012). Posterior parietal discharges represent the most recent
stimulus location and are disrupted by distracting stimuli
(Constantinidis and Steinmetz, 1996). Prefrontal neurons are
able to represent the location of the original stimulus held in
memory even after the appearance of distractors, in various
tasks (di Pellegrino and Wise, 1993; Qi et al., 2010; Suzuki and
Gottlieb, 2013).

Most recent studies have somewhat qualified these findings,
for example demonstrating that differences between IT/PPC
and prefrontal neurons in their ability to generate persistent
activity that survives distractors are qualitative rather than
quantitative (Woloszyn and Sheinberg, 2009; Qi et al., 2010),
and that prefrontal neurons may respond better to distractors
than actively remembered stimuli, in some tasks (Jacob and
Nieder, 2014; Qi et al., 2015a). Nonetheless, in the context of
the working memory tasks reviewed in the preceding paragraph,
performance of the task is simply not possible based on the
activation of the posterior parietal or inferior temporal cortex
alone. The link of prefrontal activation with performance of
working memory tasks that involve sequential presentation of
distracting stimuli is confirmed by human imaging studies, as
well: prefrontal activation is predictive of errors when activity
representing an initial item is not maintained, whereas parietal
cortex is indiscriminately activated by behaviorally relevant
stimuli and distractors, alike (Sakai et al., 2002). Accumulating
studies ascribing different roles in the activity of prefrontal and
parietal cortex in working memory (Jacob and Nieder, 2014; Qi
et al., 2015a), and functions such as attention and categorization
(Swaminathan and Freedman, 2012; Crowe et al., 2013; Ibos et al.,
2013), raise the alternative possibility that prefrontal and PPC/IT
cortex are specialized for different aspects of working memory,
as well as other cognitive functions (Katsuki and Constantinidis,
2012).
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An instance of such differentiation may be the reported role
of the posterior parietal cortex in determining the capacity of
working memory (Todd and Marois, 2004, 2005). Activation of
parietal cortex revealed by fMRI best predicts the number of
simultaneous items maintained in working memory, relative to
both earlier areas and the prefrontal cortex (Todd and Marois,
2004). The single-neuron basis of the phenomenon is not clear,
however. Persistent discharges in the prefrontal and posterior
parietal cortex reveal few differences between the two areas and
no obvious neural correlate that is present only in the posterior
parietal cortex and could determine capacity (Buschman et al.,
2011).

The primacy of prefrontal cortex in workingmemory behavior
is perhaps most vividly demonstrated in inactivation studies.
Cooling experiments, which reversibly inactivate the underlying
cortex by lowering its temperature, demonstrate much greater
decreases in memory performance in the ODR task after
prefrontal than posterior parietal cooling (Chafee and Goldman-
Rakic, 2000), even when the areas inactivated have similar delay
period activity (Chafee and Goldman-Rakic, 1998). The results
of these studies parallel the effects of reversible inactivation of
the frontal eye fields via muscimol injections, which similarly
produce a significant impairment in memory-guided saccade
performance (Sommer and Tehovnik, 1997; Dias and Segraves,
1999). In contrast, modest or no impairment was observed after
muscimol inactivation of the posterior parietal cortex (Li et al.,
1999; Chafee and Goldman-Rakic, 2000; Wilke et al., 2012),
even though posterior parietal inactivation produces consistent
deficits in tasks that require attention or selection between
multiple stimuli (Wardak et al., 2002, 2004; Liu et al., 2010; Wilke
et al., 2012). Small lesions to the dorsolateral prefrontal cortex
also produce impairment in working memory performance for
remembered stimuli in the contralateral space, an effect termed a
“mnemonic scotoma” (Funahashi et al., 1993a; Funahashi, 2015).
Equivalent results from localized lesions of the posterior parietal
cortex are not available.

Visual Cortex
In recent years, human imaging studies have been successful in
decoding information held in memory from the visual cortex,
including the primary (Harrison and Tong, 2009; Albers et al.,
2013; Xing et al., 2013) and extrastriate visual cortex (Ester
et al., 2013; Sreenivasan et al., 2014b), suggesting that these
areas maintain the contents of working memory (Tong and
Pratte, 2012). This extraction of information has been possible
with Multi-Variate Pattern Analysis (MVPA), examining the
simultaneous pattern of activation of multiple voxels to different
task conditions; the overall levels of activity in visual cortex may
not rise above baseline during working memory (Offen et al.,
2009). Imaging studies have gone as far as to determine that the
size of the primary visual cortex alone is the best predictor of
working memory ability (Bergmann et al., 2016). Importantly,
MVPA could not decode information from the prefrontal cortex,
or could not fully account for behavioral performance in the task
(Harrison and Tong, 2009; Sreenivasan et al., 2014b).

This negative finding of information failing to be decoded
from the prefrontal cortex during working memory, despite

the known activation of prefrontal neuron in similar tasks, is
telling about the interpretative limitations of these results. A
tacit assumption when comparing the results of MVPA analysis
across different cortical areas is that the structure of the voxel
(typically in the order of 3 × 3 × 3mm) is equivalent in
the primary visual and prefrontal cortex. This is definitely
not the case. Unlike the precise topography of visual space
in the primary visual cortex, no retinotopic map (or other
overarching organizational principle) has been revealed in the
prefrontal cortex (Constantinidis and Procyk, 2004). Sampling
the prefrontal cortex with chronic arrays of micro-electrodes
spaced at 0.4mm of each other reveal that the same cortical
location is represented multiple times across the surface, and
with no obvious map of space (Leavitt et al., 2013; Kiani et al.,
2015). Simultaneously recorded neurons withmovable electrodes
spaced as close as to 0.2mm of each other reveal only a slight bias
toward similar spatial preference among neighboring prefrontal
neurons (Constantinidis et al., 2001a). Precise stimulus location
information is therefore represented in an extremely fine spatial
scale, with the entire visual hemifield possibly represented in
prefrontal modules no large than 0.5 × 0.5mm in surface
(Constantinidis et al., 2001a). Voxels averaging cortical volumes
an order of magnitude larger are thus likely to obliterate stimulus
information and will predictably fail to decode the information
held in working memory, even if this is robustly represented in
the activity of prefrontal neurons.

A recent fMRI study has in fact been successful in retrieving
features of remembered stimuli, the orientation of a grating, from
the prefrontal cortex during working memory (Ester et al., 2015).
Such information may be represented more coarsely across the
surface of the prefrontal cortex, making it possible to decode from
fMRI activation patterns. In any case, these results argue directly
against models of working memory that postulate solely a top-
down control role for the prefrontal cortex, and place feature
storage networks in the visual cortex (Ester et al., 2015).

MVPA methods still yield undeniable positive findings of
fMRI imaging in the visual cortex and it is important to consider
the neural basis of this activity that yields information about the
contents of working memory. Early visual areas do not generate
persistent activity. A recent study comparing activity in three
cortical areas in the same animals, required to remember the
direction of motion of a random-dot display, found virtually no
persistent discharges in visual area MT, but robust activation
in parietal area MST, in addition to prefrontal persistent
activation (Mendoza-Halliday et al., 2014). This suggests an
abrupt generation of feature-selective persistent activity in areas
beyond the visual cortex. On the other hand, a small percentage
of V1 neurons exhibit suppressed levels of discharges during
working memory, below background levels (Super et al., 2001).
It is unclear, however, whether V1 activity can be predictive of
behavior in working memory task as this modulation was present
for both correct and incorrect trials (Super et al., 2001). Changes
in levels of activity in V1 during working memory are likely due
to top-down projections from higher associative cortices, since
V1 activation appears first in superficial layers (Roelfsema, 2015).
A key aspect of this phenomenon is that background levels of
activity in V1 are relatively “quiet,” thus making it possible to

Frontiers in Systems Neuroscience | www.frontiersin.org 9 January 2016 | Volume 9 | Article 181

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Riley and Constantinidis Prefrontal Cortex in Working Memory

capture the subtle backwash from higher cortical areas, while
the higher cortical areas themselves may be too noisy to detect
these small signals. fMRI activationmay additionally be detecting
pre-synaptic activation of V1 neurons from higher cortical areas
(Logothetis and Wandell, 2004), which makes V1 activity even
less likely to be the ultimate storage of working memory contents
and determinant of working memory performance.

CONCLUSIONS AND UNRESOLVED
QUESTIONS

The role of prefrontal persistent activity in working memory
has been the focus of renewed attention in the past few years.
This interest has been spurred by the realization that other
brain areas are also active during working memory maintenance,
that persistent activity may be shaped by the demands of
the task rather than merely be representing information, and
that dynamic patterns of activity can represent information in
working memory. These results have inspired alternative models
of working memory maintenance in the brain.

In this review, we make the case that persistent activity in
the prefrontal cortex is both necessary and sufficient to account
for information held in memory, across a variety of tasks and
experimental conditions. Prefrontal persistent activity is also
present in working memory tasks that do not rely on spatial
stimuli and can encode attributes of stimuli (such as direction
of motion and shape) or task variables and rules. Computational
models based on persistent activity can account for levels of
performance and patterns of errors depending on neuronal
discharges to a greater extent than any alternative models.

Phenomena like repetition suppression are likely to be
generated by synaptic rather than spiking mechanisms and
they appear to correlate with behavior. However, they can
only account for a limited set of behaviors and memory
functions. Similarly, rhythmic or otherwise dynamic patterns

of activity across the population of prefrontal neurons may
convey information about stimulus properties. Such patterns
of activation are not incompatible with persistent activity,
either. It is upon future research to determine whether a
causal relationship exists between such mechanisms and working
memory performance.

The prefrontal cortex is not the only area that represents
working memory information. Posterior parietal and inferior
temporal areas have been long known to be active during
working memory, though they appear insufficient to sustain
information, for at least some tasks. It remains an open question
on whether these areas are specialized for different aspects of
working memory performance, or if their activity supports the
maintenance of working memory in a distributed network that
requires the prefrontal cortex. Information decoded from the
primary visual cortex but not in the prefrontal cortex in fMRI
studies cannot rule out a prefrontal involvement in working
memory due to interpretational limitations that have to do
with the topography of stimulus representation in these areas.
It remains unclear whether neuronal activity in primary visual

cortex plays any role in determining working memory behavior.
Future work should aim to resolve these issues.
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