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Neurons in the primary visual cortex spontaneously spike even when there are no visual
stimuli. It is unknown whether the spiking evoked by visual stimuli is just a modification of
the spontaneous ongoing cortical spiking dynamics or whether the spontaneous spiking
state disappears and is replaced by evoked spiking. This study of laminar recordings of
spontaneous spiking and visually evoked spiking of neurons in the ferret primary visual
cortex shows that the spiking dynamics does not change: the spontaneous spiking as
well as evoked spiking is controlled by a stable and persisting fixed point attractor. Its
existence guarantees that evoked spiking return to the spontaneous state. However, the
spontaneous ongoing spiking state and the visual evoked spiking states are qualitatively
different and are separated by a threshold (separatrix). The functional advantage of
this organization is that it avoids the need for a system reorganization following visual
stimulation, and impedes the transition of spontaneous spiking to evoked spiking and
the propagation of spontaneous spiking from layer 4 to layers 2–3.

Keywords: cortical states, spontaneous activity, cortical dynamics, spike trains, visual transients, neuron network
stability

INTRODUCTION

As neurons in sensory areas of the cerebral cortex spike even in absence of input from
the sensory receptors (Hubel and Wiesel, 1959; Jung, 1959), a fundamental problem is to
understand how spontaneous ongoing spiking and stimulus evoked spiking relate. There are
three different hypotheses on how ongoing spontaneous spiking relates to sensory evoked
spiking. The first holds that rest spiking is noise upon which the spikes transmitted from
sensory receptors (such as the inner ear and retina) are added. The neurons in the cortical
areas then supposedly separate this noise from the spiking coming from sensory receptors
(Rieke et al., 1999; Averbeck et al., 2006). The second proposes that the ongoing rest spiking
is highly structured and shares properties with sensory input. Spikes coming from the retina
do not drive the neuronal activity away from the spontaneous rest state, but modulate the
spontaneous spiking of the cortical neurons to get an updated representation of the visual
surround (Llinás and Paré, 1991; Arieli et al., 1995; Tsodyks et al., 1999; Fiser et al., 2004;
Luzcak et al., 2009, 2013; Ringach, 2009; Destexhe, 2011). The third proposal is that upon
visual stimulation, the rest spiking ceases and that the sensory spikes take over and drive the
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cortical neurons to generate a representation of the visual
surround (Abeles et al., 1995; Mazor and Laurent, 2005; Jones
et al., 2007; Rabinovich et al., 2009; Woodman and Jirsa, 2013).
Unfortunately, experimental studies have not yet been able to
select the most plausible mechanism.

Spontaneous ongoing spiking is an expression of the
autonomous dynamics of the neurons in the cerebral cortex. By
examining the network of neurons in the primary visual area
as a dynamical system we aimed to gain novel insights into the
evolution of spiking states in this network. From a dynamic
point of view, we interpret the three hypotheses as follows. First,
if the spontaneous ongoing spiking dynamics is qualitatively
different from evoked spiking dynamics, there would be no
reason to operate with the concepts of signal and noise
spiking. Second if sensory evoked spiking is a modulation of
spontaneous ongoing spiking, the dynamics, that is the attractor
representing the spiking dynamics, may change quantitatively
but not qualitatively (for example it would remain stable).
Third, if the evoked spiking replaces the spontaneous ongoing
spiking, the attractor dynamics should change qualitatively (for
example through a bifurcation in which an unstable equilibrium
replaces a stable one) upon visual stimulation. Alternatively,
visual stimulation may drive the system to a different set of
states without altering the spontaneous ongoing dynamics. In
the later case, spiking evolves either as spontaneous state spiking
or as evoked state spiking in two separate parts of state space.
The spontaneous states and the evoked states then being set
apart by a separatrix (i.e., a structure functioning as a threshold).
To investigate these possibilities, we examined the spiking
dynamics in the ferret’s visual system. Here the action potentials
from the retina via the lateral geniculate nucleus interact with
the spontaneous ongoing spiking of the layer 4 neurons in
the primary visual area. Rather than viewing the visually evoked
spiking as coding for visual attributes of the physical surround,
one might see the propagation of spiking from primary visual
cortex layer 4 to neurons in supragranular layers, and from
here other visual areas, as spiking that ultimately drives the
large network of neurons in cortical areas to an interpretation
of the visual surround (Roland, 2010; Shenoy et al., 2013).
In this perspective the question of whether the spontaneous
ongoing spiking and the propagating evoked spiking differ
dynamically becomes relevant. This question has been examined
in a theoretical model of a chaotically firing neural network
showing that by appropriate input, the chaotic spiking could
be completely eliminated (Rajan et al., 2010). However, whereas
Fdez Galán et al. (2004), Mazor and Laurent (2005) and
Churchland et al. (2010) have experimentally examined spiking
dynamics, we are not aware of any mathematical analysis of the
stability and attractor nature of in vivo spontaneous ongoing
spiking nor of any study showing that visually evoked spiking
and spontaneous ongoing spiking is separated by a threshold (in
mathematical terms, a separatrix).

MATERIALS AND METHODS

The spike data came from one group of eight adult female ferrets
at rest, and exposed to one bar of 100% contrast, and to three bars

of 100% contrast. An independent second group of eight other
adult female ferrets, the replication group, were examined at rest,
and exposed to one bar at 80% contrast.

All procedures were approved by the Stockholm Regional
Ethics Committee. Adult female ferrets were anesthetized,
paralyzed and craniotomized over the left visual cortical areas,
as described in Harvey et al. (2009). During electrophysiological
recordings, anesthesia was maintained with N2O:O2 1:1 and 1%
isofluran and body temperature, PaCO2, maintained as inHarvey
et al. (2009) in the first group of eight ferrets. The second group
of eight ferrets was maintained at 0.8% isofluran.

Stimuli and Electrophysiology
After determining the receptive field sizes of the neurons
representing the center of field of view (Harvey et al., 2009),
stimuli were presented in the center of field of view on a display
with a refreshment rate of 144 Hz. Stimuli were 3.7◦ × 3.7◦

white bars (64.5 cd m−2) lasting 250 ms on a homogenous dark-
gray background (6.5 cd m−2) 80% contrast (second group of
animals); or 64.5 cd m−2 on a black background, 100% contrast
(first group of animals). During rest and inter-trial intervals,
only the background was continuously shown. The influences
of anticipation, attention and eye movements on our data were
excluded.

The experiments in the first group had three conditions: (1) a
black background; (2) one bar presented in the center of field of
view at 100% contrast; and (3) three bars presented with 100%
contrast and center to center distance of 3.7◦ along the horizontal
meridian in the field of view with the center bar at the center
of field of view. The two different stimuli had the purpose of
replicating the spiking dynamics. The 3-bar stimulus differed
from the 1-bar stimulus only by having three identical bars
(Figure 1). Both stimuli were appearing abruptly and therefore
expected to produce clear visual transients. The second group
had two conditions: (1) a dark-gray background; and (2) one
bar presented in the center of field of view at 80% contrast. The
presentations of conditions were random, but balanced such that
each condition was presented 100 times (50 times, replication
group) with a 10 s interval between trials.

We recorded from 125 multi-units with a single shank
16 channel laminar electrode (2–3 MΩ) perpendicular to the
cortical surface of areas 17 and 18 where neurons had receptive
fields <1.5◦ and were reacting to small bars in the center of field
of view. We recorded 85 multi-units in the replication group.
Recording sites were separated by 100 µm and current source
densities were obtained as described in Harvey et al. (2009) to
select five recording channels representing the input layer (layer 4
and lower layer 3) andwith a 200µmgap three leads representing
layers 2–3. The location of the laminar position of the leads was
indirect and their laminar location consequently an estimate.

Data Analysis
The spikes of the first group were spike-sorted off-line (Quiroga
et al., 2004). Refractory periods >3 ms. For each animal,
penetration, condition, and trial, the spike time histograms
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FIGURE 1 | Stimuli, raster plots, spiking rates and principal components. (A) Raster plot of the spikes from one neuron in layer 4; 100 trials of rest (black
screen), (B) 100 trials with 1-bar stimulus of 100% contrast, and (C) 100 trials with a 3-bar stimulus of 100% contrast. Animal 3: the stimuli last 250 ms. The spiking
has an ON peak and an OFF peak following the stimulus on-set and off-set. The red curves show the means (across trials) of the Gaussian smoothed firing rate
histograms (see “Materials and Methods” Section). (D) Time evolutions of principal components 1–3 for all trials for the 1-bar condition. Animal 4: the stimulus
appears at time 0. The gray figure-background define three time intervals [−200 to 10 ms], [ON-peak to 270 ms], [OFF-peak to 800 ms] used in the vector field
analysis (Figure 6).

(in 1 ms bins) were smoothed using a moving average with
Gaussian kernel, window 15 ms; σ = 6 ms.

Principal Component Analysis (PCA)
Each PCA was performed as follows: for a given N-dimensional
state vector, we computed the covariance matrix (which includes
subtracting the mean value of each time series), normalized
it (by dividing it through the sum of its diagonal), and
next computed the covariance matrix’s N eigenvalues λ and
(N × N) eigenvectors v. The corresponding time evolutions (or
projections) were obtained by multiplying the data (state vector)
and the eigenvectors (Daffertshofer et al., 2004). Each principal
component, PC, accounts for a proportion of the total variance
in the data, captured by the (associated) eigenvalues λ.

We performed three types of PCA. with the purpose of
creating different state spaces and examining the robustness
of our results. (1) In the multi-unit PCA, the simultaneously
recorded multi-units of the five leads in layer 4 were organized in
a 1000× 500 state vector [i.e., 1000 ms× (five leads× 100 trials)
for one condition]. For Figure 2A, the trajectory of the first three
PCs are plotted in a 3-dimensional state space, separately for each
condition. For the state space of the trajectory tangent vectors
(see below) the data matrix was 1000 × 1500 for the plotting of
the rest, 1-bar and 3-bar condition. The first two components
accounted for 60–76% of the total variance. (2) For the average
multi-unit PCA, the spiking time series of all 100 trials was

averaged for each lead prior to the subtraction of the mean.
This gave a 1000 × 125 state vector [i.e., 1000 ms × (all leads
from all animals) for one condition]. After PCA, the first three
projections were plotted in 3D space (Figure 2). (3) In the trial×
multiunit PCA, the analysis was done per animal for the electrode
penetrations in area 17/18. If the animal had two penetrations,
it had a total of 200 trials. Each trial results in five time series,
one for each lead. The state vector then thus comprises 1000 time
series. The first two or three principal components (for a given
animal) then were plotted in 2D or 3D state space, respectively.
This trial × multiunit PCA was used for the vector field analysis
(see below).

The PCA created state spaces with orthogonal axes in which
we observed the time evolving spiking trajectories. The PCA
transformation of the spiking rates implies that, although there
is a correlation between the original instantaneous rates and
the spread of a principal component, there is no unambiguous
one-to-one mapping between the instantaneous spiking rate r(t)
and the vectors and trajectories in PC state space. Consequently,
statements based on r(t), or its mean value, cannot predict the
spiking dynamics.

Spike Rate Vector Fields
The vector field analysis was performed on reconstructed
data (projections) from the trial × multiunit PCA (thus,
for each animal and condition separately). For the
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eigenvectors vki , where i = 1:5 indexes the five leads,
and k 2 (i.e., PC 1 and 2), novel 2-dimensional data
q1,2(t) were constructed by projecting each trial’s five-
dimensional data vector xi = 1...5 (t) (lead 1–5) onto the
eigenvectors vki .

The computation of the vector fields is based on the
Kramers-Moyal expansion (Daffertshofer, 2010), and includes
computing P(x, y, t | x0, y0, t0), that is, the conditional probability
that the system is at state (x, y) at a time t given its state
(x0, y0) an earlier time step t0. In our case, x and y equalled
q1(t) and q2(t). For each trial, we computed the conditional
probabilities P for the 441 points of a 21 by 21 grid, after
which the average conditional probabilities were calculated
across trials (for each condition and animal). The so-called drift
coefficients (representing the system’s deterministic dynamics)
were computed according to:

Dx(x, y) = lim
τ→0

1
τ
∫ ∫(x′ − x)P

(
x′, y′, t + τ |x, y, t

)
dx′dy′

Dy(x, y) = lim
τ→0

1
τ
∫ ∫(y′ − y)P

(
x′, y′, t + τ |x, y, t

)
dx′dy′

The coefficients Dx and Dy provide the numerical
representations of the system’s 2-dimensional vector field
(Figure 6).

Estimation of the Position of the Separatrix
To examine whether the PC state space of each simultaneously
recorded multi-unit data set had a separatrix with diverging
vectors of velocity on either side, we calculated the trajectory
tangent velocity vectors. The PCs were calculated as multi-unit
PCA across the three conditions rest, 1-bar and 3-bar stimulation
(see above). For each single trial, the trajectory tangent vectors
were calculated as the temporal derivative at successive positions
of the trajectory in 1 ms steps. The length of the resultant vector
thus was the instantaneous velocity as shown as one arrow perms
in Figure 3. These trajectory tangent velocity vectors are different
from the vectors used to form the vector fields. As PC1 and PC2
together accounted for more than 60% of the variance, we plotted
the velocity vectors for the 100 trials of each data set of five multi-
units in 2D. As the progression of the rest state velocity vectors
was slow, the arrows became very dense in Figure 3.

For a given time interval, e.g., from 30–50 ms after the start of
the stimulus, the trajectory vectors in two dimensions in many
single trials in the stimulus conditions point away from the
fixed-point. Conversely, the vectors in the rest and pre-stimulus
interval when they reached a certain distance from (0, 0) pointed
towards (0, 0).

The separatrix is located between the space occupied by the
spontaneous ongoing spiking trajectory vectors and the space
occupied by the evoked trials’ trajectory vectors outside the
separatrix. We adjusted a rectangular box to a false discovery
rate of 0.05 (Benjamini and Hochberg, 1995) for the vertical sides
and 0.05 for the horizontal sides of the box of rest trials being
outside the box (once in the 1000 ms of sampling). This gave a
total false discovery rate of approximately 0.1 for the estimate of
the position of the separatrix (Figures 3, 4).

Peak Firing Rate Frequency Distributions Following
Stimulus Onset
The peak firing rates were extracted from the original but
smoothed time series. Smoothing was achieved via a sample-by-
sample moving average with a window size of 15 samples (using
Matlabr’s ‘‘gausswin’’ function with alpha = 2). For each animal
and condition, we extracted the maximum rate of the ON peak
(which occurred just following stimulus onset) in each lead of
each stimulus trial, and calculated the corresponding frequency
distributions (bins size: 15 spikes/s) of all trials. The rest trial peak
rate was determined as the maximum in an interval from−10 to
+10ms of the (average) time for the ON peaks (as observed in the
stimulus trials). We verified that it did not matter at which point
the interval was chosen for the no-stimulus trials. The frequency
distributions were then averaged across penetrations and single
units per animal. The comparisons of the 100 and 80% contrast
conditions (Figure 8) were made on the smoothed times series of
the multiunit data.

For the smoothing of the raw spike data,Matlabr alpha values
from 1.5–3.5 were tried, but these did not qualitatively alter the
peak rate distributions relative to alpha = 2. In addition, we also
computed the frequency distributions for bin size 10, 20, 30, 40,
and 50 spikes/s, which did not qualitatively affect the frequency
distributions either.

A Topological Equivalent Model and Simulations
Topological equivalence is a concept that mathematically defines
qualitative similarity in dynamical systems (Guckenheimer and
Holmes, 1983). We simulated two planar dynamical systems;
one comprises a linear flow with a stable fixed point; the other
comprises a nonlinear flow with a stable fixed point and a
separatrix at one side. The latter systems are known as excitable
systems in nonlinear dynamic systems theory and are often used
as a phenomenological representation of neural functioning for
single neurons (Fitz-Hugh, 1961; Nagumo et al., 1962) but also
for population dynamics (Curto et al., 2009). Here, we interpret
the model in the latter sense. A mathematical representation of
such phase planar systems reads:

ẋ = τ(y+ bx− cx3)
ẏ = −(x− a− I)/τ

where a, b and c are parameters that determine the system’s
topology. In terms of a network’s dynamics, xmay be interpreted
as the activity of a neuronal population and y as a recovery
variable (related to ion channel mechanisms), and τ is a time
scale parameter. The system with the nonlinear phase flow is
given by a = 1.05, b = 1, c = 1/3, τ = 3 generating a stable
fixed point with a separatrix in its neighborhood. Under these
constraints, the system settles at the fixed point and will only
traverse a trajectory through phase space if brought across the
separatrix by the input I (or noise). When the system crosses
the separatrix and the ‘‘evoked state’’ is activated, then a fast
large-amplitude excursion occurs, followed by a slow return
towards the fixed point. Together, separatrix, fast deviation and
slow return after large-amplitude excursion, these elements are
the key characteristics of excitable systems. The system with
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a linear fixed point is given for a = 1.05, b = −1, c = 0,
τ = 1.

Equation 1 was simulated 500 times for both parameter
settings with different stimulation strength I = 0–5 (step
size 0.5) and varying Gaussian noise strength (Q, 0.0025, 0.005,
0.01, 0.02, 0.03, 0.04, and 0.05). Model simulations ran from
t = 0 to t = 100, with a fixed 0.05 time step (this was
assured by using a time vector rather specifying the integration
first and last point only). The stimulation of I consisted
of a block pulse (duration 0.5; delivered at t = 20). The
simulations were performed using Matlab’s ‘‘ode15s’’ integrator
(a small adaption allowed us to additively include noise at
each integration step to the 2nd state variable, i.e., y, using
the Euler-Maruyama algorithm). In both scenarios (linear and
nonlinear), the system traverses a trajectory through phase
space following the stimulation. This is always so in the linear
case and most often, but not always so in the nonlinear case
due to the separatrix. We extracted the maximal amplitude of
the x variable (following the stimulation) and made a frequency
distribution (histogram; bins width 0.1) of these maxima (for
each noise level and ‘‘stimulation strength level’’ separately). The
noise level used in the distributions plotted in this figure is
Q = 0.0025.

Importantly, in the fixed point regime the entire phase
space contains a stable fixed point and a separatrix (Figure 9).
In this regime, the model predicts that without stimulation a
just few trajectories will cross the separatrix, and conversely,
stimulation notwithstanding a just few trajectories will not cross
the separatrix. Qualitatively, these predictions are robust under
moderate variations of parameters τ and b as long as τ > 1.
Variation in these parameters does to some extent alter the
likelihood of the system to cross the separatrix, and thus the
ratio between the height of the peaks in the distribution in
Figure 9B (left panel). Preservation of the qualitative results
for the linear model also holds for these parameter variations.
Variation in parameter a, which should be larger than one to
guarantee the fixed point’s stability, determines the position
of the fixed point relative to the separatrix: increasing a
increases the fixed point—separatrix distance. The larger the
distance, the less likely it is that a given stimulation gets the
system across the separatrix. Furthermore, stronger stimulation
should increase the chance of crossing the separatrix but barely
(if at all) change the peak-firing rate. These predictions are
consistent with our data (Figure 8). The simulated peak firing
rate distributions show two peaks but the 0 Hz peak is not
present, which is a shortcoming of the model. Regardless,
one key aspect of the model (within a bounded region of its
parameter space), i.e., the stable fixed point and separatrix,
and thus persistence of the rest attractor in the evoked state
in state space allow for a novel conceptualization of the issue
how the rest state and the evoked state are linked to each
other.

RESULTS

The eight adult ferrets were either at rest, i.e., exposed to a
black screen, or exposed to suddenly appearing visual stimuli

at 100% contrast. At rest there was no visual stimulation
hence any ongoing spiking is by definition spontaneous. The
250 ms lasting 1-bar and 3-bar stimuli were expected to
evoke similar transient spiking dynamics because they were
both high contrast and abruptly starting stimuli. Figures 1A–C
shows raster diagrams for 100 trials in rest, 100 trials after
stimulation with one bar and 100 trials after stimulation
with three bars of typical neurons in the middle layer of
area 17.

Spontaneous Ongoing Spiking Trajectories
and Visually Evoked Spiking Trajectories
Evolve in Different Parts of State-Space
To test whether the spontaneous ongoing spiking and the
visually evoked spiking are dynamically separate, we examined
the evolution of the spiking in state-space. The spiking of all
simultaneously recorded neurons is mathematically represented
in a multi-dimensional state space. Each point in state space
corresponds to one state of the network of neurons at
the area 17/18-border, and conversely; to each state of the
network there is one point that is element in state space. The
granular layer in the ferret area 17 extends some 500–600 µm
(Innocenti et al., 2002) corresponding roughly to five leads
of the electrode. For each electrode penetration, five multi-
units in the granular layer were simultaneously recorded. To
visualize their corresponding spiking evolution we performed
a PCA (Figure 1D) of the five time series (see ‘‘Materials and
Methods’’ Section) and plotted the evolution of the first three
components represented as a trajectory in 3-dimensional space
(Figure 2A).

At rest and prior to visual stimulation, the trajectory evolved
erratically around (0, 0, 0). This spontaneous spiking remained
confined to a small part of the state space (Figures 2A–D).
In both stimulus conditions, ∼30 ms after stimulus onset,
the 3D spiking trajectories quickly escape the zone of the
ongoing spiking and traverse large parts of the state space
outside the spontaneous spiking zone. The spiking trajectories
slow down and return along another route to the state-
space near (0, 0, 0) resuming the spontaneous behavior
(Figures 2A–D). Approximately 60 ms after the stimulus
offset, the spiking trajectory again escapes the spontaneous
spiking state space and traverses a different part of the
state space, for thereafter to return (Figures 2A–D). These
qualitative differences between the spontaneous and the evoked
trajectories were reproduced in all sets of simultaneously
recorded neurons. When the PCA was done to reveal the
evolution of spiking in single trials (Figure 2D, see ‘‘Materials
and Methods’’ Section), or in single neurons (Figure 2B),
or in all multi-units (Figure 2C), the trajectories always
maintained these differences between the spontaneous and
evoked spiking. Thus, the spontaneous spiking trajectories (i.e.,
at rest and in the pre-stimulus interval) typically evolved
erratically around (0, 0, 0) whereas the visually evoked
trajectories evolved fast and explored large parts of state-space
and subsequently returned more slowly towards (0, 0, 0). This
behavior was present in single trials, in single neurons, and in
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FIGURE 2 | State space trajectories. (A) Representative trajectories based on five simultaneously recorded multi-units, enlarged for the rest condition (multi-unit
PCA see “Materials and Methods” Section). Trajectories made of connected points with 1 ms spacing. Red, blue, and green correspond to windows 1, 2 and 3,
respectively, identified in Figure 1D. The state space is made of the orthogonal axes of the first three principal components. Animal 8: the first three components
accounted for 18% (rest), 80% (1-bar), and 82% (3-bar) of the total variance. (B) Spiking trajectories calculated across 100 trials for one neuron. Animal 1
(C) Trajectories of all multi-units in the experimental group (125 multi-units). (D) Trajectories of seven simultaneously recorded neurons from layer 4 (7-dimensional) for
single trial (PCA see “Materials and Methods” Section). The first three components accounted for 67% (rest), 70% (1-bar), and 81% (3-bar) of the total variance.
Principal component units on the axes. Color coding of trajectories: red from −200 to 10 ms after stimulus onset; blue, from ON-peak to 270 ms; green from OFF
peak to 800 ms.

the collective spiking dynamics of 5–8 simultaneously recorded
neurons and in five simultaneously recorded multi-units. The
evoked spiking started some 25–35 ms after the start of the
stimuli.

A Threshold (Separatrix) Separates
Spontaneous Ongoing Spiking from
Evoked Spiking
In the 1-bar and 3-bar conditions, the spiking explored a larger
domain in state space (Figure 3). This means that the stimuli
drive the spiking away from the state space of spontaneous
ongoing spiking and away from (0, 0, 0). At rest and during the
pre-stimulus time the dynamics evolved around (0, 0, 0). To test
the hypothesis that the spontaneous type and transient evoked

type of trajectories evolved in separate domains of the state
space, we calculated the velocity vectors of the spiking trajectories
of the simultaneously recorded five multi-units (see ‘‘Materials
and Methods’’ Section). Mathematically, the state space may
be divided into separate domains by ‘‘borders’’ (separatrices)
with diverging phase flows on each side. A separatrix acts as a
threshold impeding the motion from one (confined) part of the
state space towards another.

If there is a separatrix, the trajectory tangent vectors
(methods) will typically bend off when they approach it and
point within the space defined by the separatrix. Under the
influence of perturbations, such as stimulation or through
fluctuations, the trajectory tangent vectors typically cross the
separatrix and enter the state space adjacent to it (Figure 3A).
From 30–50 ms after stimulus onset, in the majority of the
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FIGURE 3 | Evidence for a separatrix. (A) Trajectory tangent vectors (see
“Materials and Methods” Section) of two single trials from 30–50 ms after
stimulation with 1-bar (red), and in pre-stimulus time (blue), in a 2-dimensional
state space formed by the first and second principal component (see
“Materials and Methods” Section). The directions of the vectors are marked
with arrows for each ms. In one stimulus trial the vectors bend off and stay
within the attraction of the fixed point (and point towards the fixed point); in the
other trial spiking becomes evoked (producing a diverging vector flow away
from the fixed point). The box shows the estimated position of the separatrix
(based on 100 trials of rest; animal 7). (B) Trajectory tangent vectors of 100
trials 30–50 ms after one bar stimulus onset (red). The red vectors point away
from the blue vectors and the fixed point. Different metric of the distances to
fixed point on the x- and y-axes. Animal 4 (C) Idem for the 3-bar condition.
Animal 4 (D) Close up of the trajectory tangent vectors from 10 trials all of
which are evoked. The red tangent vectors cross the separatrix from various
positions inside the separatrix on their way to escape the spontaneous state
and return by another path. Note the divergent vector flows at the position of
the separatrix.

trials, the tangent vectors departed and pointed away from
the zone occupied by the rest and pre-stimulus spontaneous
type trajectories (Figures 3B,C). This happened in 1916 trials
out of 2500 in the 1-bar condition, in 2021 trials of a total
of 2500 trials in the 3-bar condition and in 277 trials in
the rest condition. Conversely, in the rest and pre-stimulus
time the spontaneous tangent vectors when they reached a
certain distance from (0, 0) bend off pointed inside and

towards (0, 0). This happened for 2223 trials out of 2500
spontaneous ongoing spiking trials and for 584 trials in
the 1-bar condition and 479 trials in the 3-bar condition.
Starting 20 ms after stimulus onset, the different trial vectors,
at this point in time, were at different positions inside
the ‘‘spontaneous domain’’ (red vectors in Figure 3D). The
position inside this domain did not seem to matter, because
trajectories could transit to the ‘‘evoked domain’’ from various
positions (Figures 3D, 4). The separation of the two state
space domains, i.e., the position of the separatrix, varied
somewhat among the data sets depending on the spread of
the data. The mean area of the rectangular area bordered
by the separatrix was 1.9 × 105 with standard deviation
0.5× 105.

The diverging tangent vectors were present in all sets of
layer 4 multi-units recorded simultaneously (Figure 4) and
in the layer 4 multi-units recoded in the eight other ferrets
(the replication group; data not shown). These results are
indicative of a separatrix between the zone of state space
occupied by the spontaneous ongoing spiking and the state-
space occupied by the visual evoked spiking. Therefore the
rest and stimulus evoked spiking evolve in two different
domains of state space. The two domains are adjacent, but
separated by the separatrix. The approximate position of the
separatrix is shown in Figures 3, 4. Thus, the spontaneous
ongoing spiking states and the visually evoked states evolve
in two different domains of state space separated by a
separatrix.

We then separated spiking trials, irrespective of the
experimental conditions, into two categories, spontaneous
ongoing trials and evoked trials, depending on whether they did
not or did cross the separatrix in the post-stimulus period (see
‘‘Materials and Methods’’ Section). The number of trials being
in the evoked state varied somewhat over time. In single trials
the system evolved in the evoked state for limited durations.
However most trials evolved in the evoked state corresponding
in time to the ON transient (Figures 5A,B).

The Spontaneous Ongoing Spiking Evolves
Around a Stable Fixed Point that Persists
During the Evoked States
The spontaneous ongoing spiking trajectories during rest
and prior to the stimulus only made small excursions from
(0, 0, 0), which suggests that (0, 0, 0) is a stable fixed point,
i.e., an attractor. When the distance to (0, 0, 0) increases,
the attraction brings the spiking immediately back near the
fixed point (Figures 2–4). To test the hypothesis that the
spontaneous ongoing spiking dynamics quantitatively evolves
around a stable fixed-point, we calculated the vector fields
in 2-dimensional state space for the time intervals specified
in Figure 1D for all trials (see ‘‘Materials and Methods’’
Section). These vector fields are shown in Figure 6. Within
the spontaneous ongoing spiking domain, the vectors converged
towards one single point (0, 0) in all three conditions
(rest, 1-bar, 3-bar) and in all (three) time windows of
(Figures 1D, 6).
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FIGURE 4 | Diverging trajectory velocity vectors. Examples of trajectory tangent velocity vectors in 2D showing separatrices for datasets of five leads
(5 multi-units) in layer 4 for the remaining animals in the experimental group. Trajectory velocity vectors colored red in the interval 30–50 ms after stimulus onset.
The rectangle delimiting the spontaneous ongoing tangent vectors from the evoked are also shown in the 1-bar and 3-bar plots. The data sets are numbered with
animal number. As the state space was calculated for each data set of simultaneously recorded multi-units separately, the state spaces have different metrics and
cannot be transformed to a single space.

This shows mathematically that (0, 0) is a stable fixed point
in the three intervals of Figure 1D. This suggests that the rest
state attractor persists even in those trials in which the spiking
initially escaped the attraction of the fixed point crossed the
separatrix and thereby became evoked. As seen from Figures 3, 4,
the trajectory velocity vectors did not converge towards other
fixed points in the state space. This is also evident from the
visually evoked spiking trajectories (Figure 2). This implies that
the stable fixed point at (0, 0) was the only attractor in state
space.

When the spiking dynamics escapes the fixed-point
attraction, it might be because the fixed point in these
trials gets unstable or dissolves. If this happens, the spiking

will not return to the rest zone, because there would be
no attraction to bring the spiking back. This possibility,
however, is disproved by our results: first, the spontaneous
spiking attractor persisted in the evoked state and continued
to attract spiking in the evoked state as evident from the
vector field analysis of all animals (Figure 6). Second, when
outside the separatrix, the tangent velocity vectors sooner
or later bended and then pointed towards the fixed-point,
meaning that the system spent shorter or longer time
in the evoked state, but was always under the fixed-point
attraction (Figures 2–4). Third, for the trials that did escape
the spontaneous ongoing state’s basin of attraction and
entered the visually evoked state, we calculated the time
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the trials spent in the evoked state, i.e., from the time the
trajectory crossed the separatrix on the way out until the
same trajectory crossed the separatrix on its way in. These
times spent evoked varied up to over 80 ms (Figures 5C,D).
As soon as the spiking in single neurons, or the multi-unit
activity, stays beyond the separatrix, the spiking transforms
into the spontaneous type dynamics (Figure 2). Thus, our
results are not compatible with the hypotheses that the rest
state attractor disappears or gets unstable for a few ms when
the spiking enters the visually evoked state. Furthermore, these
hypotheses would imply that trajectories would (exponentially)
diverge from the (0, 0, 0) point in all stimulus trials and
in no single trial in the rest condition, which was not
the case.

In the region demarcated by the separatrix (on one side of
the fixed point), the vector-field vectors point towards the fixed
point (Figure 6). Occasionally there will be trials in which the
spontaneous ongoing spiking trajectories cross the separatrix.
In these cases the time spent as evoked is short (Figure 5).
Similarly there are trials for which the visual transients failed
to drive the trajectories and hence the tangent velocity vectors
beyond the separatrix, and stimulus trials in which the time spent
as evoked was equally short (Figures 3A, 4). For most stimulus
trials though, the escape from spontaneous ongoing spiking state
domain was fast<10 ms (Figures 3–5).

Putative Effects of the Spiking Dynamics
on Peak Spiking Rates
So far our results have shown that the layer 4 network of
neurons in areas 17/18 mathematically behaves as a mono-stable
dynamical system (one permanent fixed-point) with a separatrix
separating the spontaneous ongoing spiking states from the
visually evoked spiking states. If a separatrix indeed exists, and
is typically but not invariantly crossed under stimulation but not
otherwise, then the peak firing rates should show a bi-modal
distribution. For each of the single neurons we calculated the
peak rate for each of the 100 trials for each condition. The
peak rates were detected in a 20 ms time interval after the
start of stimulation when the rates were maximal (the peak-
spike rate time point ± 10 ms, see ‘‘Materials and Methods’’
Section). Figure 7 shows the peak rate distributions for these
20 ms windows. First, all neurons had trials in which they
clearly responded to the stimuli. Second, all neurons sampled
had trials during which they fired during rest and trials in
which they were silent (Figure 7). Consequently, the spiking
during rest defines the spontaneous ongoing spiking attraction,
as also evident from Figures 3–5. Therefore, the rest attractor
is something different from the neurons being silent (i.e., not
spiking).

The distribution of peak rates for all trials of a neuron had two
narrow peaks and a broad peak (Figures 7, 8). The first (narrow)

FIGURE 5 | Time the spiking trajectories were in the evoked state. (A) Raster plot of time the spiking trajectories spent evoked in each of the 100 trials. One
trial can enter the evoked states several times. Animal 8 (B) Proportion of trials being evoked −200 to 800 ms after start of stimulus (1-bar). All multi-unit datasets.
Mean (blue) and square root of the variance (green). (C) Time spent evoked from 20 to 800 ms after stimulus onset for all evoked single trials; 1-bar stimulus
(D) idem for 3-bar stimulus. Y-axis number of trials, X-axis duration of time spent evoked in ms.
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FIGURE 6 | Vector fields showing a stable fixed-point (see “Materials
and Methods” Section). Vector fields in 2-dimensions spanned by PC1 and
PC2 for the rest and 100% contrast stimuli conditions in the three time
windows in Figure 1D. These windows correspond to the pre-stimulus time,
and the time periods after the peak of the ON and OFF response, respectively.
Only the state space restricted to the fixed point and its immediate surround is
shown, Red, green, and blue vectors represent the rest (black screen), 1-bar,
and 3-bar condition, respectively. For each state space location, vectors are
plotted only if present for all three conditions. The criterion was that all
conditions i.e., rest, 1-bar, and 3-bar, must have sufficient statistics to
calculate a resultant vector direction for each grid point. The vector fields are a
graphical representation of the system’s deterministic) dynamics,

(Continued)

FIGURE 6 | Continued
and indicate the system(s) transition as a function of its position in state space.
In all conditions and in each time window the vectors converge towards to
(0, 0), indicating the existence of a stable fixed point at (0, 0). The vector field
was calculated for all trials for all single neurons per animal. The vector fields
show the consistent network dynamics. Animals from the top: 1–8.

peak, which is very small in the stimulus trials, corresponded to
trials with no spikes in the time-interval; the second (narrow)
peak, appeared at peak-rates ∼120 spikes s−1, the third (broad)
peak, which dominated the stimulus trials and was quite small
in the rest trials, corresponded to rates >140 Hz. Only the
number of trials changed below and above the 140 spikes s−1

threshold when the ferrets were stimulated with the bar, but the
basic shape of the distribution remained (Figure 8). All neurons
had trials with spiking at rest and with most trials spiking
maximally at 120 spikes s−1. The peak rate distributions were
reproducible at different bin sizes. These findings are consistent
with a dynamical system containing a stable fixed-point attractor
with a separatrix in which natural fluctuations vs. stimulation
have a small vs. large probability to get the system across the
separatrix.

We made a simple model that is topologically equivalent
with our data only when it has a separatrix producing bi-
modal peak rate distributions. The model is a modified Fitz-
Hugh Nagumo model (see ‘‘Materials and Methods’’ Section).
Without separatrix the model produces a uni-modal distribution
of peak rates scaling with stimulus strength (Figure 9). With
a separatrix, the bi-modality is recovered to a degree that
depends (next to variation in the parameters a, b and τ )
on the strength of the (model) stimulation: the stronger the
stimulation, the larger the proportion of simulations in which
the separatrix is crossed. This result is in agreement with the
differences in peak rate distributions in Figure 8, in that stronger
stimulation (1-bar 100% vs. 3-bar 100% and 1-bar 80% vs. 1-bar
and 3-bar 100%) increased number of trials with peak rates
>140 Hz.

The results in Figures 7–9 all indicate that the presence of
a separatrix in the network of neurons may produce bi- or
tri-modal peak rate distributions. The consistent minimum at
140 Hz could be taken as an effect of the separatrix separating
the peak spike rates into trials with less and more than 140 Hz.
Knowing the peak rate of each trial (Figure 7) and knowing
whether that trial crossed the separatrix in the early post stimulus
period (Figure 5A), we further tested whether crossings of
the separatrix just after the start of the stimuli lead to peak
rates above 140 Hz. A total of 1916 trials (out of 2500) crossed
the separatrix in the 1-bar stimulus condition and 2021 trials in
the 3-bar condition. Taking 140 Hz peak rate as an indication
of the effect of the separatrix, the peak rate of a single trial might
exceed this limit at 0, 1, 2, 3, 4 or 5 leads simultaneously. A
total of 2309 trials in the 1-bar condition and 2356 trials in the
3-bar condition had peak-rates above 140 Hz (Figure 10). As
we checked peak rate and separatrix crossing trial by trial, it
turned out that the 2309 trials and the 2356 trials included all
1916 and 2021 trials crossing the separatrix. In other words, all
trials crossing the separatrix had peak rates >140 Hz at 1, 2, 3,
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FIGURE 7 | Distributions of ON peak firing rates for all neurons. One row per animal. The single neurons are sorted according to peak rates (x-axis); y-axis,
individual neurons; z-axis, proportion of trials. Due to the Gaussian filter used to create the instantaneous rates (see “Materials and Methods” Section), trials with no
spikes occupies from 0–10 on the x-axis. Note the uniformity of the peak rate distributions at rest with a large proportion of trials with no spikes and a maximum of
∼120 spikes s−1. The proportion of trials with no spikes diminishes in all neurons under the stimulus conditions and the proportion of trials with peak rates >140
spikes s−1 increase in all animals. Animals from the top: 1–8.
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FIGURE 8 | Statistic comparison of multiunit peak spiking. Histograms with 15 ms bins. For each bin, a one-way ANOVA with five factors (rest 1st and rest 2nd
experiment, 1-bar-100% contrast, three-bars-100% contrast, and 1-bar_80% contrast) was performed (α = 0.05). A black dot indicates that the distributions were
different at the corresponding point at the abscissa. In all stimulus conditions the number of trials with zero rate decreased, and the spiking increased. (A,B) 2500
trials per condition (experimental group). (C) All trials with 1-bar stimulus with 80% contrast (replication group) compared with all trials with 1-bar of 100% contrast.
(D) All trials 1-bar 80% contrast (replication group) compared with all trials of the 3-bar stimulus with 100% contrast.

4 or 5 leads. Thus, for all trials crossing the separatrix the peak
rates increased above 140 Hz in one or more leads.

The Separatrix Tends to Prevent
Spontaneous Spiking from Propagating
Through Layers
The layer 4 separatrix separates the spontaneous spiking
from visually evoked spiking. One could therefore expect the
separatrix to have a role in preventing spontaneous ongoing
spiking from propagating through the cortical layers and perhaps
propagating between cortical areas. Layer 2–3 multi-units also
had a separatrix and a distribution of peak-rates with a minimum
at 140 Hz. Assuming that the threshold corresponding to
the separatrix for the layers 2–3 multiunit activity was at an
instantaneous rate of 140 spikes s−1, and thus equal to that of
the layer 4 neurons, we found the number of trials in which
the 140 Hz threshold was crossed 0, 1, or 2 times in layers 2–3
(two leads) as a function of the number of crossings in layer 4
(five leads; see Figure 10). By far the majority of the stimulus
trials crossing the 140 Hz threshold at more than two leads in
layer 4 also crossed the 140 Hz threshold in layers 2–3. A total of
127 trials crossed the 140 Hz threshold at more than two sites in
layer 4 during the rest condition. Of these less than 10, or 0.4% of
the rest trials, crossed the 140 Hz threshold at two sites in layers
2–3 (Figure 10). Of the 1916 trials crossing the layer 4 separatrix
in the 1-bar condition, 1348 trials also crossed the layers 2–3
separatrix and of the 2021 trials crossing the layer 4 separatrix
in the 3-bar condition 1471 trials crossed the separatrix in the
layers 2–3. Of the 277 rest trials crossing the layer 4 separatrix 52
trials crossed the separatrix in layers 2–3.

These results thus show that the separatrix in layer 4 plays a
role in restricting weak and spontaneous transient increases in

the number of spikes to influence the spiking in layers 2–3. As
the axons from layer 4 neurons to a large extent end in layers 2–3
(Rockland, 1985), this suggests that the separatrices in layers 4
and 2–3 prevent the rest spiking dynamics from driving neurons
to evoked dynamics in layers 2–3, whose neurons send axons to
higher order visual areas (Rockland, 1985).

DISCUSSION

Wepresented evidence that the spontaneous ongoing spiking can
dynamically be represented as a stable fixed-point attractor, and
that the spontaneous spiking is limited to a bounded domain of
the state space. Visually evoked spiking evolved in a separate,
adjacent domain of state space that was locally set apart from the
spontaneous state (domain) through a separatrix. In all evoked
trials, the spiking returned to the spontaneous ongoing spiking
domain where it resumed its spontaneous type trajectories.
Finally, the number of sites in layer 4 at which the separatrix
was crossed nonlinearly scaled with the number of separatrix
crossings in the output layers 2 and 3.

The dynamics of the spontaneous ongoing and visually
evoked spiking was reproducible and surprisingly simple given
the many theoretical options (Guckenheimer and Holmes, 1983;
Korn and Faure, 2003; Fdez Galán et al., 2004; Rabinovich et al.,
2009; Churchland et al., 2010; Rajan et al., 2010; Shenoy et al.,
2013; Woodman and Jirsa, 2013). Note that this result could not
have been arrived at through (traditional) analysis of spike rates
and spike timing but required the representation of the spiking
activity in the state space, and the reconstruction of the vector
fields in that space. The fixed point persisted in the three intervals
defined in Figure 1. In isolation, this finding does not rule out
that the stable fixed point vanishes in the brief windows (42
and 22 ms) separating these intervals. However, in some trials

Frontiers in Systems Neuroscience | www.frontiersin.org 12 January 2016 | Volume 9 | Article 183

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Huys et al. Spontaneous and Evoked Spiking Dynamics

FIGURE 9 | Vector field, nullclines, trajectories and peak rate distributions of the modified FHN model. (A) The small arrows represent the vectors; the
nullclines are shown as the thick gray lines; the trajectories as (thin) black lines. Note that the two trajectories staring nearby (about [0.6, −0.6] diverge: one traverses
a large “loop” through phase space and then converges towards the fixed point whereas the other immediately converges towards the fixed point). From this
visualization it can be appreciated that the separatrix set apart distinct states. (B) Results of simulations of the peak firing rates with and without a separatrix.
Increasing contrast was mimicked by increasing amplitudes of injected current (see “Materials and Methods” Section). The distributions were plotted as total number
of trials normalized to one for comparison with (Figures 8A–D). In the presence of a separatrix, with increasing stimulation strength, the proportion of low peak firing
rates vanishes while the proportion of high peak firing rates increase. The rate of the high peak firing slightly increases with increasing stimulation strength. In the
absence of a separatrix the peak-firing rate simply scales with the stimulation strength.

stimulation failed to induce the transit from the spontaneous
state (domain) to the evoked state (domain), which indicates that
the fixed point was persistent and stable during the brief windows
(see also Figure 5).

As the spontaneous spiking attractor was stable throughout
the stimulation period, and as we found no other attractive
domains, our results are incompatible with the hypothesis that
the sensory spiking replaces the spontaneous dynamics. They are
also incompatible with the idea that evoked spiking is merely a
modulation of spontaneous spiking; after all, the spiking evolved
in different parts of the state space that are set apart by a
separatrix, and the trajectories in the spontaneous and evoked
state differed qualitatively. In contrast, our results indicate
that whereas the dynamics of the ferret visual cortex layer 4
network is unaltered by visual stimulation, the spontaneous
and evoked spiking are different states in that they evolve in
different parts of the state space. Note that if the underlying
network spiking dynamics is mono-stable and the visual evoked
spiking states and spontaneous states are different and separate,
it is not surprising that experimental sensory evoked data have
been interpreted as modulations of spontaneous spiking and
as replacing spontaneous spiking (Abeles et al., 1995; Arieli
et al., 1995; Tsodyks et al., 1999; Fdez Galán et al., 2004;
Fiser et al., 2004; Mazor and Laurent, 2005; Jones et al., 2007;

Luzcak et al., 2009, 2013; Niell and Stryker, 2010). Our
results reconcile the opposing hypotheses on how spontaneous
ongoing spiking and sensory spiking relate. The spontaneous
spiking dynamics does not exclude the emergence of complex
spiking patterns (Rapp et al., 1985; Celletti and Villa, 1996).
Also in this respect, our results are compatible with experimental
results (Llinás and Paré, 1991; Fiser et al., 2004; Luzcak et al.,
2009, 2013; Ringach, 2009; Destexhe, 2011).

Our results do not exclude the existence of more evoked
spiking domains. In this context, reports showing a probabilistic
difference in the number of spikes between two (experimental)
conditions or a difference in spike sequences do not imply that
these differences constitute two different spiking domains nor
imply different spiking dynamics. Our initial visually evoked
states were dependent on visual transients, which occur when the
visual scene shifts or a saccade is made to a new point in the visual
field (Müller et al., 2001). Other types of stimulus presentations
may theoretically give rise to other spiking states, but this is still
an open question.

Our finding that the ferret visual cortex (layer 4) dynamically
acts as an excitable mono-stable system is significant in several
respects. This dynamical organization enables the network to
react fast to external drives (Figures 2–5), ensures that it will
always returns to its resting state (Figures 2, 5), and evades the
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FIGURE 10 | Peak spike rates and crossing of the separatrix. (A) Y-axis,
cumulative number of trials with peak rates >140 Hz. X-axis 1, 2, 3, 4 and
5 leads (sites) in layer 4. For example, for x = 3, y = the number of trials with
peak rates >140 Hz at lead 1 + lead 2 + lead 3. Rest trials (blue), 1-bar trials
(green), and 3-bar trials (red). Stippled lines: total number of trials crossing the
separatrix (total number of evoked trials), at rest (blue), 20 ms after stimulation
and onwards for 1-bar (green); and 3-bar (red). (B) The number of trials in
layers 2–3 (vertical axis) with peak spike rates <140 Hz (0 crossings), and
number of trials with peak spiking rates >140 Hz (1 crossing and 2 crossings).
X-axes, numbers of leads with spiking >140 Hz by the same trials in layer 4.
(A,B) valid for the interval from 30–50 ms after stimulus onset.

need for the network to re-organize, for example by creating
another attractor, to pass from the spontaneous spiking state
to the evoked spiking state. In other words, it guarantees
robustness and speed of operation. Moreover, as the spontaneous
ongoing and evoked spiking evolved in separate domains of
state space, the classification of spikes as ‘‘signal’’ and ‘‘noise’’
becomes superfluous. At the same time, it should be noted that
as the mathematics revealing the spiking dynamics does not
include assumptions about coding and information content of
the spiking in spontaneous states and during the evoked states,
it is unable to reveal if spike patterns carrying such codes exist.

Glancing at the firing rates (Figures 1B,C), one could describe
our data in terms of a baseline firing rate during spontaneous
activity, which temporarily increases following stimulation onset

(and offset), and subsequently reduces back to the spontaneous
baseline activity. This behavior can in principle be produced by
different dynamical systems, for instance by the linear model.
Indeed, firing rate analysis does not allow one to identify the
dynamics of the system’s collective behavior. This motivated the
analysis using principal components, the subsequent vector field
reconstruction as well as the peak rate distributions, without
which we would not have been able to arrive at our reported
results. Our analysis allowed us to show (rather then presume)
why the return to baseline occurs, namely because the stable fixed
point persists.

Regardless, physiologically, Na+ channel conductance
cascades can bring silent neurons to spike. This is usually
described as the membrane potential passing a threshold, above
which the neurons start to spike. The separatrix setting apart
the spontaneous ongoing spiking from the visual evoked spiking
is something quite different: it signifies a functional threshold
within the spiking domain. Effectively, its existence (near to
the fixed point attractor) causes some neurons to sometimes
remain in the spontaneous state whereas, inversely, some layer
4 neurons will sometimes enter visually evoked states in the
absence of stimulation.

Our results suggest, however, that the incidental crossing of
the separatrix in the absence of stimulation is not consequential:
propagation of layer 4 activity to layers 2–3, and most likely
other visual areas, scaled nonlinearly with the number of sites at
the separatrix was crossed in layer 4: evokes states in layers 2–3
occurred primarily when the more than half of the recorded
sites in layer 4 crossed the separatrix (Figure 10). Thus, the
separatrices undoubtedly hamper most spontaneous ongoing
spiking to become evoked, even in the output layers 2–3 of area
17 sending axons to other cortical areas (Figures 3, 4, 7, 8, 10).

Our type of anesthesia may have diminished the spiking
and increased the stability. Whether the anesthesia increases
the rest fixed-point attraction or makes the sensory drive
weaker or moves the location of the separatrix does not
affect dynamics as long as there are trials of visually
evoked spiking. It is also unlikely that the separatrix is
due to the anesthesia, because several neurons had peak
rates exceeding 180 spikes s−1 or more in all trials and all
neurons had trials with rest spiking. Also, in awake animals,
sensory stimuli are associated with peak fining rates that are
not distinguishable from resting activity in a considerable
number of trials (Niell and Stryker, 2010; Luzcak et al.,
2013).

The spiking of all neurons and the spiking in single trials were
examined, demonstrating consistent mono-stable dynamics,
a separatrix, and two different spiking state domains. This
temporal dynamics is a succinct mathematical description of the
temporal interactions of the neurons in layers 4 and 2–3 at the
network scale and such a description is difficult to obtain by
other methods. This description makes it easier to study whether
and to what extent experimental manipulations of membrane
conductances and spiking is able (or not) to alter this dynamics.
Our results were reproducible over scales ranging from single
trials, single neurons, to multi-units, populations of neurons,
animals, and different groups of animals. Thus the dynamics,
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given by the stable fixed point and the separatrix, and the spiking
states show the mechanics of the collective behavior of neurons
of the neuron network in area 17 mapping visual objects in the
center of field of view.
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