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Many of the mathematical frameworks describing natural selection are equivalent

to Bayes’ Theorem, also known as Bayesian updating. By definition, a process of

Bayesian Inference is one which involves a Bayesian update, so we may conclude

that these frameworks describe natural selection as a process of Bayesian inference.

Thus, natural selection serves as a counter example to a widely-held interpretation that

restricts Bayesian Inference to human mental processes (including the endeavors of

statisticians). As Bayesian inference can always be cast in terms of (variational) free

energy minimization, natural selection can be viewed as comprising two components:

a generative model of an “experiment” in the external world environment, and the

results of that “experiment” or the “surprise” entailed by predicted and actual outcomes

of the “experiment.” Minimization of free energy implies that the implicit measure of

“surprise” experienced serves to update the generative model in a Bayesian manner.

This description closely accords with the mechanisms of generalized Darwinian process

proposed both by Dawkins, in terms of replicators and vehicles, and Campbell, in

terms of inferential systems. Bayesian inference is an algorithm for the accumulation of

evidence-based knowledge. This algorithm is now seen to operate over a wide range of

evolutionary processes, including natural selection, the evolution of mental models and

cultural evolutionary processes, notably including science itself. The variational principle

of free energy minimization may thus serve as a unifying mathematical framework for

universal Darwinism, the study of evolutionary processes operating throughout nature.

Keywords: free energy, natural selection, information, Bayesian inference, Universal Darwinism

INTRODUCTION

Although Darwin must be counted amongst history’s greatest scientific geniuses, he had very little
talent for mathematics. His theory of natural selection was presented in remarkable detail, with
many compelling examples but without a formal or mathematical framework (Darwin, 1872).
Darwin did not think in mathematical terms; he found mathematics repugnant and it comprised
only a small part of his Cambridge education (Darwin, 1958).

Generally, mathematics is an aid to scientific theories because a theory whose basics are
described through mathematical relationships can be expanded into a larger network of predictive
implications and the entirety of the expanded theory subjected to the test of evidence. As a bonus,
any interpretation of the theory must also conform to this larger network of implications to ensure
some consistency.

Natural selection describes the change in frequency or probability of biological traits over
succeeding generations. One might suppose that a mathematical description—complete with
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an insightful interpretation—would be straightforward, but
even today this remains elusive. The current impasse involves
conceptual difficulties arising from one of mathematics’ bitterest
interpretational controversies.

That controversy is between the Bayesian and Frequentist
interpretations of probability theory. Frequentists assume
probability or frequency to be a natural propensity of nature.
For instance, the fact that each face of a dice will land with
1/6 probability is understood by frequentists to be a physical
property of the dice. On the other hand, Bayesians understand
that humans assign probabilities to hypotheses on the basis of
the knowledge they have (and the hypotheses they can entertain);
thus the probability of each side of a dice is 1/6 because the
observer has no knowledge that would favor one face over the
other; the only way that no face is favored is for each hypothesis
to be assigned the same probability. Furthermore, the value 1/6 is
conditioned upon the assumption that there are only six possible
outcomes. This means that probabilities are an attribute of a
hypothesis or model space—not of the world that is modeled.

The Bayesian framework is arguably more comprehensive and
has been developed into the mathematics of Bayesian inference,
at the heart of which is Bayes’ theorem, which describes how
probabilistic models gain knowledge and learn from evidence.
In my opinion, the major drawback of the Bayesian approach is
an anthropomorphic reliance on human agency, the assumption
that inference is an algorithm performed only by humans
that possess (probabilistic) beliefs. Despite this interpretational
dispute there has been some progress in uniting Bayesian and
frequentist mathematics (Bayarri and Berger, 2004).

Despite the lack of mathematics in Darwin’s initial
formulation it was not long before researchers began developing
a mathematical framework describing natural selection. It
is an historical curiosity that most of these frameworks
involved Bayesian mathematics, yet no interpretations were
offered, proposing natural selection as a process of Bayesian
inference.

The first step in developing this mathematics was taken during
Darwin’s lifetime by his cousin, Francis Galton. Galton developed
numerous probabilistic techniques for describing the variance
in natural traits—as well as for natural selection in general.
His conception of natural selection was intriguingly Bayesian;
although he may never have heard of Bayes’ theorem. Evidence
of his Bayesian bent is provided by a visual aid that he built for
a lecture on heredity and natural selection given to the Royal
Society (Galton, 1877).

He used this device (see Figure 1 below) to explain natural
selection in probabilistic terms. It contains three compartments:
a top compartment representing the frequency of traits in the
parent population, a middle one representing the application of
“relative fitness” to the child generation and a third representing
the normalization of the resulting distribution in the child
generation. Beads are loaded in the top compartment to represent
the distribution in the parent generation and then are allowed
to fall into the second compartment. The trick is in the second
compartment, which contains a vertical division, in the shape of
the relative fitness distribution. Some of the beads fall behind this
division and are “wasted”; they do not survive and are removed

FIGURE 1 | A device constructed by Francis Galton as an aide in an

1877 talk he gave to the RoyalSociety. It is meant to illustrate generational

change in the distribution of a population’s characteristics due to natural

selection.

from sight. The remaining beads represent the distribution of the
“survivors” in the child generation.

Galton’s device has recently been rediscovered and employed
by Stephan Stigler and others in the statistics community as
a visual aid, not for natural selection, but for Bayes’ theorem.
The top compartment represents the prior distribution, the
middle one represents the application of the likelihood to the
prior, and the third represents the normalization of the resulting
distribution. The change between the initial distribution and the
final one is the Bayesian update.

Fisher further developed the mathematics describing natural
selection during the 1920s and 1930s. He applied statistical
methods to the analysis of natural selection via Mendelian
genetics and arrived at the fundamental theorem of natural
selection which states (Fisher, 1930):

The rate of increase in fitness of any organism at any time is equal

to its genetic variance in fitness at that time.

Although Fisher was a fierce critic of the Bayesian interpretation
(which he considered subjective) he pioneered—and made many
advances with—the frequentist interpretation.

The next major development in the mathematics of natural
selection came in 1970 with the publication of the Price equation,
which built on the fundamental theorem of natural selection
(Harper, 2010; Frank, 2012a). Although the Price equation fully
describes evolutionary change, its meaning has only recently
begun to be unraveled, notably by Steven A. Frank in a series of
papers spanning the last couple of decades. Frank’s insights into
the meaning of the Price equation culminated in a 2012 paper
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(Frank, 2012b) which derives a description of natural selection
using the mathematics of information theory.

In my opinion, this paper represents a significant advance
in the understanding of evolutionary change as it shifts
the interpretation from the objective statistical description
of frequentist probability to an interpretation in terms of
Bayesian inference. Unfortunately, Frank does not share my
appreciation of his accomplishment. While he understands that
his mathematics are very close to those of Bayesian inference
he does not endorse a Bayesian interpretation but prefers an
interpretation in terms of information theory.

INFORMATION AND BAYESIAN
INFERENCE

However, the mathematics of information theory and Bayesian
probability are joined at the hip, as their basic definitions are in
terms of one another. Information theory begins with a definition
of information in terms of probability:

I
(

hi|m
)

= −log
(

P
(

hi|m
))

Here, we may view hi as the i
th hypothesis or event in a mutually

exclusive and exhaustive family of n competing hypotheses
comprising a model m. I

(

hi|m
)

is the information gained, under
the model, on learning that hypothesis hi is true. P

(

hi|m
)

is the
probability that had previously been assigned by the model that
the hypothesis hi is true. Thus, information is “surprise”; the less
likely a model initially considers a hypothesis that turns out to
be the case, the more surprise it experiences, and thus the more
information it receives.

Information theory, starting with the very definition of
information, is aligned with the Bayesian interpretation of
probability; information is “surprise” or the gap between an
existing state of knowledge and a new state of knowledge gained
through receiving new information or evidence.

The model itself, composed of the distribution of the p(hi),
may also be said to have an expectation. The information which
the model “expects” is the weighted average of the information
expected by the n individual p(hi), which is called the model’s
entropy.

S (H|m) =

n
∑

1

p
(

hi|m
) (

−log (p
(

hi|m
))

Entropy is the amount of information that separates a model’s
current state of knowledge from certainty.

Bayes’ theorem follows directly from the axioms of probability
theory and may be understood as the implication that new
evidence or information holds for the model described by the
distribution of the p(hi). This theorem states that on the reception
of new information (I) by the model (m) the probability of
each component hypothesis (hi) making up the model updates
according to:

P
(

hi
∣

∣ I,m
)

= P
(

hi
∣

∣ m
) P

(

I
∣

∣ him
)

P (I | m)

Bayesian inference is commonly understood as any process
which employs Bayes’ theorem to accumulate evidence based
knowledge (Wikipedia1): the quantity P (I | m) is called
(Bayesian) model evidence and corresponds to the probability
of observing some new information, under a particular model,
averaged over all hypotheses. This is a crucial quantity in practice
and can be used to adjudicate between good and bad models
in statistical analysis. It is also the quantity approximated by
(variational) free energy—as we will see below. Effectively,
this equation provides the formal basis for Bayesian belief
updating: in which prior beliefs about the hypotheses P

(

hi | m
)

are transformed into posterior beliefsP
(

hi | I,m
)

, which are
informed by new information. This updating rests upon
the likelihood model; namely the likelihood of observing
new information given the i-th hypothesis P

(

I | him
)

. This
formalism highlights the information theoretic nature of
Bayesian updating—and the key role of a (likelihood) model in
accumulating evidence.

We may conclude from this short overview of the relationship
between information and Bayesian inference that information
has little meaning outside a Bayesian context. Information
depends upon a model that assigns probabilities to outcomes and
which is updated on the reception of new information. In short,
there is no information unless there is something that can be
informed. This something is a model.

Thus, we see that, contrary to Frank’s view, Bayesian inference
and information theory have the same logical structure. However,
it is instructive to follow Frank’s development of the mathematics
of evolutionary change in terms of information theory, while
keeping in mind his denial of its relationship to Bayesian
inference. Frank begins his unpacking of the Price equation by
describing the “simple model” he will develop:

A simple model starts with n different types of individuals. The

frequency of each type is qi. Each type has wi offspring, where

w expresses fitness. In the simplest case, each type is a clone

producing wi copies of itself in each round of reproduction. The

frequency of each type after selection is

q,i = qi
wi

w
(1)

Where w =
∑n

1 qiwi is the average fitness of the trait in the

population. The summation is over all of the n different types

indexed by the i subscripts.

Equation (1) is clearly an instance of Bayes’ theorem, where the
new evidence or information is given in terms of relative fitness
and thus Frank’s development of this simple model is in terms of
Bayesian inference.

While Frank acknowledges an isomorphism between Bayes’
theorem and his simple model, he does not find this useful and
prefers to describe the relationship as an analogy. He makes the
somewhat dismissive remark:

1Wikipedia. Bayesian Inference. Available online at: https://en.wikipedia.org/wiki/

Bayesian_inference (Accessed 26 September, 2015).
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I am sure this Bayesian analogy has been noted many times.

But it has never developed into a coherent framework that has

contributed significantly to understanding selection.

On the contrary, I would suggest that Frank’s paper itself develops
a coherent framework for natural selection in terms of Bayesian
inference. In particular, he highlights the formal relationships
between the Price equation (or replicator equation) and Bayesian
belief updating (e.g., Kalman Filtering). This is potentially
interesting because many results in evolutionary theory can now
be mapped to standard results in statistics, machine learning
and control theory. Although we will not go into technical
details, a nice example here is that Fisher’s fundamental theorem
corresponds to the increase in Kalman gain induced by random
fluctuations (this variational principle is well-known in control
theory and volatility theory in economics). Despite this, Frank
dismisses Bayesian formulations because they do not appear to
bring much to the table. This is understandable in the sense that
the mathematics traditionally used to describe natural selection
already has a Bayesian form and merely acknowledging this fact
does not lead to a new formalism. However, this conclusion
might change dramatically if biological evolution was itself
a special case of a Universal Darwinism that was inherently
Bayesian in its nature. In what follows, we pursue this line of
argument by appealing to the variational principle of least free
energy.

FREE ENERGY MINIMIZATION PRINCIPLE

Baez and Pollard have recently demonstrated the similarities of
a number of information-theoretic formulations, including the
Bayesian replicator equation, evolutionary game theory, Markov
processes and chemical reaction networks, that are applicable
to biological systems as they approach equilibrium (Baez and
Pollard, 2016). In general, any process of Bayesian inference may
be cast in terms of (variational) free energyminimization (Roweis
and Ghahramani, 1999; Friston, 2010) and—in this form—
some important interpretative issues gain clarity. This approach
has been used by Hinton, Friston, and others to describe the
evolution of mental states as well as to describe pattern formation
and general evolutionary processes. In its most general form, the
free energy principle suggests that any weakly-mixing ergodic
random dynamical system must be describable in terms of
Bayesian inference. This means that the equivalence between
classical formulations of evolution and Bayesian updating are
both emergent properties of any random dynamical system that
sustains measurable characteristics over time (i.e., is ergodic;
Friston, 2013). This is quite important because it means that
evolution is itself an emergent property of any such systems.
Although conceptually intriguing, there may be other advantages
to treating evolution in terms of minimizing variational free
energy. In what follows, I will try to demonstrate this may be true.

In 1970 Ashby and Conant (Conant and Ashby, 1970) proved
a theorem that any regulating mechanism for a complex system
that is both successful and simple must be isomorphic with
the system being regulated. In other words, it must contain
a model of the system being regulated. As no model can be
exactly isomorphic to its subject without being a clone and

therefore exactly as complex as its subject, this theorem suggests
a variational approach may be useful, one which optimizes the
difference between the accuracy and the complexity of the model.

This is exactly a form in which the free energy minimization
principle may be cast (Moran et al., 2014):

F (s, u) = DKL

[

q (ψ |µ) || p (ψ |m)
]

− Eq
[

log p (s|ψ,m)
]

Free Energy= Complexity-Accuracy
Where ψ are hidden states of the world or environment, s are

their sensory consequences or samples (that can depend upon
action), µ are internal states and m is the generative model.
The distribution q is the current predictions of the states of
the environment, the distribution p is the true states of the
environment and the KL divergence is a measure of the distance
between them. Crucially, free energy can also be expressed in
terms of the surprise of sampled consequences:

F (s, u) = DKL

[

q (ψ |µ) ||p (ψ |s,m)
]

− logp (s|m)

Free Energy= relative entropy+surprise
This formulation of evolutionary change may appear quite

different from that of Bayesian inference as it has a focus on
model quality rather than fitness. However, a sustained decrease
in free energy (or increase in log model evidence) is equivalent
to a decrease in model entropy and therefore contravenes the
spirit, if not the letter, of the second law. The letter of that
law allows a decrease in entropy for dynamic systems only if
an environmental swap is conducted where low entropy inputs
are exchanged for high entropy outputs. In short, the second
law forbids the existence or survival of low entropy dynamic
systems lacking such an ability—an ability that mandates a model
of the environment and Bayesian inference under that model.
This provides a focus for the model’s knowledge accumulation;
it must entail knowledge of its environment as well as a strategy
to perform the required entropy swaps within that environment.
Thus, the drive to fitness, which is explicit in the Bayesian
formulation, is also implicit in the free energy formulation.

As descriptions of evolutionary processes in terms of free
energy minimization have great general applicability it may be
useful to consider some specific examples. In biological evolution
we can associate the model (m) with a genotype. This means
the genotype corresponds to the sufficient statistics of the prior
beliefs a phenotype is equipped with on entering the world.
Keeping in mind that organisms may sense their environments
through both chemical and neural means, we may associate
sensory exchanges with the environment (s) with adaptive states.
Finally, the sufficient statistics of the posterior (mµ) can be
associated with a phenotype. In other words, the phenotype
embodies probabilistic beliefs about states of its external milieu.
This formulation tells us several fundamental things:

(i) everything that can change will change to minimize free
energy. Here, the only things that can change are the
sufficient statistics; namely, the genotype and phenotype.
This means there are two optimizations in play: adaptive
changes in the phenotype over somatic time (i.e., changes
in mµ) and adaptive changes in the genotype over
evolutionary time (i.e., changes inm).
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(ii) somatic changes will be subject to two forces: first, a
maximization of accuracy that simply maximizes the
probability of occupying adaptive states, and second,
a minimization of complexity. This minimization
corresponds to reducing the divergence between the
beliefs about, or model of (hidden) environmental states
(ψ) implicit in the phenotype and the prior beliefs implicit
in the genotype. In other words, a good genotype will
enable the minimization of free energy by equipping the
phenotype with prior beliefs that are sufficient to maintain
accuracy or a higher probability of adaptive states. Thus,
the phenotype may be thought of as a type of experiment,
which gathers evidence to test prior beliefs; i.e., gathers
evidence for its own existence.

(iii) changes in the genotype correspond to Bayesian model
selection (c.f., natural selection). This simply means
selecting models or genotypes that have a low free energy or
high Bayesian model evidence. Because the Bayesian model
evidence is the probability of an adaptive state given amodel
or genotype (p(s|m)), natural selection’s negative variational
free energy becomes (free) fitness. At this level of free energy
minimization, evolution is in the game of orchestrating
multiple (phenotypic) experiments to optimize models of
the (local) environment.

Another specific example of the general ability of the free energy
minimization principle to describe evolutionary change is in
neuroscience where it is fairly easy to demonstrate the centrality
of this principle in explaining evolutionary, developmental and
perceptual processes in a wide range of mental functions (Friston,
2010). The brain produces mental models which combine
sensory information concerning the state of the environment,
with possible actions with which the organism may intervene.
The initiation of an action is a kind of experiment in the
outside world testing the current beliefs about its hidden
states. The overall drive of the free energy principle is to
reduce the model complexity, while maximizing its accuracy in
achieving the predicted outcome. Crucially, the ensuing self-
organization can be seen at multiple levels of organization; from
dendritic processes that form part of the single neuron—to
entire brains. The principles are exactly the same, the only thing
that changes is the way that the model is encoded (e.g., with
intracellular concentrations of various substrates—or neuronal
activity and connectivity in distributed brain systems). This
sort of formulation has also been applied to self-organization
and pattern formation when multiple systems jointly minimize
their free energy (for example, in multi-agent games and
morphogenesis at the cellular level).

Clearly, the application of variational (Bayesian) principles to
ecological and cellular systems means we have to abandon the
notion that only humans can make inferences. We will take up
this theme below and see how freeing oneself from the tyranny of
anthropomorphism leads us back to a universal Darwinism.

The free energy minimization principle may also be applied
to processes of cultural evolution. A compelling example here is
the evolution of scientific understanding itself. Science develops
hypotheses or theoretical models of natural phenomena. These

models are used to design experiments in the real world and
the results of the experiment are used to update the probability
of each hypothesis composing the model according to Bayes’
theorem. In the process free energy is minimized through a
balance which reduces the model’s complexity (Occam’s razor)
while increasing the model’s predictive accuracy and explanatory
scope.

The evolutionary interaction between models and the systems
they model, as described by the free energy minimization

principle, may be applicable to additional natural phenomena
beyond the examples above. Several attempts have been made to
describe universal Darwinism in such terms. We have previously
noted the wide range of scientific subject matter that has been

identified within the literature as Darwinian processes—and
have offered an interpretation in terms of inferential systems
(Campbell, 2014); an interpretation closely related to that of

the free energy minimization principle. Richard Dawkins offered
a description of biological evolution in terms of replicators

and vehicles (Dawkins, 1982), a description which Blackmore
and Dennett have generalized to interpret universal Darwinism
(Dennett, 1996; Blackmore, 1999). That description may also be

understood as an interplay between internal models (replicators)
and the experience of the “experiments” (vehicles) which they
model in the external world.

The Price equation describing evolutionary change may be
cast in a form which distinguishes between change due to
selection and transmission. Changes due to selection tend to
decrease model variation whereas changes due to transmission
or copying of the model serve to increase variation. The
transmission changes of biological models are often in the form
of genetic mutations (Frank, 2011). From the perspective of
universal Darwinism, we might expect a mechanism capable of
increasing model variation within non-biological evolutionary
processes that is analogous to biological mutation. As an example
wemight consider the process of evolutionary change in scientific
models during transmission. These may appear less clear; there is
less consensus on how new and sometimes improved scientific
models are generated. It may seem this process has little in
common with the somewhat random and undirected process of
biological mutation.

The mental process by which researchers arrives at innovative
models is largely hidden and might be considered closer
to an art form than algorithmic but the development of
inferential/Darwinian evolutionary computational processes
have demonstrated a strong ability to discover innovative models
in agreement with the evidence(Holland, 1975; Ibáñez et al.,
2015). In some instances, these evolutionary approaches have
inferred successful models for systems which have long eluded
researchers (Lobo and Levin, 2015).

THE ARENA OF BAYESIAN INFERENCE

The reluctance of many researchers to endorse a Bayesian
interpretation of evolutionary change may be somewhat
puzzling. One reason for this is a peculiarity, and I would
suggest a flaw, in the usual Bayesian interpretation of inference
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that renders it unfit as a description of generalized evolutionary
change. The consensus Bayesian position is that probability
theory only describes inferences made by humans. As Jaynes put
it (Jaynes, 1988):

it is...the job of probability theory to describe human inferences at

the level of epistemology.

Epistemology is the branch of philosophy that studies the nature
and scope of knowledge. Since Plato the accepted definition of
knowledge within epistemology has been “justified true beliefs”
held by humans. In the Bayesian interpretation “justified” means
justified by the evidence. “True belief” is the degree of belief in
a given hypothesis which is justified by the evidence; it is the
probability that the hypothesis is true within the terms of the
model. Thus, knowledge is the probability, based on the evidence,
that a given belief or model is true. I have proposed a technical
definition of knowledge as 2−S where S is the entropy of the
model (Campbell, 2014).

A perhaps interesting interpretation of this definition is that
knowledge occurs within the confines of entropy or ignorance.
For example, in a model composed of a family of 64 competing
hypotheses, where no evidence is available to decide amongst
them, we would assign a probability of 1/64 to each hypothesis.
The model has an entropy of six bits and has knowledge of
2−6 = 1/64. Let’s say some evidence becomes available and the
model’s entropy or ignorance is reduced to three bits. Then the
knowledge of the updated model is 1/8, equivalent to the entropy
of a model composed of only eight competing hypotheses that is
maximally ignorant, which has no available evidence. The effect
which evidence has on the model is to increase its knowledge by
reducing the scope of its ignorance.

It is unfortunate that both Bayesian and Frequentist
interpretations deny the existence of knowledge outside of the
human realm because it forbids the application of Bayesian
inference to phenomena other than models conceived by
humans, it denies that knowledge may be accumulated in natural
processes unconnected to human agency and it acts as a barrier
in realizing our close relationship to the rest of nature. Thus,
even though natural selection is clearly described in terms of
the mathematics of Bayesian inference, neither Bayesians such as
Jaynes nor frequentists such as Frank can acknowledge this fact
due to another hard fact: natural selection is not dependent upon
human agency. In both their views this may rule out a Bayesian
interpretation.

I believe that the correct way out of this conundrum is to
simply acknowledge that in many cases inference is performed
by non-human agents as in the case of natural selection and
that inference is an algorithm which we share with much of
nature. The genome may for instance be understood as an
example of a non-human conceived model involving families of
competing hypotheses in the form of competing alleles within the
population. Such models are capable of accumulating evidence-
based knowledge in a Bayesian manner. The evidence involved
is simply the proportion of traits in ancestral generations which
make it into succeeding generations. In other words, we just
need to broaden Jaynes’ definition of probability to include

non-human agency in order to view natural selection in terms
of Bayesian inference.

In this view the accumulation of knowledge is a preoccupation
we share with the rest of nature. It allows us to view
nature as possessing some characteristics, such as surprise and
expectations, previously thought by many as unique to humans
or at least to animals. For instance, all organisms “expect” to find
themselves in the type of environment for which they have been
adapted and are “surprised” if they don’t.

UNIVERSAL DARWINISM

Bayesian probability, epistemology and science in general tend
to draw a false distinction between the human and non-human
realms of nature. In this view the human realm is replete with
knowledge and thus, infused with meaning, purpose and goals,
and Bayesian inference may be used to describe its knowledge-
accumulating attributes. On the other hand, the non-human
realm is viewed as devoid of these attributes and thus Bayesian
inference is considered inapplicable.

However, if we recognize expanded instances, such as
natural selection, in which nature accumulates knowledge then
we may also recognize that Bayesian inference, as well as
equivalent mathematical forms, provides a suitable mathematical
description in both realms. Evolutionary processes, as described
by the mathematics of Bayesian inference, are those which
accumulate knowledge for a specific purpose, knowledge
required for increased fitness, for increased chances of continued
existence. Thus, the mathematics implies purpose, meaning and
goals, and provides legitimacy for Daniel Dennett’s interpretation
of natural selection in those terms (Dennett, 1996). If we allow an
expanded scope for Bayesian inference, we may view Dennett’s
poetic interpretation of Darwinian processes as having support
from its most powerful mathematical formulations.

An important aspect of these mathematics is that they
apply not only to natural selection but also to any generalized
evolutionary processes where inherited traits change in
frequencies between generations. As noted in a cosmological
context by Gardner and Conlon (2013):

Specifically, Price’s equation of evolutionary genetics has

generalized the concept of selection acting upon any substrate

and, in principle, can be used to formalize the selection of

universes as readily as the selection of biological organisms.

At the core of Bayesian inference, underlying both the Price
equation and the principle of free energy minimization we find
an extremely simple mathematical expression: Bayes’ theorem:

q,i = qi
wi

w

Simply put this equality says that the probabilities assigned to
the hypotheses of a probabilistic model are updated by new
data or experience according to a ratio, that of the probability
of having the experience given that the specific hypothesis is
correct to the average probability assigned by the model to
having that experience. Those hypotheses supported by the data,
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those that assign greater than average probability to having
the actual experience, will be updated to greater values and
those hypotheses not supported by the data will be updated to
lesser values. This simple equation describes the accumulation of
evidence-based knowledge concerning fitness.

When Bayes’ theorem is used to describe an evolutionary
process the ratio involved is one of relative fitness, the ratio of
the fitness of a specific form of a trait to the average fitness of
all forms of that trait. It is thus extremely general in describing
any entity able to increase its chances of survival or to increase its
adaptiveness. When cast in terms of the principle of free energy
minimization some further implications of this simple equation
are revealed (see above).

In a biological evolutionary context, the Price equation is
traditionally understood as the mathematics of evolutionary
change. However, the Price equation may be derived from a
form of Bayes’ theorem (Gardner, 2008; Shalizi, 2009; Frank,
2012b) which means it describes a process of Bayesian inference,
a very general form of Bayesian inference which according to
Gardner (Gardner, 2008) applies to any group of entities that
undergo transformations in terms of a change in probabilities
between generations or iterations. Even with this great generality
it provides a useful model as it partitions evolutionary change in
terms of selection and transmission (Frank, 2012a).

There are numerous examples of these equivalent
mathematical forms used in the literature to describe
evolutionary change across a wide scope of scientific subject
matter, specifically evolutionary change in biology (Gardner,
2008; Frank, 2012b), neuroscience (Friston, 2010; Fernando
et al., 2012) and culture (Hull, 1988; Jaynes, 2003; Mesoudi et al.,
2006; Gintis, 2007).

It is interesting to speculate on the similarity of these
mathematical forms to those which may be used to describe
quantum physics. Quantum physics is also based upon
probabilistic models which are updated by information received
through interactions with other entities in the world. Wojciech
Zurek, the founder of the theory of quantum Darwinism
(Zurek, 2009), notes that the update of quantum states may
be understood in terms of ratios acting to update probabilistic
models (Zurek, 2005).

Using this connection, we then infer probabilities of possible

outcomes of measurements on S from the analogue of the

Laplacian ‘ratio of favorable events to the total number of

equiprobable events’, which we shall see in Section V is a good

definition of quantum probabilities for events associated with

effectively classical records kept in pointer states.

Unfortunately, many who have attempted to interpret
quantum theory in terms of Bayesian inference, such as
Caves, Fuchs, and Schack (Fuchs, 2010), have endorsed a

common anthropomorphic Bayesian flaw and conclude that the
probabilities involved with quantum phenomena are a “personal
judgment” (Fuchs et al., 2015), and thus that the inferences
involved take place within a human brain. A conceptual shift
acknowledging that inference is a natural algorithm which may
be performed in processes outside of the human brain may go

some way to allowing quantum Darwinism to be understood as
a process of Bayesian inference conducted at the quantum level
(Campbell, 2010).

A vast array of phenomena is subject to evolutionary change
and describable by the equivalent mathematical forms discussed
here. These forms interpret evolutionary change as based on the
accumulation of evidence-based knowledge. Conversely, many
instances of evidence-based knowledge found in nature are
describable using this mathematics. We might speculate that
all forms of knowledge accumulation found in nature may
eventually find accommodation within this paradigm. Certainly,
the theorem proved by Cox (1946) identifies Bayesian inference
as the unique method by which models may be updated with
evidence.

It is somewhat ironic that in 1935 Fisher wrote (Fisher, 1937):

Inductive inference is the only process known to us by which

essentially new knowledge comes into the world.

Of course he was referring to experimental design and
considered it unnecessary to specify that he was referring only
to human knowledge. Probably he assumed that no other
repositories of knowledge exist. The stage may now be set
for us to understand his assertion as literally true in its full
generality.

Ultimately the scope and interpretation of universal
Darwinism, the study of phenomena which undergoes
evolutionary change, will depend on the mathematical
model underlying it. Those phenomena which are accurately
and economically described by the mathematics must be
judged to be within the scope of universal Darwinism.
Given the great generality and substrate independence of
current mathematical models, a unification of a wide range of
scientific subject matters within this single paradigm may be
possible.
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