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The question regarding whether somatosensory inputs are processed in parallel or in
series has not been clearly answered. Several studies that have applied dynamic causal
modeling (DCM) to fMRI data have arrived at seemingly divergent conclusions. However,
these divergent results could be explained by the hypothesis that the processing
route of somatosensory information changes with time. Specifically, we suggest that
somatosensory stimuli are processed in parallel only during the early stage, whereas
the processing is later dominated by serial processing. This hypothesis was revisited in
the present study based on fMRI analyses of tactile stimuli and the application of DCM
to magnetoencephalographic (MEG) data collected during sustained (260 ms) tactile
stimulation. Bayesian model comparisons were used to infer the processing stream.
We demonstrated that the favored processing stream changes over time. We found
that the neural activity elicited in the first 100 ms following somatosensory stimuli is
best explained by models that support a parallel processing route, whereas a serial
processing route is subsequently favored. These results suggest that the secondary
somatosensory area (SII) receives information regarding a new stimulus in parallel with
the primary somatosensory area (SI), whereas later processing in the SII is dominated by
the preprocessed input from the SI.
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INTRODUCTION

Understanding the process of somatosensory perception requires detailed knowledge of not only
the functions of the involved cerebral areas, but also their interactions and particularly the route
by which sensory information is transmitted. Although research over the past two decades has
significantly improved our understanding of the brain areas involved and their functions, where
somatosensory inputs enter the cortical brain matrix and whether the data are processed in a
parallel or serial manner remain poorly understood.

The parallel pathway theory proposes that somatosensory inputs project from the thalamus
directly to both the primary somatosensory cortex (SI) and the secondary somatosensory cortex
(SII) and that these information streams are processed in parallel. The serial pathway theory
assumes that there is no direct input of thalamic information to the SII but that somatosensory
inputs project from the thalamus to the SI before being relayed to the SII (Rowe et al., 1996).
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Both theories are supported by anatomical studies that have
demonstrated that the SI is connected to the SII via reciprocal
cortico-cortical connections (Jones and Powell, 1969) and that
different thalamic nuclei project in parallel to the SI and the SII
(Almeida et al., 2004). Therefore, pain and tactile information
can be conveyed to the SII via an indirect serial pathway from the
thalamus via the SI, but this information might also be directly
conveyed by the thalamus. However, regardless of whether the
anatomical connections allow unaltered input signals to directly
or indirectly enter the SII, whether such connections are used
to transmit input information or are instead used for top-down
modulation remains unknown.

Dynamic causal modeling (DCM) is a method that allows for
estimations and inferences about network dynamics to be made
based on a Bayesian framework (Friston et al., 2003). Particularly,
this method allows for the coupling of a small number of brain
areas to be estimated (Friston et al., 2003).

There are four studies available that have applied DCM to
fMRI data of somatosensory information processing. However,
these studies reached different conclusions regarding whether
somatosensory information is processed in parallel or in series.
Two of these studies reported evidence supporting parallel
processing of somatosensory information (Liang et al., 2011;
Chung et al., 2014), while the other two studies reported evidence
supporting serial processing of somatosensory information
(Kalberlah et al., 2013; Khoshnejad et al., 2014). A recent study
that applied DCM analysis to magnetoencephalographic (MEG)
data suggested that somatosensory data are processed in parallel
during the early stage (within the first 100 ms; Klingner et al.,
2015).

However, these divergent results could be explained by
the hypothesis that the processing route for somatosensory

FIGURE 1 | Schematic outline of the main research question of the
current study. This study investigated whether somatosensory information is
processed in parallel or in series and whether the processing mode changes
over time. Specifically, whether the processing mode at the beginning of a
new stimulus is different from the processing mode of a persisting stimulus.

information changes over time. Specifically, we have previously
suggested that somatosensory stimuli are processed in parallel
only during the early stage and that the processing is later
dominated by serial processing (Figure 1). This hypothesis was
revisited in the present study based on fMRI analyses of tactile
stimuli and the application of DCM to MEG data obtained
during sustained (260 ms) tactile stimulation. Bayesian model
comparisons were used to make direct inferences regarding the
processing stream.

MATERIALS AND METHODS

Subjects
Seventeen healthy volunteers without any histories of
neurological or psychiatric diseases participated in this study
(mean age 22.9 ± 1.8 years, 9 female). All subjects were right-
handed according to the Edinburgh Handedness Inventory
(Oldfield, 1971). All subjects provided their written informed
consent. This study was approved by the local ethics committee
(Ethik-Kommission der Friedrich-Schiller-Universität Jena an
der Medizinischen Fakultät) and was performed in accordance
with the Human Subjects Guidelines of the Declaration of
Helsinki.

Experimental Protocol
All subjects underwent a tactile stimulation paradigm during
fMRI image acquisition and during MEG scans. The tactile
stimuli were delivered to fingers 1 + 3 of the right hand
by balloon diaphragms that were driven by compressed
air. A schematic of the device is shown in Figures 2A,B.
The movement of the balloon diaphragms and the changes
in pressure are illustrated in Figure 2C. The detection
threshold of the tactile stimuli was approximately 10% of
the stimulation strength used. Therefore, we used a well
perceivable but non-painful tactile stimulus. The timings and the
durations of the stimuli differed between the fMRI and MEG
measurements.

fMRI Somatosensory Stimulation
Procedures
A total of 60 tactile stimuli were presented in an event-related
regime (2 s on). Each tactile stimulus consisted of 10 sub-stimuli
that were applied by the balloon diaphragm. The event-related
interstimulus time was randomized between 7.7 s and 12.8 s. The
timings of the stimulus presentations were externally controlled
by the MR scanner and were synchronized with the image
acquisition.

MEG Somatosensory Stimulation
Procedures
The MEG somatosensory stimulation employed the same tactile
stimulation device used during the fMRI experiment. However,
the stimulation procedure differed in terms of the timings of the
stimuli (Figures 2A–C). During the MEG experiment, 154 tactile
stimuli were delivered to fingers 1 + 3 of the right hand in
an event-related regimen. Each stimulus lasted for 260 ms.
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FIGURE 2 | (A–C) are a schematic outline of the somatosensory stimulation
device used in the current study. (D) Shows the movement of the balloon
diaphragm (solid line) and the changes in pressure (dotted line). The air pump
was started at time 0 and required 40 ms increase the air pressure at the
membrane. The y-axis shows the changes in the membrane position and
changes in the pressure in relative units (maximal movement or
pressure = 100%).

The event-related interstimulus time was randomized between
2 s and 3.8 s. Due to the use of compressed air, there was a time
delay between the start of the trigger (i.e., the start of the pump)
and the somatosensory stimulation. The diaphragm connected to
the skin of the subject’s finger began to rise 35 ms after the pump
was triggered (Figure 2D). To ensure a significant increase in the
diaphragm, we added 5 ms and considered this time (40 ms) as
the onset of the tactile stimulus.

fMRI Recordings
The images were acquired using a 3.0 tesla MR scanner (Trio,
Siemens, Erlangen, Germany). We obtained echo-planar
T2∗-weighted image volumes (EPI) and transaxial T1-weighted
structural images. The functional data were acquired in an
EPI session of 230 volumes. The first three EPI volumes
were discarded due to equilibration effects. Each functional
image volume was comprised of 44 transaxial slices that
were obtained during the stimulus paradigm. The scans
included the entire cerebrum and cerebellum (voxel
size = 3 mm × 3 mm × 3 mm, repetition time = 2.5 s,
TE = 35 ms). The high-resolution, T1-weighted structural
images had a voxel size of 1 mm × 1 mm × 1 mm to allow for
precise anatomical localization.

fMRI Data Analysis
The data analysis was performed on a workstation using
MATLAB (Mathworks, Natick, MA, USA) and SPM12 software
(Wellcome Department of Cognitive Neurology, London, UK1).
For each subject, all images were realigned to the first volume
using a six-parameter, rigid-body transformation to correct for
motion artifacts. The images were co-registered with the subject’s
corresponding anatomical (T1-weighted) images, resliced to
correct for acquisition delays, normalized to the Montreal
Neurological Institute (MNI) standard brain (Evans et al., 1993)
to report the MNI coordinates, and smoothed using a 6-mm full-
width-at-half-maximum Gaussian kernel.

A multiple regression analysis was performed using a
general linear model to obtain statistical parametric maps
that were calculated for the somatosensory stimulation. The
fMRI signal time courses were high-pass filtered (128 s)
and modeled as experimental-stimulus onset functions that
were convolved with the canonical hemodynamic response
function (low-pass filter). The individual results were projected
onto their respective co-registered, high-resolution, T1-
weighted, 3-D data sets. The anatomical localizations of
the activated areas were analyzed with reference to the
standard stereotaxic atlas and by visual inspection of the
individual T1-weighted structural data. Individual maps
were used to perform a random effect analysis using the
standard summary statistic approach to obtain consistent
group activation patterns. The resulting group statistical maps
were thresholded according to the false discovery rate (FDR;
P < 0.01).

MEG Recordings
MEG was used to record magnetic fields with a 306-channel
helmet-shaped neuromagnetometer (Vectorview, Elekta
Neuromag Oy, Helsinki, Finland). The MEG data were
sampled at 2 kHz and subsequently low-pass filtered at 1660 Hz
and high-pass filtered at 0.1 Hz. A 3D digitizer (3SPACE
FASTRAK, Polhemus Inc., Colchester, VT, USA) was used to
identify the anatomical locations (i.e., preauricular points and
nasion). Additional electrodes were positioned to capture the
electrocardiographic (ECG) and electrooculographic (EOG)
information.

MEG Data Analysis
At the first preprocessing step, the recorded raw MEG data
were filtered with Maxfilter version 2.0.21 (Elekta Neuromag Oy.
Finland). The Maxfilter algorithm uses a signal space separation
(SSS) method (Taulu and Simola, 2006). The further analysis
of the MEG data was performed by using SPM12 software
(Wellcome Department of Cognitive Neurology, London, UK1)
and MATLAB (Mathworks, Natick, MA, USA). All recordings
were visually inspected to detect the segments that were
contaminated with noise. These segments were discarded from
the subsequent analyses. We used the ‘‘Brainstorm’’ software
(Tadel et al., 2011) for artifact correction. Heart and eye
movement/blink contaminations were attenuated by designing

1http://www.fil.ion.ucl.ac.uk/spm
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the signal-space projections (SSP) from the selected segments of
data related to each artifactual event (Nolte and Curio, 1999).
Heartbeat and eye blink events were automatically detected in the
ECG and EOG traces. The projectors were defined by applying
principal component analysis (PCA) to these data segments.
The data were orthogonally projected away from the principal
component that best captured the artifacts’ sensor topographies.
Further data processing was performed with SPM software. Data
from all sensors were first high-pass filtered at 0.5 Hz and then
low-pass filtered at 100 Hz. The data were then downsampled
to 500 Hz and epoched from 50 ms before the stimulus onset to
300 ms after the stimulus onset. The pre-stimulus time window
(−50 ms to 0 ms) was used for baseline corrections.

Model Specification
We used a DCM analysis to clarify whether somatosensory
information is processed in parallel (directly entering the SII;
Liang et al., 2011; Chung et al., 2014) or in series (entering
only the SI and then further transmitted from the SI to the SII;
Kalberlah et al., 2013; Khoshnejad et al., 2014). Specifically, we
were interested in whether the processing route of somatosensory
information changes over time. The cortical network consisted
of three nodes (contralateral SI; contralateral SII; ipsilateral SII)
that were activated during the fMRI experiment. The individual
results of the fMRI analysis were used as prior locations for
equivalent current dipoles in the modeling of the MEG data. The
anatomical correctness of each location of a given region was
further verified the using cytoarchitectonic probabilistic maps
from the SPM Anatomy Toolbox (Eickhoff et al., 2005). We
applied DCM for evoked responses using a network of standard
event related potential (ERP) neural mass models (David et al.,
2006). The evoked responses were spatially modeled by using
a patch on the cortical surface (IMG in SPM software). The
bidirectional connections were defined between the SIc and the
SIIc and between the SIIc and the SIIi (Figure 3). Additionally,
all nodes were modeled with self-connections.

Models that differed in terms of whether the stimulus
information directly entered the SII node were compared.
However, we were also interested in whether the processing route
of the somatosensory information changed over time. Therefore,
we divided the input signal from the thalamus into a phasic
component that encoding the onset of a new stimulus and a
sustained component that model the input during the duration
of stimulus presentation (see Figure 3). We used Gaussian
input functions as priors for the thalamic input with a mean
of 30 ms/170 ms and a standard deviation of 16 ms/70 ms.
This approach allowed us to test the following four models:
(A) permanent serial information processing; (B) a switch
from serial to parallel processing; (C) a switch from parallel
to serial processing; and (D) permanent parallel processing of
somatosensory information (Figure 3). For short time windows,
the same analyses were performed with simplified models that
modeled only the initial response (the start) of a stimulus and not
the second input, which coded the sustained stimulus. The key
directed connectivity parameters in this DCM corresponded to
the strength of the coupling among nodes of the somatosensory
system that are engaged by our (presumed) thalamic input. The

FIGURE 3 | Hypotheses regarding the processing of somatosensory
information. Each of the subfigures shows a model of the corresponding
tested hypothesis. The extrinsic input functions of the model are shown to the
left of each subfigure. The inputs correspond to stimulus functions encoding
the tactile stimuli. These input functions are required by the implementation of
the dynamic causal modeling (DCM) representing the thalamic input caused
by the stimulus. Dependent on the model, these inputs are forwarded only to
the primary somatosensory cortex (SI) or to both the SI and secondary
somatosensory cortex (SII). The model of the cortical somatosensory network
and its connections are illustrated to the right.

models were specified and estimated using the DCM toolbox
for SPM (SPM 12 release 6225). Usually, DCM assumes that
the effective connectivity mediating evoked responses is fixed
over the peri-stimulus time. Therefore, to address our hypothesis
regarding changes in functional architecture (from serial to
parallel or vice versa) we performed two complementary analyses
that, reassuringly, yielded the same results. First, we modeled
the entire peri-stimulus time window (up to 300 ms) using
two stimulus-bound inputs representing early and sustained
inputs. Importantly, these inputs could be deployed at high,
low, or both levels of the somatosensory hierarchy, thereby
allowing us to test whether one or both inputs were mediated
by serial or parallel processing. This procedure allowed us to
effectively dissociate serial and parallel processing in terms of
early and late thalamic inputs. The second analysis employed a
complementary approach in which we modeled the data over
successive longer (or later) windows of stimulus time under two
different models (serial and parallel) using the same thalamic
input. For consistency, we applied the Bayesian model selection
(BMS) approach to all windows used in the window selection
approach. Our hypothesis here was that the predominant
architecture would be reflected in the relative evidence for
serial and parallel models and that this would change with the
peri-stimulus duration.

Bayesian Model Selection and Comparison
The estimated DCMs were compared by using the model
evidence. The model evidence is a measure of the probability
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of measuring the observed data given a particular model. The
model evidence was compared at the group level in a random
effect analysis (BMS). The details of this method are described
elsewhere (Penny et al., 2010; Stephan et al., 2010). In short, a
free energy approximation to the log evidence of each model is
estimated in terms of the model fit and complexity (Friston et al.,
2003). Based on the estimated model evidence, BMS calculates
the probability that a given model is more likely than any
other tested model to account for the data (Penny et al., 2010;
Stephan et al., 2010). In the current study, BMS was separately
performed for 18 data segments with lengths ranging from 40 ms
to 260 ms that all began at 1 ms (Auksztulewicz et al., 2012).
BMS was additionally performed with time windows of fixed
lengths of 60 ms to further investigate the time course of a
possible switch from parallel to serial information processing.
We reported the exceedance probability (EP) for each tested
model. The EP is a measure of the likelihood that one model
is more likely (describes the data better) than any other model
(Stephan et al., 2009; Penny et al., 2010). The EP sum to one
over all models tested. For example, an EP of 90% means that
we can be 90% confident that a specific model has a greater
posterior probability than any other model. In the case of only
two competing hypotheses, the EP is particularly intuitive as it
describes the confidence that a model is more likely than the
other one.

RESULTS

We applied DCM model comparison to clarify whether the
processing of tactile information is performed in series or
in parallel and whether there is a time-dependent change in
the processing route. Figure 3 shows the four models that
are compared in the current analysis. These models coding
(A) sustained serial information processing; (B) a switch from
parallel to serial processing; (C) a switch from serial to
parallel processing; and (D) sustained parallel processing of
somatosensory information (Figure 3).

fMRI as a Spatial Localizer
The fMRI experiment was used to determine the spatial location
of the areas of our model (SIc, SIIc, SIIi). The tactile stimulation
of fingers 1 + 3 of the right hand evoked highly significant
activations (P < 0.01, FDR-corrected) in the random-effect
group analysis (Figure 4). These activations were located in the
left SI and the bilateral SII (Table 1; Figure 4). The spatial
locations of the activation maxima were further used in the DCM
analysis of MEG data.

DCM Model Comparison
The cortical network of the applied DCM model consisted of
three nodes (contralateral SI, contralateral SII and ipsilateral
SII) that were activated during the fMRI experiment. The
grand average of the event related fields (ERFs) is shown in
Figure 5. The use of DCM enabled us to test the four models
shown in Figure 3. A random-effect Bayesian model comparison
(n = 17) was applied to the four models over different time

FIGURE 4 | The random-effect group analysis (n = 17) of BOLD
responses. Activations (P < 0.01, false discovery rate [FDR]-corrected) in
response to tactile stimulation of fingers 1 + 3 of the right hand are shown
superimposed on an inflated brain. The green circles correspond to the spatial
locations of the maximum activation, which was further used for the
magnetoencephalographic (MEG) analysis (SI, primary somatosensory cortex;
SII, secondary somatosensory cortex, c, contralateral to tactile stimulation;
i, ipsilateral to tactile stimulation).

windows (Figure 6). The model representing a switch from
parallel to serial processing (blue bars in Figure 6) clearly
achieved the greatest EP value for all time intervals (Figure 6).
A comparison of the strengths of the inputs revealed highly
significant (p < 0.001) differences for all time intervals with
stronger inputs in the SI than in the SII (not shown).

The same analysis was additionally performed with simplified
models that included only the initial response (the start) to
the stimulus. Parallel and serial input models were compared
(Figure 7). This analysis favored a parallel processing of
information at the start of a new stimulus with a progressive
change to a serial processing mode with increasing stimulus
durations (Figure 7).

Additionally, we performed Bayesian model averaging to
test for differences in the strengths of the inputs from the
thalamus to the SI and from the thalamus to the SII. The
Bayesian model averaging was performed for the winning model.
Subject-specific input parameters were tested by a paired t-test.
During the first 100 ms (parallel processing mode), we did not
find significant differences in the strength between the SI and
the SII, while for longer time windows, we found a stronger
thalamic input to the SI compared to the thalamic input to
the SII (Figure 6). However, these results did not indicate

TABLE 1 | Cortical activation in response to tactile stimulation montreal
neurological institute (MNI) coordinates of the activation maxima with
corresponding t-values and standard deviation for right-sided tactile
stimulation.

Brain region x y z t-value

SIc −57 ± 4.8 −19 ± 5.5 49 ± 6.2 9.8
SIIc −48 ± 5.1 −28 ± 3.3 16 ± 3.5 10.5
SIIi 51 ± 7.2 −25 ± 5.2 19 ± 5.2 10.2

SI, primary somatosensory cortex; SII, secondary somatosensory cortex;

c, contralateral; i, ipsilateral.
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FIGURE 5 | Grand mean event related fields (ERFs). (A) ERF responses (averaged over all trials and subjects) to tactile stimulation of the left hand overlaid on a
whole scalp map of 102 MEG sensors. (B) ERF responses with standard deviation from three different sensors that are located nearest to the three sources
(SIIc—sensor MEG0241, SIc—sensor MEG1821, SIIi—sensor MEG1331).

that the switch between parallel and serial processing occurs
at approximately 100–130 ms because the analyses involve the
complete time-course from the start of the stimulus. To further
investigate the timing of the processing switch, we added a
further analysis with a constant window length of the analyzed
signal. Here, we used a window length of 60 ms (Figure 6).
Note that we can model small windows of responses, several
100 ms after stimulus onset, because we have an explicit forward
or generative (dynamic causal) model of how neuronal sources
response to inputs. While the first three fixed time windows
(until 30–90 ms) indicated a parallel processing mode, the results
of the next four time windows were not conclusive but indicated
a shift from parallel to serial processing. Afterwards, a serial
processing mode dominated (Figure 6). These results did not
allow for determining the exact timing of the switch in the
processing mode, but indicated that a switch occurred between
60 ms and 120 ms.

The results of the Bayesian model averaging were further used
to extract the time-course of the source activity of the three nodes
(SIc, SIIc and SIIi) at the individual level. Figure 8 shows the
preprocessed data at the sensor level of one subject together
with the predicted (dotted) and observed (solid) responses in

measurement space for the first three spatial modes of the same
subject.

DISCUSSION

In the present study, we applied DCM in combination with
BMC (Penny et al., 2010) to investigate the architecture of
the processing route of somatosensory information with a
specific focus on the time dependence of this architecture. Our
results strongly support an initial parallel processing pathway in
which somatosensory information directly enters the SII that is
followed by a processing stream, which is dominated by serial
processing.

The results did not disagree with the classical thinking that
the main flow of somatosensory information projects from the
thalamus to the SI and then further to the SII. In the SI,
somatosensory information is preprocessed, i.e., the intensity,
duration, location, size, shape and type of a somatosensory
stimulus are encoded, from the contralateral half of the body
(Schnitzler and Ploner, 2000; Zhang et al., 2007; Klingner et al.,
2010). This preprocessed information is then transmitted to
the SII. However, the dominance of this processing pathway
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FIGURE 6 | DCM. The figure shows the results of the Bayesian model selection (BMS). The four model structures are illustrated in the upper part of the image (A–D).
These four models were compared by the BMS. This model comparison was performed by estimating the exceedance probabilities (EP) for each model. The EP is a
measure of the likelihood that one model is more likely than any other model. The model comprising a conversion from initially parallel to serial processing (second
model from left/blue) was the most probable model in each time window.

FIGURE 7 | The results of the BMS for the stimulus initiation. The left side of the image illustrates the structures of the two models (i.e., parallel processing and
serial processing). The middle illustrates the EP of these two models for 10 different time windows. The analysis was performed for incremental time windows (left
side) and also for fixed time windows (right side of the middle part). The right side of the image illustrates the results of the posterior estimates for the most probable
model (parallel input until 110 ms and serial input for the last two epochs) at the level of input strength. The input strengths in the SI and the SII are shown for the
10 different time windows. The x-axis represents the ratio between the strengths of the SI and SII inputs. Positive values represent stronger inputs in the SI than in
the SII. The error bars represent the standard deviation. Significant differences between the SI and SII inputs are marked with “∗” (p < 0.01) or “∗∗” (p < 0.001).

does not exclude the coexistence of direct projections from
the thalamus to the SII. Our results suggest that such direct
input to the SII and the corresponding parallel processing of
information is the dominant processing mode during the first
100 ms following a somatosensory stimulus. A parallel pathway
would also explain the observation of early responses in the
SII (at 20–30 ms) following somatosensory stimulation (Karhu

and Tesche, 1999). A parallel processing mode was further
supported by a study in marmosets in which reduced but
preserved SII responsiveness was observed following inactivation
of the SI (Rowe et al., 1996). SII responsiveness was abolished
in ∼10%, reduced in 65% and unaffected in 25% of SII neurons
(Rowe et al., 1996). Particularly, the reduced responsiveness in
the majority of neurons suggests that the neurons not only
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FIGURE 8 | Time course of the source activity and sensor readings of a single subject. The upper row (A) of the figure shows the measured signal at the
sensor level for one single subject. The signal was estimated as the mean (preprocessed) signal of the four sensor channels nearest to the source. The lower part (B)
of the figure shows predicted (dotted) and observed (solid) responses in measurement space for the first three spatial modes, which were obtained after projection of
the sensor data onto seven spatial modes.

receive direct input from the thalamus but also input from the
SI. Combining these results with our findings regarding the
change in the processing mode from an early parallel processing
mode to a serial processing mode led us to the hypothesis
that there are neurons in the SII that process both direct
inputs from the thalamus while later receiving and processing
inputs from the SI. As an alternative explanation, it is also
possible that those SII neurons that receive direct thalamic
input undergo fast habituation, while the thalamic input remains
stable. In both cases, the increasing input from the SI to the
SII leads to a shift in the processing mode to primarily serial
information processing, and direct thalamic input to the SII does
not significantly contribute to explaining the observed data as
time progresses. Consequently, an alteration in the processing
stream would be expected at the time at which preprocessed
information from the SI enters the SII. However, this exact
time point is unknown. Studies that have investigated response
timing in the SII have come to divergent conclusions, reporting
response times of 20–30 ms (Karhu and Tesche, 1999; Inui et al.,
2004) and up to 90 ms (Hagiwara et al., 2010). However, with
respect to the current results, the responses in the SII could
also have been generated by direct input from the thalamus.
Therefore, it remains unclear whether the early potentials in
the SII measured by these studies are caused by input from
the SI or the thalamus. Correspondingly, the analysis of the
early potentials in the SII has not conclusively answered the
question of when SI activity enters the SII. It can be assumed

that information is transmitted from the SI to the SII once
the preprocessing of this information in the SI is completed.
However, it is known that the preprocessing of somatosensory
information in the SI is performed at different stages in the
different subareas of the SI (Rojas-Hortelano et al., 2014; Sathian,
2016). It can therefore be assumed that information that needs
only minor preprocessing (i.e., only preprocessing in BA3b)
are transferred and arrive in the SII prior to information
that undergoes preprocessing requiring more time. Therefore,
the amount of transmitted information should progressively
increase over a certain time interval. We suggest that this time
window is represented by the switch of the dominant processing
mode from parallel to serial. However, because all the models
incorporated data from the initial parallel processing, the switch
in information processing should occur before the switch in the
models (i.e., prior to 120 ms). The additional analysis with fixed
time windows confirmed this upper time limit while suggesting
a start of the switch in the processing mode between 60 ms and
90 ms.

Further arguments for the necessity of a switch from parallel
to serial information flow can be derived from studies of
tactile working memory. It was previously demonstrated that
the memory trace of a tactile stimulus is held not only in the
prefrontal cortex and the posterior parietal cortex (Romo et al.,
1999; Kaas et al., 2013) but also in the SI (Zhou and Fuster, 1996;
Harris et al., 2001; Pasternak and Greenlee, 2005; Kaas et al.,
2013; Wang et al., 2013). The presence of memory cells in the
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SI agrees well with the theory that memory is stored in the same
cortical system that participates in the processing of these sensory
information (Squire and Zola-Morgan, 1991). The SI therefore
has dual functions: to encode sensory stimuli and to store this
information for short amounts of time (Zhou and Fuster, 1996;
Pasternak and Greenlee, 2005; Wang et al., 2013). It was further
shown that the SI retains tactile memory traces for at least as
long as the tactile stimulus was applied (Harris et al., 2002). The
retrieval, comparison and adaptation of memory traces in the SI
with information from the SII additionally increase the amount
of information transferred between both areas and increase
the importance of the serial pathway. However, the storage
and retrieval of tactile memory traces does not occur earlier
than the specific feature is encoded by the SI. Therefore, this
mechanism does not add to the serial information flow shortly
after the stimulus onset. We hypothesize that the time between
stimulus onset and stimulus encoding in the SI corresponds
to the time period that is dominated by a parallel processing
pathway.

The purpose of a switch in the processing mode remains
to be elucidated. Here, we attempt to discuss this topic by
appealing the theory of predictive coding. This theory interprets
evoked cortical responses as transient expressions of prediction
errors. The recognition of stimuli is thought to be a process
of minimizing the prediction errors at all stages of cortical
hierarchy (Mumford, 1992; Rao and Ballard, 1999; Friston,
2005). Higher order cortical areas are assumed to estimate and
transmit predictions for lower-level neural activities by feedback
connections. The forward connections carry the residual error
between the predictions and the actual lower-level activities. An
abrupt change in our somatosensory environment (stimulus)
causes a strong prediction error. The minimization of this error
can be performed by altering the neuronal states of different
levels of the somatosensory processing hierarchy, which could be
achieved by simply using the forward and backward connections
between the cortical areas. However, direct input to the SII allows
for more precise estimation of the prediction error at an earlier
time point. This prediction error influences the information
processing in the entire hierarchical network that is mediated
by forward, lateral and backward connections and ultimately
results in faster error minimization, i.e., the recognition of the
cause of a stimulus. This indicates that a direct input to the
SII is reasonable only if fast information processing of thalamic
information in the SII is of importance. It is conceivable that
this applies to the quick identification of a stimulus (e.g., to
identify the dangerousness of a stimulus). Whether a stimulus
is dangerous not only depends on the stimulus intensity but
is also strongly context-dependent and requires the context
of a hierarchical organized network that includes higher-order
cognitive resources (e.g., to identify the salience of a stimulus).
Whether the stimulus is salient or not depends also on the
currently available cognitive resources. This context sensitivity is
mediated by precision weighting in predictive coding, which we
now consider in more detail.

In the absence of a significant prediction error (steady state
stimulus), we suggest that direct thalamic input is further
used to screen for discrepancies relative to the information

delivered by the SI. However, in the absence of an information
discrepancy, we suggest that further processing mainly relies
on the preprocessed SI information and not on the direct
thalamic input to the SII. In the absence of new influences in
an unaltered sensory environment, the serial processing mode
becomes dominant. Pursuing the predictive coding explanation,
one simple and potentially important explanation for our
findings rests upon the attentional selection of somatosensory
prediction errors in the SI by the SII. In brief, predictive
coding rests upon ascending prediction errors that are weighted
by their precision (or reliability). This boosting of precise
prediction errors has been discussed in terms of attentional
gain, particularly in the visual system (Brown and Friston,
2012, 2013). Critically, precision must be predicted in a
top-down fashion to mediate attentional selection. This means
that the SII needs to know which prediction errors to select
prior to their subsequent (hierarchical) processing. In this
sense, our results fit comfortably with the idea that thalamic
inputs to the SII enable descending connections from the SII
to the SI to set the appropriate precision or post-synaptic
gain and contextualize subsequent (serial) processing based
on a reciprocal exchange of ascending prediction errors and
descending predictions.

The current observation of a change in the processing
mode may explain recent conflicting results from fMRI-DCM
analyses (Liang et al., 2011; Kalberlah et al., 2013; Chung
et al., 2014; Khoshnejad et al., 2014). The parallel processing of
information should be found to be the prominent mode based
on analyses that focus mainly on the perception of a change
in the somatosensory environment, e.g., analyses based on data
acquired shortly after stimulus onset or perhaps based on the
use of only stimuli. However, the translation of such a fast
processing change into hemodynamic responses is insufficiently
understood and is therefore difficult to interpret. Our results,
in conjunction with the available fMRI-DCM studies, strongly
suggest that both an initial parallel transfer of information
and a subsequent serial transfer of information dominate the
processing of somatosensory information. It is tempting to
speculate regarding whether direct thalamic input to higher
level brain areas is an exclusive feature of the SII or rather a
more general attribute of brain architecture. Specifically, it is
unknown whether other areas that are involved in the processing
of somatosensory information (e.g., the insula) receive direct
thalamic input. If parallel input decreases the time required
to make an inference about the cause of a sensory stimulus,
similar architectures would be expected at least in other sensory
systems.

In addition to thalamic input, it would be interesting
to determine whether similar time-dependent changes in
processing modes might also be present in other functional
systems in which one area is in need of information from
another area only at a certain point in time to minimize the
prediction error. Such connections might be shut down later
during resting states or may be completely lost in data with
poor temporal resolution. Moreover, information processing is
well known to be hierarchically organized, and the dynamic
alterations of information streams by top-down and bottom-up
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modulations are feasible (Friston et al., 2003; Garrido et al.,
2007). Although our understanding of functional connections
has greatly improved over the past decade, there is a lack of
knowledge regarding the temporal dynamics of the transfer of
information between brain areas that are known to be connected.
This deficit highlights the importance of the use of methods that
provide high temporal resolution.

CONCLUSION

The current study investigated the processing route of tactile
information in the somatosensory cortex. Our results suggest a
time-dependent change in the processing stream of information
corresponding to ongoing somatosensory information from an
initial parallel processing to a subsequent serial processing.
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