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Pyramidal neurons (PNs) represent the majority of neocortical cells and their involvement
in cognitive functions is decisive. Therefore, they are the most obvious target of develop-
mental disorders characterized by mental retardation. Genetic and non-genetic forms of
intellectual disability share a few basic pathogenetic signatures that result in the anomalous
function of PNs. Here, we review the key mechanisms impairing these neurons and their
participation in the cortical network, with special focus on experimental models of fetal
exposure to alcohol. Due to the heterogeneity of PNs, some alterations affect selectively a
given cell population, which may also differ depending on the considered pathology.These
specific features open new possibilities for the interpretation of cognitive defects observed
in mental retardation syndromes, as well as for novel therapeutic interventions.
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Santiago Ramón y Cajal referred to the neocortical pyramidal neu-
ron (PN) as “La noble y enigmática célula del pensamiento” (the
noble and enigmatic cell of thought) (1). These glutamatergic,
excitatory neurons represent the vast majority of neocortical cells
(about 80–90%), the remaining being constituted by GABAer-
gic, inhibitory interneurons. Surprisingly and contrary to what
one may expect, cortical interneurons, though minor in num-
ber, are characterized by a great variety of anatomical features,
electrophysiological properties, and synaptic attributes [see Ref.
(2) for review]. Conversely, PNs are often conceived as a rather
homogeneous population. However, the principal neurons of the
cerebral cortex are far from being identical to each other, since
they show both evident and more subtle differences (Figure 1).
In the present mini-review, we will first provide some examples
of how PNs represent a heterogeneous population. Then, while
it is quite obvious that developmental disorders associated with
mental retardation (MR) target the main structure involved in
cognitive functions (i.e., the cerebral cortex) and its majority neu-
rons, we try to answer the question whether given subpopulations
or functional features of PNs are preferentially affected. We focus
mainly on the effects of fetal exposure to alcohol (see Figure 2),
highlighting analogies and differences with other developmental
disorders associated with MR.

HETEROGENEITY OF PNs
The difference among PNs is already apparent at a first glance of
histological sections and is related to their radial position within
the six-layered neocortical sheet. Besides the obvious morphologi-
cal difference (short vs long apical dendrites), supragranular (layer
2/3; L2/3) and infragranular (layer 5; L5) PNs participate differ-
ently to the flow of information in the canonical microcircuit of the
cortical column (8). Differences between supra- and infragranular
layers can be observed also when looking at the more subtle, intrin-
sic electrophysiological properties. For instance, L2/3 neurons

display less hyperpolarization-activated currents (Ih), compared
to L5 neurons (9).

The analysis of the fine columnar connections makes it possible
to further distinguish subpopulations within L2/3 neurons. In the
barrel cortex, for instance, lemniscal and paralemniscal afferents
target PNs located at different depths in the supragranular lay-
ers (10). In the rodent visual cortex, L2/3 neurons are selectively
interconnected to form fine-scale, distinct subnetworks (11).

Layer 5 PNs can be also further subdivided into subsets featur-
ing discrete properties. Based on morphology, electrophysiology,
and functional connectivity, L5 PNs are classified into intrinsically
bursting and regular spiking. The former have the tendency of fir-
ing bursts of action potentials in response to steps of depolarizing
current, usually display a prominent apical tuft in layer 1 (thick-
tufted), and project to subcortical targets. The latter fire trains of
action potentials with constant interspike intervals, have a slender
apical dendrite, and project mainly to other cortical areas (12–14).
Within layer 5, PNs belonging to the sparse L5a and the densely
populated L5b are also clearly distinguishable, according to differ-
ences concerning functional and connectional properties (15, 16).
Even when L5 PNs project to the same subcortical target, they may
be involved in different functional circuits, as it has been proposed
for cortico-striatal neurons sustaining the direct and indirect path-
ways of the basal ganglia, respectively [(17); but see Ref. (18)]. The
parcelation of PNs according to their radial distribution is further
complicated by the heterogeneous population of layer 6 neurons
(19). The apical dendrites of these cells are unusual, as they, unlike
those of other PNs, do not reach superficial layers, although shar-
ing many electrophysiological properties with other neocortical
PNs (20).

If the uneven properties of PNs along the radial cortical dimen-
sion reflect the structure-function relationship within the column
microcircuit, equally outstanding is the diversity along the tangen-
tial dimension. In this regard, the complexity of the dendritic tree
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FIGURE 1 | Schematic illustration showing different types of PNs. In
layer 2/3, neurons are interconnected to form distinct subnetworks (green
and red cells). In the barrel cortex, lemniscal (Lem) and paralemniscal
(PLem) afferents target different subpopulations (purple and orange cells).
In layer 5, regular spiking PNs (RS, black) and intrinsically bursting PNs (IB,
blue) display different dendritic morphologies and different projections.

FIGURE 2 | Schematic drawing of PNs in a normal cortical column
(left). The alterations of PNs observed in experimental models of FASD are
shown on the right (3–6). Supragranular and infragranular PNs are shown in
green and red, respectively. Note the reduced population of L5 PNs (or the
pruning of their axon collateral, X) and the simplification of the basal (but
not apical) dendrites. The hypoexcitability of L5 PNs (shown as reduced
number of spikes at the axon level) is a consequence of reduced dendritic
calcium spikes (5). The increased number of calretinin interneurons (blue
cells) is also shown (7).

increases as one moves from primary sensory to higher order areas,
reaching the most complex pattern in the prefrontal cortex (21).
Further, the prefrontal cortex contains a large number of unusual
PNs, which display an early bifurcation of the apical dendrite,
whose total length is therefore susbstantially increased (22).

We have briefly outlined the laminar and regional heterogene-
ity of PNs. However, the reader should bear in mind that, even if
neocortical PNs were homogeneous across cortical areas and lay-
ers, nonetheless each of them would represent the most complex
neuron of the mammalian brain. Let us consider, for example,
the L5 PN. Its apical dendrite extends through most of cortical
thickness and is thus ideally suited for translaminar integration.
In addition, the long, apparently homogeneous dendritic arbor of
these neurons features specific functional properties: basal den-
drites and the apical tufts are dominated by NMDA spikes, while
Ca2+ spikes sustained by voltage-gated channels prevail in the dis-
tal apical trunk (23). Finally, dendritic, axon, and somatic domains
of L5 PNs are targeted by different types of inhibitory interneu-
rons (24). In summary, even the single PN is a complex world
itself, able to integrate feedforward ascending input and feedback
connections to generate the cognitive performance (25).

APOPTOSIS
Early exposure to alcohol, whose effects are globally referred to as
fetal alcohol spectrum disorders (FASD), are well known causes
of mental retardation. There are manifold factors involved in the
neurodevelopmental toxicity of ethanol, which is critically depen-
dent on the dose and time of exposure [see Ref. (26), for review].
Experimental models of FASD allow a tight control of alcohol
exposure and help to dissect out the mechanisms operant at dif-
ferent developmental stages. When rodents are exposed during
prenatal life, alcohol is more likely to interfer with the prolifera-
tion of neuron precursors and/or with the migration of cortical
cells (27, 28). By contrast, when rodents are given alcohol dur-
ing the first two postnatal weeks [corresponding to the third
trimester of gestation in humans, see Ref. (29)], a massive apopto-
sis occurs in several brain structures, including the cerebral cortex
(30). The third trimester equivalent is characterized by intense
synaptogenesis and the alcohol-induced apoptosis is thought to
be caused by the simultaneous blockade of NMDA receptors and
activation of GABA receptors (31). The apoptosis observed in the
neocortex after postnatal alcohol exposure in rodents seems to
affect mainly infragranular PNs, as demonstrated by the selec-
tive presence of molecular markers of apoptotic susceptibility,
such as caspase 3 and the low-affinity neurotrophin receptor (p75
NTR), in L5 cells [(3, 32); see Figure 2]. The prevailing involve-
ment of infragranular PNs is also suggested by the increased
ratio between supragranular and infragranular PNs sustaining the
cortico-cortical associative projections (4). Notably, the vulnera-
bility of these neurons to apoptosis outlasts the alcohol exposure,
since an increased immunoreactivity for p75 NTR is observed sev-
eral days after withdrawal (3). In a different experimental model
of MR, reproducing the congenital hypothyroidism, the increased
apoptosis is associated to upregulation of p75 NTR (33). In this
case, however, the apoptotic cells are confined to supragranular
instead of infragranular layers (33).

The unbalanced weights of supra- and infragranular layers,
as observed in different types of MR, can yield important func-
tional consequences. For instance, sensory and memory processing
carried out by the same cortical area are mediated by opposite
flows of interlaminar signals [supragranular → infragranular and
infragranular → supragranular, respectively; see Ref. (34)].
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It is worth noting here that experimental models mimicking
other types of MR are characterized by a reduced rate of naturally
occurring cell death, rather than by increased apoptosis. This is
the case for FMR1 mutants (reproducing the fragile X syndrome)
and for the Rett syndrome as well (35, 36). Thus, it appears that
both the excess of apoptosis and the lack of programed cell death
can equally lead to an impairment of the cortical network and to
cognitive defects.

DENDRITES AND CONNECTIVITY
The dendritic tree of PNs, with its long and extensively ramified
branches, must be considered the main computational device of
the neocortex (37). Therefore, it is not surprising that dendritic
alterations are recognized as the key anatomical counterpart of
MR (38). In experimental models of FASD based on early postnatal
exposure, the basal dendritic arbor of PNs is more affected, as com-
pared to the apical dendrite [(4, 5); see Figure 2]. Basal dendrites
of L2/3 associative PNs in alcohol-treated rats display fewer den-
dritic branches than in controls, suggesting a defect of branching
rather than of terminal dendrite elongation (6). This dissociation
can be justified by the different molecular machinery involved in
the two distinct phenomena of branching and terminal elonga-
tion (39). In the Ts65Dn mouse model of Down syndrome, the
basal dendrites of L2/3 PNs, similarly to what observed in FASD,
display a reduced complexity of the branching pattern (40). How-
ever, in humans affected by Down syndrome, dendritic alterations
follow a complex temporal sequence, resulting in a simplification
that is more dramatic for apical dendrites (41). A Golgi study
by Armstrong and coworkers (42) provides a direct comparison
between the dendritic anomalies of Rett and Down syndrome,
pointing out that basal dendrites of the frontal cortex in individu-
als affected by Rett syndrome are strongly impaired both in supra-
and infragranular layers, while apical dendrites are affected only
in supragranular layers. In experimental models of early-onset
hypothyroidism, finally, both apical and basal dendrites of PNs
appear to be strongly reduced (43).

Understanding which dendritic domain of PNs is preferentially
targeted by disorders associated to MR is not trivial. In fact, basal
and apical dendrites not only display different branching patterns,
but are also characterized by different functional properties and
are likely to play distinctive roles in the cortical network. Apical
dendrites receive long-range feedback input from higher order cor-
tical areas (44) and display both Ca2+ and NMDA spikes, whereas
basal dendrites support only NMDA spikes (45).

Another central issue concerning the relationship between den-
drites and MR is represented by the density and distribution of
dendritic spines. Most inputs synapsing upon PNs occur on these
small protrusions, which are essential for the linear summation of
excitatory potentials (46). Almost all disorders associated with MR
feature alterations of the number and/or shape of dendritic spines
(38). Although a systematic review of dendritic spine anomalies
is beyond the aim of the present paper, it is worth mentioning
that both a decreased and an increased number of spines can lead
to MR. While a reduction of dendritic spines has been observed
in experimental models of FASD [e.g., Ref. (47)], their num-
ber is significantly higher in fragile X mice (48). Once again, as
already pointed out for neuronal populations (see above), also the

dendritic spines seem to ensure the good functioning of PNs only
if they reach an optimal number. Fewer or more spines, conversely,
can equally lead to defective function.

Since each spine is thought to represent the site of at least
one synaptic contact, quantitative and/or qualitative spine anom-
alies are likely to reflect alterations of cortical connectivity. Thus,
dendritic alterations can be accompanied by a defect of axon out-
growth or pruning, as demonstrated for early exposure to ethanol
(49, 50), for mouse models of Rett syndrome (51), and fragile
X syndrome (52). The obvious consequence is a modified intra-
columnar (53) and long-range connectivity (4). The main alter-
ations observed in experimental models of MR are summarized in
Table S1 in Supplementary Material.

PN EXCITABILITY
The excitability of PNs (i.e., the ability of generating action poten-
tials in response to depolarizing current) depends primarily on the
intrinsic membrane properties and, to some extent, on the cited
complexity of the dendritic tree. In fact, PN dendrites are not
merely passive cables, but they are also endowed with a great vari-
ety of active conductances (54). Dendritic voltage-gated channels,
in turn, can influence the axo-somatic firing pattern of PNs (55).
We have demonstrated that exposure to ethanol during the third
trimester equivalent leads to a long-lasting reduction of excitabil-
ity in L5 PNs (5). Such an impairment represents the consequence
of decreased spikes in the Ca2+ electrogenesis zone of the api-
cal dendrite. These spikes are usually mediated by voltage-gated
Ca2+ channels and are accompanied by their somatic counter-
part, consisting of a prominent afterdepolarization. Interestingly
and in agreement with our observation, Sánchez-Alonso et al.
(56), in a mouse model of congenital hypothyroidism, noted that
hippocampal PNs showed a decreased afterdepolarization.

An alteration of Ca2+ signaling has been also observed in
experimental models of fragile X syndrome (57). This condi-
tion, however, is rather characterized by hyperexcitability (58).
Besides affecting the neuron excitability, the unreliability of Ca2+

signals can alter the neural plasticity, as consistently observed in
experimental models of MR (57, 59, 60).

CONCLUDING REMARKS
It seems pretty clear that the different etiological factors involved
in different types of MR converge upon a few basic mechanisms,
regardless of the vast variety of molecular pathways leading to
such disturbances. Most of these alterations impair the functional
properties of the major cell type of the neocortex, i.e., the PN.
Here, we have briefly described some of the main mechanisms
at the basis of MR, concerning the number, the dendritic tree,
the connections, and the excitability of PNs. However, the picture
can be complicated by the possibility that some of the described
alterations affect selectively discrete populations of PNs, or even
discrete subregions of the same cell.

A further contribute to the complexity derives from the obvi-
ous consideration that, despite their high number, PNs are not
the only determinant of cortical network properties. In fact, the
interplay between PNs and GABAergic interneurons is a key ele-
ment of cortical physiology (24). Early exposure to alcohol results
in a change of cortical interneurons, with a significant increase
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of calretinin cells (7). These neurons usually co-express VIP and
contact other interneurons, thus mediating disinhibition of PNs,
possibly driven by feedback input from higher cortical areas (61).
Therefore, the decreased intrinsic excitability of the distal apical
dendrite observed in FASD (5) can be counterbalanced under cer-
tain circumstances by a relative increase of the network-mediated
disinhibitory pathway.

Another puzzling issue is the apparently opposite tendency of
some anatomical and electrophysiological properties in different
forms of MR, as is the case for hypo- and hyperexcitability. How-
ever, this is not necessarily a contradiction, at least in terms of
the functional outcome. In fact, both hypo- and hyperexcitabil-
ity can equally contribute to flatten the current-frequency curve,
with a reduction of the dynamic range of PNs and a consequent
impairment of the ability to encode relevant information (62).

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at http://www.frontiersin.org/Journal/10.3389/fped.2014.
00086/abstract
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