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Recently it has been shown that pairs of atoms can form metastable bonds due to
non-conservative forces induced by dissipation [Lemeshko and Weimer, Nature Comm.
4, 2230 (2013)]. Here we study the dynamics of interaction-induced coherent population
trapping—the process responsible for the formation of dissipatively bound molecules.
We derive the effective dissipative potentials induced between ultracold atoms by laser
light, and study the time evolution of the scattering states. We demonstrate that binding
occurs on short timescales of ∼10 μs, even if the initial kinetic energy of the atoms
significantly exceeds the depth of the dissipative potential. Dissipatively-bound molecules
with preordained bond lengths and vibrational wavefunctions can be created and detected
in current experiments with ultracold atoms.
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1. INTRODUCTION
Most realistic systems are “open,” i.e., coupled to a fluctuating
environment, which, for sufficiently strong coupling strengths,
is capable of fundamentally changing the system’s properties.
In some applications, such as quantum information (1) and
coherent spectroscopy (2), the uncontrollable dissipation due to
the environment results in decoherence, complicating prepara-
tion and read-out of quantum states. In other situations, the
environment can lead to novel effects, such as enhanced effi-
ciency of photosynthetic energy transfer in biological systems (3)
and the localization transition in a spin coupled to a bosonic
bath (4).

Apart from the fundamental perspective, understanding the
effects of environment is crucial for practical applications, since
many technologies operate in far-from-equilibrium conditions.
In polyatomic systems, usually studied in chemistry and physics,
acquiring such an understanding is challenged by the complex-
ity of an underlying Hamiltonian and the uncontrollable nature
of dissipation. However, a tremendous recent progress in design-
ing controllable quantum settings paves the way to a detailed
understanding of open quantum systems. For example, exper-
imental setups based on ultracold atoms, quantum dots, and
superconducting circuits, allow to engineer desired Hamiltonians
and control couplings to the environment, thereby getting insight
into the microscopic nature of dissipation (5–7). Moreover, the
degree of control achieved in such experiments allows to make
a step beyond studying the couplings between a system and its
environment: recently it has been theoretically predicted that dis-
sipation can be used as a resource for quantum state engineering
(8–11). The method is based upon tuning the the properties of the
dissipative bath and system-bath couplings in such a way that the
driven dissipative system evolves toward a desired stationary state.

The possibility of using dissipation for quantum state preparation
has been recently demonstrated in experiments with cold trapped
ions by Barreiro et al. (12).

In a recent paper (13) Lemeshko and Weimer demonstrated
that controlled dissipation can be used to create metastable bonds
between ultracold atoms. Remarkably, such “dissipatively-bound
molecules” can be formed even if interparticle interactions are
purely repulsive. An extension of this idea to many-particle sys-
tems allows to dissipatively prepare crystals of ultracold atoms
in free space, i.e., without artificially breaking the translational
symmetry with an optical lattice or harmonic trap (14). In
this contribution, we focus on the effect of light-induced dis-
sipation on the scattering properties of ultracold atoms. Using
perturbation theory, we derive the effective dissipative poten-
tial energy curves, and study the time-evolution of the scatter-
ing states. We show that by appropriately tuning the couplings
of the atoms to the environment one can create dissipatively-
bound molecules with desired bond lengths and vibrational
wavefunctions.

2. MATERIALS AND METHODS
We consider a pair of ultracold atoms whose spatial motion is
restricted to one dimension (1D) using an appropriate optical
trap, see Figure 1A. Each atom possesses the electronic configu-
ration shown in Figure 1B. Two fine or hyperfine components of
the electronic ground state, |1〉 and |3〉, are coupled to an elec-
tronically excited state, |2〉, using two counter-propagating lasers
with Rabi frequencies �. In alkali atoms, � corresponds to the
laser-cooling transition, 2S1/2 ↔ 2P3/2. The field coupling states
|2〉 and |3〉 is on resonance, while the other field is detuned by �

from the |1〉 − |2〉 transition. For simplicity we assume that |2〉
decays to both ground states at the same spontaneous emission
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FIGURE 1 | Setup of the system. (A) Ultracold atoms are confined in a
one-dimensional optical trap. Two counter-propagating laser beams drive
the electronic transitions with a Rabi frequency �. (B) Internal level
structure of the atoms. Two components of the ground electronic state, |1〉
and |3〉, are coupled to an electronically excited state, |2〉, spontaneously
decaying with a rate γ. The laser field coupling states |1〉 and |2〉 is detuned
from the resonance by �; state |1〉 is provided with an effective dipole
moment, d , via far-off-resonant Rydberg dressing, �Ry � �Ry. States |2〉
and |3〉 are non-interacting.

rate γ. The atoms are initially prepared in state |1〉, which is cou-
pled to a highly-excited Rydberg state, |Ry〉, possessing a large
dipole moment, using a two-photon transition �Ry in presence
of a weak external electric field (15–17). Dressing of state |3〉
can be avoided by making use of the dipole selection rules. If
coupling to the Rydberg state is far-off-resonant, i.e., for the
detuning �Ry � �Ry, one can adiabatically eliminate the state
|Ry〉 and assign to state |1〉 an effective dipole moment d. As a
result, state |1〉 exhibits a distance-dependent shift induced by the
dipole-dipole interaction. On the other hand, states |2〉 and |3〉
have a zero dipole moment and therefore are non-interacting. We
note that a similar setup can be realized based on laser-cooled
molecules that possess nearly closed transitions (18–20), in which
case the dipole-dipole interactions can be imposed by microwave
dressing of rotational levels (21).

The �-configuration of Figure 1B, formed by two fields �,
entails a dark state: on resonance, � = 0, the system is in a
stationary state, |dark〉 = (|1〉 − |3〉)/√2, which cannot absorb
photons and is therefore decoupled from light. This phenomenon
is called coherent population trapping (CPT) (22) and has been
used to trap atoms in a particular momentum state below a single
photon recoil, so-called velocity selective CPT (VSCPT) (23, 24).
In a system of two Rydberg-dressed atoms, the dipole-dipole
interaction renders the detuning � dependent on the inter-
atomic distance r. This results in interaction-induced CPT: at a
particular “dark distance,” rd, the interaction shifts level |1〉 to
resonance, effectively decoupling the atomic pair from photon
absorption-emission. The resulting metastable state corresponds
to a dissipation-induced interatomic bond, recently described
by (13). In this section we derive the effective potentials corre-
sponding to the non-conservative forces acting between ultracold
atoms, which underly the formation of the dissipation-induced
bonds.

A pair of ultracold atoms described above represents an open
quantum system with the electromagnetic field acting as a reser-
voir. The system’s dynamics is given by the quantum master
equation for the density operator ρ (25):

dρ

dt
= −i/h̄ [H, ρ] +

∑
n

γn

(
cnρc†

n − 1

2
{c†

ncn, ρ}
)

, (1)

with h̄ Planck’s constant. The coherent part of the dynamics is
contained in the Hamiltonian accounting for the motion of the
atoms, their interaction with the laser fields, and the dipole-dipole
interactions,

H =
∑
k, i

[
h̄2k2

2 m
|k〉〈k|i − h̄�

2
(|1, k + �k〉〈2, k|i + h.c.)

− h̄�

2
(|3, k − �k〉〈2, k|i + h.c.) − h̄�|1, k〉〈1, k|i

]

+
∑

k, k′, q

Ũ(q)|1, k − q〉1|1, k′ + q〉2〈1, k|1〈1, k′|2. (2)

Here, i = 1, 2, and k label the atoms and their correspond-
ing momentum states, and Ũ(q) is the Fourier transform of
the dipole–dipole interaction potential. The dissipative part of
Equation (1) contains the rates γn = γ and jump operators cn =∑

k |k + �kn, jn〉〈2, k|in in the Lindblad form, responsible for the
decay of each atom from state |2〉. The index in = 1, 2 runs over
the two atoms, while jn = 1, 3 accounts for the two final states,
and �kn contains all possible values of the emitted photon’s wave
vector (26, 27).

In the regime of weak dissipation, �2/γ2 	 1, one can neglect
the quantum jumps, i.e., the cnρc†

n term of Equation (1). As a
result, the dynamics of the system is described by an effective non-
Hermitian Hamiltonian, Heff = H − iVd, containing a dissipative
potential:

Vd = h̄
∑

n

γn

2
c†

ncn. (3)

In this work we focus on ultracold atoms at sub-Doppler tem-
peratures of ∼1–10 microKelvin. In particular, the kinetic energy
is considered to be small compared to the interaction between
the atoms, which in turn is small compared to the laser Rabi
frequency and the spontaneous decay rate, i.e., (h̄k)2/2m 	
U(r), h̄� 	 h̄γ, h̄�. As a first step, we derive the effective inter-
atomic potentials in the limit of zero kinetic energy, i.e., the
center-of-mass motion is considered to be cold enough in order
to neglect the corresponding Doppler shifts; in this case the
resulting effective potentials are independent of the relative
momentum.

In a two-atom system, the fields � connect only the states
symmetric against the particle exchange, therefore we reduce
the manifold of relevant states to the following 6 levels:
{|11〉; (|12〉 + |21〉) /

√
2; (|13〉 + |31〉) /

√
2; |22〉; (|23〉 + |32〉) /
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√
2; |33〉}. In this basis, the interaction part of the two-atom

Hamiltonian reads:

Hint = h̄

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U(r)/h̄ − 2� �√
2

0 0 0 0

�√
2

− iγ
2 − � �

2
�√

2
0 0

0 �
2 −� 0 �

2 0

0 �√
2

0 −iγ �√
2

0

0 0 �
2

�√
2

− iγ
2

�√
2

0 0 0 0 �√
2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

where U(r) gives the interaction between the atoms in state
|11〉. Treating U(r) and h̄� as perturbations, one can obtain the
ground state, |ψ〉, of the Hamiltonian (4), which corresponds to
the density operator ρ = ∑

i, j ρij|ψ〉〈ψ|. The complex dissipative
potential Vd(r) can be derived as the total probability of pho-
ton absorption, i.e., as a sum of those density matrix elements ρij

that correspond to the transitions |1〉 − |2〉 and |3〉 − |2〉 in each
atom, multiplied by the photon scattering rate, �2/γ, and h̄. The
resulting expression for Vd(r) reads:

Vd(r) = A − BU(r) + CU2(r), (5)

where A = h̄
√

2�2/(2�), B = √
2�/�, and C =

[
(4 + 9

√
2)/

(64�) + (8 + 6
√

2)�/(64γ2)
]
/h̄.

3. RESULTS
In what follows, we assume the dipole-dipole interaction between
the atoms, U(r) = d2/(4πε0r3), where d is the effective dipole
moment of state |1〉 and ε0 is the vacuum permittivity. The dis-
tance at which the dipole-dipole interaction equals h̄γ defines the
characteristic radius, r0 = d2/3/(4πε0h̄γ)1/3, and Equation (5)
can be rewritten as:

Vd(r) = C0 − C3

(r/r0)3
+ C6

(r/r0)6
, (6)

Here C0 = h̄γ
(

�
γ

)2
/
(√

2 �
γ

)
, C3 = h̄γ

(
�
γ

)
/
(√

2 �
γ

)
, and

C6 = h̄γ

[
(4 + 9

√
2) + (8 + 6

√
2)

(
�
γ

)2
]

/
(

64 �
γ

)
. The dissipa-

tive potential (6) possesses a minimum at the so-called “dark
distance,” rd, where the photon scattering rate is significantly
reduced,

rd = r0

(
a1 + a2(�/γ)2

�/γ

)1/3

, (7)

with a1 = (9 + 2
√

2)/16, and a2 = (3 + 2
√

2)/8. The value of rd,
as well as the depth of the potential well, D = C6/r6

d, can be tuned
by changing the Rabi-frequency and the detuning of the laser
fields. Figure 2 exemplifies the dissipative potentials for different
values of � and �.

FIGURE 2 | Examples of the dissipative potentials, Equation (6), for

different values of parameters. Black solid line: � = γ/4, � = γ/20 (these
values correspond to the results of Figures 3, 4); blue dotted line: � = γ/2,
� = γ/40; red dashed line: � = γ/12, � = γ/20. The cutoff radius is set to
rc = r0. The steady-state probability distributions corresponding to these
potentials are shown in Figure 5.

The dynamics of the two-atom system is given by the
Schrödinger equation in the center-of-mass frame:

ih̄
∂

∂t
ψ(r/r0, t) = − [

α∇2 + iVd(r)
]
ψ(r/r0, t) (8)

Here the kinetic energy scales with the parameter α = h̄/(2mr2
0γ),

with m the reduced mass of the atomic pair. Note that Vd(r)
occurs in Equation (8) with a minus sign, i.e., the distance rd

corresponds to a reduced absorption of particles.
In order to study the time evolution of the scattering states,

we solve Equation (8) numerically for different initial condi-
tions. We exemplify the laser driving with the Rabi frequency
� = γ/4 and detuning � = γ/20, which corresponds to Vd(r)
shown in Figure 2 by the black solid line; this results in the dark
distance rd = 2.5 r0. In order to simulate an experiment with
a fixed particle density, we consider two particles confined in a
box of length L = 14.5 r0. We set the kinetic energy parameter to
α = 4 · 10−4, and use a short-range cutoff, i.e., an impenetrable
wall condition, for r < rc = r0. These values of parameters can
be realized, e.g. with ultracold cesium atoms. In this case, two
hyperfine components of the ground electronic state, 62S1/2, are
chosen as states |1〉 and |3〉; state |1〉 is provided with an effec-
tive dipole moment d = 15 Debye due to Rydberg dressing in an
external electric field. The laser field � drives the 62S1/2 ↔ 62P3/2

transition whose linewidth is γ = 2π × 5.2 MHz. This results in
r0 = 186 nm, which corresponds to the three-dimensional atomic
density of 4 · 1011 cm−3. In our calculation, the spatial grid is
chosen such that the maximal value of the relative momentum
kmax = 18.5/r0, which in the case of Cs corresponds to ∼14
atomic recoil momenta.

Figure 3 shows the time evolution of the scattering states start-
ing from different initial relative momenta, ki. Three pairs of
columns show the cases of ki = 0 (left panels), ki = kmax/4 (mid-
dle panels), and ki = kmax/2 (right panels). Within each pair, the
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FIGURE 3 | Absolute values (blue solid lines) and real parts (red dotted

lines) of the scattering wavefunctions at times (a) t = 0; (b) t = 1000γ−1;

(c) t = 2000γ−1; and (d) t = 3000γ−1. Pairs of columns show the

wavefunctions in the position and momentum representation for different
initial relative momenta: ki = 0 (left); ki = kmax/4 (middle); and ki = kmax/2
(right), with kmax = 18.5/r0. The cutoff radius rc = r0.

left column shows the wave function in the position representa-
tion, ψ(r, t), while the right column shows its Fourier transform,
giving the relative momentum distribution of the scattering state,
ψ(k, t). One can see that in the long-time limit, panels (d), the
driven-dissipative dynamics steers the pair of atoms toward the
same steady state, independent of the initial conditions. The inter-
play between the kinetic energy term and the dissipative potential
of Equation (8) results in a distribution of the relative distances
around rd, and the relative momentum distribution peaked in
the vicinity of k = 0. As a result, the dissipation-induced bond
is formed. Similarly to conventional molecules bound by con-
servative forces (28), the distance and momentum distributions
are asymmetric, which arises due to the anharmonicity of the
dissipative potential, cf. Figure 2.

Note that the presented cases of ki = kmax/4 and ki = kmax/2
correspond to the initial kinetic energies of 9 × 10−3h̄γ and 34 ×
10−3h̄γ, respectively, which significantly exceeds the depth of the
dissipative potential well, cf. Figure 2. Interestingly, even in this
case the formation of the dissipative bond occurs at a timescale
comparable to the case of ki = 0. For a pair of Cs atoms, the unit
of time γ−1 ≈ 30 ns, i.e., the timescales of the bond formation
are on the order of 10–100 μs. Since the initial atomic wave-
functions of Figure 3(a) are completely delocalized in space, the
bonding timescales are a few times longer compared to the ones
obtained in Ref. (13).

The dynamics of the bond formation can be characterized
by the imaginary binding energy. It is defined as the difference
between the dissipation rate at t = 0, corresponding to atoms
completely delocalized in space, and the dissipation rate at a given
time t, when the molecules are formed:

Eb(t) = i

∫
Vd(r)

(|ψ(r, 0)|2 − |ψ(r, t)|2) dr (9)

Figure 4A shows the time evolution of Eb starting from
different initial conditions. At small times t the binding energy

FIGURE 4 | (A) Time-dependence of the imaginary binding energy of the
molecules, Equation (9). (B) Time-dependence of the mean interatomic
distance, Equation (10). Results for different initial relative momenta are
shown: ki = 0 (black solid line), ki = kmax/4 (blue dotted line), and
ki = kmax/2 (red dashed line), with kmax = 18.5/r0. The cutoff radius rc = r0.

grows rapidly, due to strong dissipation at small interatomic dis-
tances that quickly pushes the population toward larger r. In
the long-time limit, Eb approaches the value of 9.5 × 10−3ih̄γ,
independently of the initial relative momentum. Note that while
the qualitative behavior of Eb(t) does not depend on the details
of the interatomic potential, the lower limit of the integral in
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Equation (9) is set by the short-range cutoff radius rc. The exact
numerical value of Eb therefore depends on rc.

The length of the dissipative bond is characterized by the mean
interatomic distance,

〈r〉(t) =
∫

|ψ(r, t)|2rdr, (10)

whose time-evolution is shown in Figure 4B. In the long-time
limit 〈r〉 approaches the value of 〈r〉 ≈ 3r0 ≈ 1.2rd.

4. DISCUSSION
In this work we studied collisions of ultracold atoms in presence
of dissipation due to near-resonant scattering of laser photons.
The laser configuration is chosen such that dissipation is signifi-
cantly reduced at some preordained interatomic distance rd, due
to the interaction-induced coherent population trapping taking
place. Working in the regime of small kinetic energy, we derived
the effective, purely imaginary, interatomic potentials featuring
minima at r = rd, whose shape can be tuned by changing the laser
Rabi frequency and detuning.

Starting from the states with a particular value of the rela-
tive momentum, we studied the time evolution of the scattering
wavefunctions. It was shown that, independently of the initial
conditions, the driven-dissipative dynamics results in the steady
state corresponding to a dissipatively-bound atomic pair, reached
at the short timescales of ∼10–100 μs. Interestingly, the bound
states are formed even if the initial kinetic energy significantly
exceeds the depth of the dissipative potential well. The dynamics
of the dissipation-induced association was characterized by the
time-dependent relative distance and momentum distributions,
bond lengths, and imaginary binding energies.

The spectroscopic parameters of the dissipatively-bound
molecules can be altered by tuning the laser parameters: the bond
length scales with the effective dipole moment d due to Rydberg
dressing, and with the detuning �; the binding energy (and there-
fore the shape of the vibrational wavefunction) depends on the
photon scattering rate proportional to �2/γ. Figure 5A shows
the vibrational probability distributions for molecules bound by
the potentials shown in Figure 2; the panel (B) shows the corre-
sponding momenta distributions. One can see that appropriately
choosing the laser frequency and intensity makes it possible to
prepare molecules with desired vibrational wavefunctions.

The relative distance distributions shown in Figures 3, 5A are
proportional to the pair-correlation function, g(2)(r), that can be
directly measured in experiment using a number of techniques
such as noise correlation spectroscopy (29, 30) or Bragg scatter-
ing (31). The dissipative bond manifests itself as a peak emerging
in g(2)(r) during the time evolution. It is worth noting that dis-
sipative binding occurs during the incoherent evolution of the
scattering states, therefore its observation does not require long
coherence times needed to observe the effects of the interactions
on the coherent evolution of Rydberg-dressed atoms. The coher-
ence times longer than the binding timescales of ∼0.1 ms are
achievable in current experiments (32–38).

The goal of this work was to develop a simple model allowing
to understand the main features of dissipation-assisted scatter-
ing and the dynamics of interaction-induced coherent population

FIGURE 5 | Steady states corresponding to the potentials of Figure 2.

(A) Probability distribution of relative distances; (B) corresponding relative
momenta distributions. Black solid line: � = γ/4, � = γ/20; blue dotted
line: � = γ/2, � = γ/40; red dashed line: � = γ/12, � = γ/20. The cutoff
radius rc = r0.

trapping. The model is based on a few approximations whose
limitations are worth discussing here. First, within the wavefunc-
tion approach that we employed, the system’s state was assumed
to be pure, as opposed to a mixed state resulting from the solu-
tion of the full master equation, Equation (1). Furthermore,
the applied theory did not include quantum jumps that might
quantitatively alter the relative momentum distribution in the
steady-state, as well as the evolution times at which the steady
state is reached. Finally, the internal and external degrees of
freedom were decoupled from each other by introducing an
effective interatomic potential, therefore the model does not
provide information about the final population of the ground
states |1〉 and |3〉. However, even with these approximations in
place, the model is capable of capturing the physics of the sys-
tem, as it is confirmed by a good agreement with the results of
Ref. (13).

Finally, while in this work we focused on the realization based
on Rydberg-dressed atoms (15–17), similar ideas can be applied
to laser-cooled polar molecules (18–20, 39). Extensions to other
types of interparticle interactions, such as magnetic dipole-dipole
(40) and electric quadrupole-quadrupole (41) ones, also seem
possible.
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