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Magnetic reconnection in space plasmas remains a challenge in physics in that the
phenomenon is associated with the breakdown of frozen-in magnetic field in a collisionless
medium. Such a topology change can also be found in superfluidity, known as the quantum
vortex reconnection. We give a plasma physicists’ view of superfluidity to obtain insights
on essential processes in collisionless reconnection, including discussion of the kinetic
and fluid pictures, wave dynamics, and time reversal asymmetry. The most important
lesson from the quantum fluid is the scenario that reconnection is controlled by the physics
of topological defects on the microscopic scale, and by the physics of turbulence on the
macroscopic scale. Quantum vortex reconnection is accompanied by wave emission in
the form of Kelvin waves and sound waves, which imprints the time reversal asymmetry.
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1. INTRODUCTION
Magnetic reconnection in space and astrophysical plasmas is con-
sidered as the most likely candidate to explain violent energy
release such as flares and coronal mass ejections at the sun and
auroral substorms in the Earth magnetosphere. Various theoret-
ical models have been proposed to explain magnetic reconnec-
tion, including that by Sweet [1], Parker [2], Petschek [3], and
many others (e.g., review in Treumann and Baumjohann [4]).
Nowadays there is a growing amount of evidence that magnetic
reconnection is observed in laboratory plasmas, magnetospheric
plasmas as measured in situ by spacecraft, solar plasmas as mea-
sured by imaging or remote sensing, and numerical plasmas in
simulations [4–6].

Magnetic reconnection requires the breakdown of the frozen-
in magnetic field. The motion of the magnetic field lines is
described by the induction equation, and solving this equation
requires detailed knowledge on the electric fields in the plasma.
In the two-fluid approximation the electric field is evaluated by
the generalized Ohm’s law [7, 8] although it is a rather simplified
picture, neglecting the kinetic effect such as wave-particle interac-
tions. In the limit of neglecting the electron-to-proton mass ratio
(me/mp � 1/1836, where me and mp denote the electron and
proton masses, respectively), the induction equation evaluated for
the generalized Ohm’s law is expressed as

∂B

∂t
= ∇ × (u × B)+ η∇2B + ∇ ×

(
1

nee
j × B − 1

nee
∇ · Pe

+ me

nee2

∂j

∂t

)
. (1)

where B denotes the magnetic field, t the time, u the one-fluid
velocity field, η the resistivity or the diffusivity of the plasma, ne

the electron density, e the elementary charge, j the current den-
sity, and Pe the electron pressure tensor. On deriving the second

term on the right hand side in Equation (1), the divergence-free

equation of the magnetic field is used. The right-hand-side in
Equation (1) can be interpreted as follows. The first term rep-
resents the effect of the convective (or motional) electric field,
and this is the only non-vanishing term when the magnetic field
is frozen-in into the plasma in the magnetohydrodynamic pic-
ture. The second term is the magnetic diffusion, which may
include the anomalous resistivity caused by wave-particle scat-
tering. The third term with the curl operator is effective on
smaller spatial scales from the electron gyroradius to the ion
one. Three terms inside the bracket in the third term repre-
sent the electric fields from different origins in particle motions:
The first term is the Hall term and comes from the separate
motions of electrons and ions; the second term is the diver-
gence of the electron pressure tensor (pressure and stress) and
includes the ambipolar electric field caused by the electron pres-
sure gradient; the third term comes from the electron inertia
in the current variation. Moreover, the kinetic process such as
wave-particle interactions causes the anomalous resistivity, η,
in a collisionless plasma. Any of these four processes (the Hall
effect, the electron pressure tensor, the electron inertia, and
the anomalous resistivity) may trigger magnetic reconnection.
Questions arise naturally as to which of these terms plays a
more central role, or what kind of role the waves play during
reconnection.

We point out that the phenomenon of reconnection essentially
represents a change in the field-line topology. Not only magnetic
field lines but also vortex filaments in fluids are known to recon-
nect. In fluid experiments, the reconnecting vortex filaments can
be visually observed. Two vortex filaments with the opposite sense
of rotation meet each other at a singular point along the fil-
aments and they reconnect. The reconnected filaments have a
strong curvature such that they depart from each other, develop-
ing into vortex rings (Figure 1). Such a process is referred to as the
Crow instability [9–11], as is seen in the wake trail of an aircraft.
Interestingly, reconnection of vortex filaments can also be found
in superfluids as realized by the Bose-Einstein condensate (e.g.,
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FIGURE 1 | Sketch of the Crow instability in which anti-parallel vortex filaments develop into vortex rings through the reconnection process.

4He at a sufficiently very low temperature) even though molecular
viscosity is absent [11].

Here we discuss physical processes of vortex reconnection in
superfluidity in the spirit of extracting the essence of reconnection
and applying the knowledge to magnetic reconnection in space
plasmas. It is worth emphasizing that both media are collisionless.
A Bose-Einstein condensate is collisionless because of the large-
scale coherence and the repulsive interaction potential between
the constituting particles [12]. The space plasma is collisionless
because of extremely low density. The frozen-in magnetic field
condition may be compared to the circulation theorem in fluid
dynamics (e.g., [13]). The conservation of the flow circulation is
equivalent to the vortex equation,

∂ω

∂t
= ∇ × (u × ω) , (2)

where ω = ∇ × u denotes the vorticity. Equation (2) holds in
an inviscid ordinary flow (cf. Euler equation). We seek the
vortex equation for superfluidity, and compare with the induc-
tion equation under the generalized Ohm’s law (Equation 1).
The motivation for this comparison lies in the fact that the
superfluid system has a smaller degree of freedom than plas-
mas, and thus, the vortex dynamics can be formulated in a
simpler form. Such a form might inform us of some uni-
versal properties in collisionless reconnection. We review the
fundamental equations describing the superfluid motion and
discuss the vortex dynamics. We also review wave dynam-
ics in the superfluid in association with with the vortex
reconnection.

Before moving onto the comparison, it is worth mentioning
that there may be several difficulties in the analogy between the
vortex and magnetic reconnections. Among others, as the vor-
ticity is the curl of the velocity, ω = ∇ × u, it is constrained to
the velocity while the magnetic field not. In this sense, magnetic
induction equation is more general than the vorticity counter-
part. The analogy between the vorticity and magnetic inductions
can be a sort of “one-way” character in that the general result
obtained from the magnetic induction equation have a counter-
part in the more particular context of the vorticity equation; In
contrast, the result obtained from the vorticity induction equa-
tion may not have a counterpart in the more general context
[14]. This point should be kept in mind when comparing the
physics of reconnection between the superfluids and the colli-
sionless plasmas. Also, the physical entities are different in that
the vortex filaments are discrete while the magnetic fields are
continuous.

2. THEORETICAL TREATMENT
In a superfluid, the rotational motion of the flow is associated
with the vortex filament with a fixed circulation due to the
quantization. The flow circulation is determined by the Planck
constant (divided by 2π) h̄ and the mass of the constituting
particle m as

κ = 2π h̄

m
, (3)

In addition, the quantum mechanical effect makes the vortex core
size much smaller in the superfluid than in the ordinary fluid. The
fixed circulation and the very thin filaments are unique to quan-
tum vortex dynamics, first predicted by Feynman in 1955 [15]
and later confirmed in the experiment by Vinen in 1961 [16].
The picture of vortex stretching breaks down in the superfluid,
and vortex filament reconnection plays an essential role for the
superfluid to evolve into turbulence. Recently, quantum vortex
reconnection has been visualized in the superfluid helium experi-
ments using tracing particles trapped by the vortex cores [17–19].
Figure 2 displays images of quantum vortex reconnection in the
superfluid helium.

2.1. KINETIC PICTURE
2.1.1. Gross-Pitaevskii equation
Like in plasma physics or gas dynamics, both kinetic and fluid
treatments are possible to describe the motion of a Bose-Einstein
condensate. The kinetic picture is modeled by the non-linear
Schrödinger equation or the Gross-Pitaevskii equation (hereafter
GP) [20, 21]. The Schrödinger equation for N bosons with the
mass m is written as

ih̄
∂

∂t
ψ(x, t) + h̄2

2m
∇2ψ(x, t) − ψ(x, t)

∫
|ψ(x′, t)|2

V(|x − x′|) dx′ = 0 (4)

where V(|x − x′|) represents the interaction potential between
two bosons. For weakly interacting bosons, one may approxi-
mate the repulsive potential to the delta function, and obtains the
Gross-Pitaevskii equation in spatio-temporal coordinates as

ih̄
∂ψ

∂t
+ h̄2

2m
∇2ψ − V0|ψ |2ψ + E0ψ = 0, (5)

where V0 denotes the coupling constant of the repulsive inter-
action. The chemical potential E0 (the energy increment to the
ground-state by adding one boson to the system) is included in
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FIGURE 2 | Images of vortex reconnection in superfluid helium as visualized by hydrogen particles suspended in liquid helium at 50-ms time

intervals. Reproduced with permission from Bewley et al. [17]. Copyright (2008) National Academy of Sciences, U.S.A.

the GP equation as the bosons are in a condensed state. The wave-
function ψ is normalized to the total number of particles N when
integrated over the entire volume,

∫
|ψ |2 d3x = N. (6)

Note that the non-linearity in the GP equation originates in
the repulsive interaction potential. The chemical potential E0 is
intrinsic to the Bose-Einstein condensate. Of course, the con-
struction of the GP equation is different from that of the kinetic
equations in plasma physics (e.g., Fokker-Planck, Boltzmann, or
Vlasov equations) in that the GP equation does not represent
the Liouville theorem on phase-space density conservation. The
technical differences from the plasma kinetic equations can be
summarized as follows: The velocity-space gradient is absent in
the GP equation as the internal degree of freedom (in spins and
energy levels) degenerates; The wavefunction ψ is complex due
to the quantum mechanical phase; The equation is based on
the Schrödinger equation, that is, the derivatives are asymmetric
between the temporal and the spatial ones and the wavefunction
ψ is intrinsically dispersive and not dissipative. The second-order
spatial derivative causes dispersion of wave packets, while the
non-linear self-interacting term causes localization of wave pack-
ets. Such a situation may be compared with a wave packet in
the plasma under the ponderomotive force. The GP equation
describes the superfluid dynamics on microscopic scales of the
order of the vortex core radius. Vortex motion described by the
non-linear Schrödinger-type equation is not unique to the super-
fluids but it appears in plasmas as well, e.g., in electron-positron
plasmas [22].

2.1.2. Steady-state analysis
The steady-state solution for the GP equation is obtained by
dropping the time-derivative term,

(
− h̄2

2m
∇2 − E0

)
ψ + V0|ψ |2ψ = 0. (7)

If the superfluid is homogeneous, one may even drop the
spatial derivative to obtain the constant-value solution as

ψ = f0 =
√

E0
V0

. What happens if the density distribution is inho-

mogeneous? The vortex core, naively speaking, represents a sin-
gularity at which the superfluid density is zero. We express the
wavefunction using the radial part (or the amplitude) f and the
phase θ as

ψ = f (r) eiθ , (8)

and obtain the steady-state equation for the amplitude f (r) by
substituting into Equation (7),

∂2f

∂r2
+ 1

r

∂f

∂r
− f

f 2
+ 2m

h̄2

(
E0f − V0f 3) = 0. (9)

The boundary condition is chosen as

f =
{

0 for r = 0√
E0
V0

as r → ∞.
(10)

The steady-state radial equation (Equation 9) can be written in
the dimensionless form as

∂2g

∂s2
+ 1

s

∂g

∂s
− g

s2
+ g − g3 = 0. (11)

where the radial function f is normalized to the homogeneous

steady-state solution as g = f
f0

, and the radial distance from the

singularity r is normalized to the coherence length a0 = h̄√
2mE0

as

s = r
a0

. The existence of an analytic solution of Equation (11) for
the entire spatial domain is not known, but the asymptotic behav-
ior can be analyzed in the following way. First, in the vicinity of
the singularity (s → 0), the non-linear term (with g3) is negligi-
ble, as g � 1 holds. The solution is given by the Bessel function of
the first order, g = J1(s). Second, at a large distance s → ∞, the
radial function g is close to unity, and is obtained as g � 1 − 1

2s2 .
The asymptotic behavior of the radial function f is therefore,

f (r) =
⎧⎨
⎩

f0J1( r
a0

) � f0
2

r
a0

for r � a0

f0

(
1 − 1

2

(
a0
r2

)2
)

as r → ∞.
(12)
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On the microscopic scale, the vortex core has a finite size of the
order of the coherence length a0. This fact comes directly from
the uncertainty principle for considering condensate’s momen-
tum p = √

2mE0. Moreover, the fluid picture (explained below)
indicates the existence of a void region (referred to as the topo-
logical defect) at the center of the core where the superfluidity
state is broken in order to sustain the quantized circulation and
the finite flow speed.

2.2. FLUID PICTURE
2.2.1. Madelung transformation
The fluid picture is obtained by applying the Madelung transfor-
mation [23] to the GP equation,

ψ = f eiθ = f ei h̄φ
m , (13)

where the wavefunction phase φ is explicitely written using the
coefficient h̄/m. This transformation is useful in understanding
superfluid dynamics, since the GP equation is converted into the
form of compressible Euler equation [12, 24]. Two equations
arise from the Madelung transformation. One is the continu-
ity equation for the Bose-Einstein condensate density n (number
density),

∂n

∂t
+ ∇ · (nu) = 0, (14)

and the other is the momentum equation,

mn

(
∂u

∂t
+ u · ∇u

)
= −∇p + ∇ · τ . (15)

The number density n and the flow velocity u are given by the
wavefunction ψ as

n = |ψ |2 (16)

u = h̄

m
∇φ. (17)

The absolute value of the wavefunction represents the square-root
of density. The gradient of the wavefunction phase determines the
flow velocity. The superfluid motion is a potential flow, and there-
fore, irrotational. The vorticity is zero everywhere as far as the
superfluid exists:

ω = ∇ × u = 0. (18)

This problem is discussed in more detail in the following section.

2.2.2. Quantum pressure
The pressure p is directly related to the density n (or mass density
ρ) by

p = V0

2m
ρ2. (19)

Equation (19) may be regarded as the equation of state for the
Bose-Einstein condensate, and is intrinsic to the GP equation. It is

worth noting that the concept of temperature does not appear in
Equation (19). This fact is reminiscent of the adiabatic law p ∝ ργ

(using the polytropic index γ ) or the equation of state for the

degenerate matter, e.g., p ∝ n5/3
e for the non-relativistic electron

degeneracy pressure [25]. In plasmas, in contrast to the super-
fluid, the equation of state is not intrinsic to the fundamental
equations, but is introduced to solve the closure problem when
deriving the set of the fluid equations from the Vlasov equation
by means of velocity moments. The pressure force (per unit mass)
is arranged using the definition (Equation 19) as

− 1

ρ

∂p

∂xi
= − V0

m2

∂ρ

∂xi
. (20)

With the help of the steady-state form (Equation 12), the asymp-
totic behavior of the density gradient is evaluated as follows:

∂ρ

∂xi
=
⎧⎨
⎩

mf0
xi

2 a 2
0

for r � a0

2mf 2
0

(
1 − a 2

0
2 r2

)
a 2

0
xi
r4 as r → ∞ (21)

One can see that the density gradient becomes zero at a large dis-
tance due to the power-law dependence (r−4). At a small distance
r � a0, the pressure-gradient force is evaluated as

− ∂ρ

∂xi
= −V0

m

m f 2
0 xi

2a 2
0

= −E 2
0

h̄2
xi. (22)

2.2.3. Quantum stress
The quantum stress τ is unique to the Bose-Einstein condensates,
and is given using the index notation as

τij =
(

h̄

2m

)2

ρ
∂2

∂xi∂xj
ln ρ. (23)

Both the quantum pressure-gradient force (−∇p) and the quan-
tum stress-divergence force (∇ · τ ) in Equation (15) are acting in
the attractive sense, that is, the force is in the inward direction
to pinch the superfluid element onto the vortex core center. The
stress force (per unit mass) is estimated in the same way as that
for the pressure term. We first arrange the stress term:

1

ρ

∂τij

∂xj
=
(

h̄

2m

)2
[

1

ρ3

∂

∂xi
ρ

(
∂ρ

∂xj

)2

− 1

ρ2

∂

∂xi

∂

∂xj
ρ

(
∂ρ

∂xj

)
−

1

ρ2

∂

∂xj

∂

∂xj
ρ

(
∂ρ

∂xi

)
+ 1

ρ

∂

∂xi

∂2ρ

∂x 2
j

]
, (24)

and then apply the asymptotic form of the density gradient
(Equation 21) to obtain

1

ρ

∂τij

∂xj
= −4

(
h̄

2m

)2 xi

r4
. (25)

Both the pressure term (Equation 22) and the stress term
(Equation 25) have the negative sign, implying that these forces
are acting inward. The ratio of these terms is

Frontiers in Physics | Space Physics December 2014 | Volume 2 | Article 76 | 4

http://www.frontiersin.org/Space_Physics
http://www.frontiersin.org/Space_Physics
http://www.frontiersin.org/Space_Physics/archive


Narita and Baumjohann Reconnection

∣∣−∇p
∣∣∣∣∣∇ · τ
∣∣∣ = 1

4

(
r

a0

)4

(26)

Thus, the fluid treatment is valid even within the vortex core (on
the scale r < a0), and furthermore, the quantum stress term plays
by far a dominant role there. Moreover, the zero-vorticity (due
to the potential flow) imposes that the divergence of the quan-
tum stress must vanish. This makes a marked difference from the
pressure tensor in plasma physics, in which the divergence of the
pressure tensor can be non-zero, e.g., anisotropic pressure.

3. VORTEX DYNAMICS
3.1. SMALL-SCALE PICTURE
The circulation around the vortex line is quantized in the super-
fluid. The circulation is defined as line integration of the flow
velocity along a closed trajectory C:

� =
∮

C
u · dr (27)

If the contour is taken in a simply connected region (Figure 3
left), the line integration is replaced by the surface integration
over the area S bounded by the contour C using the Stokes
theorem. The circulation �(s) vanishes due to the zero-vorticity,

�(s) =
∫

S
ω · dS, (28)

where the superscript (s) denotes the simply connected region.
If the contour is taken in a multiply connected region (Figure 3
middle and right), the Stokes theorem cannot be applied. The
circulation in the multiply connected region �(m) is evaluated as

�(m) = h̄

m

∮
C

∇φ · dr = h̄

m
φ. (29)

The phase difference depends on the choice of contours. The
wavefunction must remain a single-valued function (ψ(x) =
ψ(x)ei h̄φ

m ), which yields the quantization of the circulation �,

� = 2π h̄

m
L = κL (30)

(L = 1, 2, · · · )

The flow velocity in the azimuthal direction around the vortex
line (assuming the axi-symmetric two-dimensional flow) is

uφ = κ

2πr
L. (31)

The divergence of the flow velocity in the small-distance limit
(r → 0) is avoided by setting a cutoff in the distance. The cutoff
represents topological defects (or holes) in the multiply connected
region. In other words, the superfluid cannot exist inside the
topological defect. The defect forms a continuous, smooth line
connected to the system boundary (or the wall) or a closed curved
line (vortex ring).

The kinetic energy stored in a unit-length vortex filament from
the radius a0 to R is estimated as

E = 1

2
mn0

∫ R

a0

u 2
φ 2πr dr (32)

= mn0

4π
(Lκ)2 ln

R

a0
(33)

where the number density n0 is approximated to be constant.
Equation (33) means that the flow energy becomes increasingly
larger at a higher quantum number (L ≥ 2) as E ∝ L2. The high-
energy state of the superfluid vortices is relaxed by splitting into
vortices at the lowest degree (L = 1). The flow energy is then
proportional to the degree, E ∝ L, and is more stable. In fact,
the vortex splitting has been confirmed in the numerical stud-
ies solving the GP equation [26–28]. Thus, the circulation in the
superfluid plays as important role as the vorticity because the
finite circulation originates from the topological defects. Ogawa
et al. [29] argue that the circulation theorem breaks down in
reconnection in that the effective pressure becomes indefinite at
the reconnection point.

How can we compare the topological defects in the super-
fluid with the magnetic reconnection? Recently, Treumann et al.
[30] revivied the idea of Aharonov-Bohm quantization [31]. The

FIGURE 3 | Simply connected region (left, genus L = 0) and multiply connected regions with the genus L = 1 (middle) and L = 2 (right).
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fundamental magnetic flux is evaluated for the electron motion
around a flux tube (either using the cross section S or the
orbit C) as

� =
∫

S
B · dS =

∮
C

A · dr (34)

The magnetic field B is associated with the vector potential A by
the relation B = ∇ × A, and the vector potential is further asso-
ciated with the wavefunction phase by A = ∇φ. Again, the wave-
function must be single-valued, which results in the magnetic flux
quantization to

�0 = 2π h̄

e
(35)

The smallest possible radius of the flux tube (or the radius of the
magnetic field line) is then

λm =
√
�0

πB
, (36)

which gives the estimate of the topological defects in magnetic
reconnection [30].

3.2. LARGE-SCALE PICTURE
The problem of the zero-vorticity can be overcome with the
coarse-graining method by grouping many vortex lines on the
larger scale than the core size. The average separation distance
between vortex lines � is of the order of 1μm in the 4He
superfluid, and the system size (represented by the size of the
largest eddies) is of the order of 10 mm [32]. On such a large
scale, one may approximate the vorticity distribution using the
three-dimensional delta function δ(x) as

ω(x) = �

∫
δ (x − s(ξ))

ds

dξ
dξ, (37)

where s denotes the curve of the filament parameterized by the
one-dimensional coordinate ξ (the arc length) [33]. The flow
velocity is then obtained by the Biot-Savart law for an irrotational
motion [34–39],

u = �

4π

∫
(x′ − s) × dx′

|x′ − s|3 . (38)

By coarse-graining (bundling many vortex lines on a larger scale),
one can treat the vorticity as an average, smoothed, and differen-
tiable quantity. In such a treatment, the presence of turbulence
plays a more essential role in violating the circulation theorem
[40]. The coarse-grained vorticity is constructed in the same fash-
ion as the method used in smoothed particle hydrodynamics
[37–39, 41, 42] using the kernel or the smoothing function W :

ω̄(x) =
∫

ω(x′)W(x − x′, σ ) dx′ (39)

� κ

N∑
j = 1

(
ds

dξ

)
j

W(x − sj, σ )ξj (40)

where the smoothing W is a function of the distance between
the two spatial positions and the smoothing length σ . One
may choose the Gaussian shape or the polynomial form for the
smoothing function.

The smoothed vorticity is meaningful if the vortex lines are
locally polarized with non-zero alignment in some direction such
that one can properly bundle many vortex lines. If the vortex lines
are randomly and isotropically oriented in all the directions, the
smoothed vorticity in a small fluid parcel will be zero (despite the
fact that the vortex length inside that small parcel is not zero). But
if the vortex lines are not random then a non-zero average vortic-
ity exists. Figure 4 is an example of vortex bundles (in a numerical
study using the GP equation) before and after reconnection. The
wavy structure after reconnection represents the Kelvin waves
associated with the vortex reconnection.

One may incorporate the concept of turbulent viscosity into
the smoothed vorticity dynamics. For the large-scale vorticity
field, we apply the mean field decomposition as f = f̄ + δf for the
field f (e.g., flow velocity, density). The bar operator means aver-
aging or smoothing. Taking the average of the fluid equation, and
operating the curl, we obtain the equation for the mean vorticity
field as

∂ω̄

∂t
= ∇ × (ū × ω̄)− ∇ × ∇R, (41)

where the matrix R denotes the Reynolds stress defined as

FIGURE 4 | Numerical simulations of reconnecting vortex filament

bundles in superfluid obtained by solving the Gross-Pitaevskii

equation. Reprinted figure with permission from Alamri et al. [71].
Copyright (2008) by the American Physical Society.
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Rij = δuiδuj. (42)

If the quantum fluid is set to fully-developed turbulence, one may
further incorporate the one-point closure model or the Reynolds
stress model as formulated by Boussinesq [43, 44],

Rij = −νT

(
∂ ūi

∂xj
+ ∂ ūj

∂xi

)
+ 2

3
Kδij (43)

with the turbulent or eddy viscosity νT and the total kinetic energy
K. The second-order derivative of the Reynolds stress term in
the vortex equation then reduces to the turbulent dissipation
(using the vector calculus identity that the divergence of the curl
operator vanishes),

∇ × ∇R = −νT∇2ω̄. (44)

To summarize, although the vorticity is zero on a microscopic
scale, a bundle of non-zero circulations (that arises from the
topological defects) gives a finite value of the smoothed vorticity
on a macroscopic scale. The dynamics of the smoothed vortic-
ity can be formulated using the turbulent viscosity, and as in
the ordinary fluid dynamics, modeling of the Reynolds stress
tensor is important here. Thus, comparison with the induction
equation in plasmas (Equation 1) indicates that the anomalous
resistivity η is most relevant to large-scale quantum vortex recon-
nection. It is worth while to note that the divergence of the
pressure tensor must vanish in the superfluid, which is differ-
ent from the plasma with the anisotropic pressure and non-zero
stress tensor. The diffusivity coefficients need to be assessed by
other means. One possibility is to derive the transport coefficients
from the fundamental fluid equations (hydrodynamics, magne-
tohydrodynamics) on the basis of elaborated closure theory such
as Direct Interaction Approximation (DIA) and Two-Scale Direct
Interaction Approximation (TSDIA) [45–47]. Another possibility
is to estimate the transport coefficients by incorporating wave-
particle interactions for various resonance types and collision
frequencies into the anomalous resistivity (e.g., [48]).

4. WAVE DYNAMICS
Because of degeneracy in the spin state and the energy level, the
superfluid has only two wave modes: Kelvin waves and sound
waves. The former exhibits incompressible fluctuations acting on
the tension of the vortex filaments, and the latter is compressible.
There is no thermal or supra-thermal spread in the superfluid
wavefunction, and thus, the wave-particle resonances or wave
harmonics are absent. The lack of wave-particle resonances (more
strictly, the lack of velocity-space gradient in the GP equation) is
one of the differences from plasmas. This fact limits the possible
wave modes in the superfluid only to Kelvin and sound waves.

4.1. KELVIN WAVE
Kelvin waves [49] represent oscillations of the vortex filament
with circular motions around the filament, and may be compared
to Alfvén waves in plasmas. Dispersion relation of the Kelvin
waves is expressed as

ωK = �k2‖
4π

[
ln

(
1

k‖a0

)
+ c

]
, (45)

where ωK denotes the Kelvin wave frequency. The symbol k‖
denotes the wavenumber in the direction to the vortex filament
and c � 1 [50–52]1. Recently, the superfluid Kelvin waves have
been revisited from the viewpoint of symmetry breakdown and
restoration, and these waves can be formulated as realization
of axi-symmetry restoration, known as the Nambu-Goldstone
mode, [53].

The Kelvin waves evolve into turbulence by producing a series
of daughter Kelvin waves as cascade. In addition to the vortex
reconnection, Kelvin wave cascade serves as a channel or trans-
port mechanism of fluctuation energy in the spectral domain.
Superfluid turbulence is considered to show the formation of
an inertial range or power-law regime in the energy spectrum
[50, 54–57]. It is currently being discussed if the spectral slope
exhibits that of Kolmogorov spectrum, −5/3, for reconnection-
dominant superfluid turbulence [58] or if there are multiple
inertial ranges from larger scales to smaller one [59].

The possibility of inverse energy cascade has also been pre-
dicted [60].

4.2. SOUND WAVE
Sound waves represent a compressible mode in the superfluid.
This mode is dispersive in contrast to that in the ordinary fluid
[24]. The dispersion relation is expressed as

ω2
s = h̄2

4m2
k4 + E0

m
k2, (46)

where ωs denotes the sound wave frequency, k the wavenumber.
The first term represents the free-particle motion as is seen by
reading the wavenumber as quasi-particle momentum, h̄k, and
this term makes the sound wave dispersive. The second term rep-
resents the dispersionless phonons,ω ∝ csk, with the propagation
speed cs = √

E0/m. Depending on the spatial scale, the sound
wave behaves like free particles or phonons. As is the case for the
ordinary fluid, the superfluid sound mode does not have any pre-
ferred propagation direction, and in fact, and the waves propagate
radially away from the reconnection site [24].

An important function of the sound waves is its involvement
in the energy transfer mechanism. This mode exists even at the
vanishing viscosity, and by exciting the sound waves, the kinetic
energy in the turbulent superfluid flow can be converted into the
sound energy. Numerical simulations of vortex tangles performed
using the GP equation have shown that the fluctuation energy
(or kinetic energy) decreases with time and the sound energy
increases [61]. This is qualitatively in agreement with the equation
of state (Equation 19) in that the density essentially replaces the
role of temperature in superfluidity. Although viscosity is absent,
the sound wave excitation serves as an effective energy dissipation
mechanism [51].

1The symbol ω is commonly used both for the vorticity and for the angular
frequency. We keep the notation style as these two quantities are not mixed in
the manuscript.

www.frontiersin.org December 2014 | Volume 2 | Article 76 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Space_Physics/archive


Narita and Baumjohann Reconnection

5. RECONNECTION PROCESSES
5.1. BEFORE RECONNECTION
Two competing ideas exist to explain how reconnection sets
on: the threshold model and the bifurcation model. The first
approach is widely used in numerical studies of quantum vortex
reconnection, e.g., [42, 62]. In this model, a critical distance is
set as a parameter between two vortex filaments. The algorithm is
implemented in such a way that two filaments merge and recon-
nect automatically whenever they meet at the critical distance.
This distance is chosen typically of the order of the core size of fila-
ments [63]. The second approach is based on the analytic solution
obtained by linearizing the GP equation around the reconnecting
point [64, 65],

ψ(r, t) = axx2 − ayy2 + (az + i) z − 2i(ax − ay)(t − t0) (47)

where the spatial coordinate r = (x, y, z) is centered at the recon-
nection point at (0, 0, 0) and spanned by the two reconnecting
vortex filaments (assumed to be co-planar, x-y plane). t0 denotes
the bifurcation or reconnection time. The coefficients ax, ay,
and az are positive constants, and satisfy the condition ax > ay.
The wavefunction represents a set of hyperbolae parameterized
by the coefficients, and is a smooth function in space and time
even at the reconnection point. Before bifurcation (t < t0) and
after that (t > t0) the vortex filaments are given by two hyperbo-
lae (obtained by the condition ψ = 0) in the x-y plane. At the
reconnection time, the hyperbolae degenerate to two intersecting
straight lines. No wave activity is needed to mediate the recon-
nection onset, but the reconnection is induced by the dispersion
effect (the second-order spatial derivative) in the GP equation.

Reconnecting filaments exhibit a scaling law in their minimum
distance. The scaling law is obtained on the assumption that the
circulation � is the only relevant parameter [66, 67] as

d = D [� |t0 − t|]α , (48)

where the coefficient D is a dimensionless parameter. Numerical
simulation and analytic model predict the value of D around 0.4
[68, 69] and the power-law index α = 1/2 [66, 67]. This index
value can also be derived from the bifurcation model [64].

In the numerical simulations solving the GP equation, the
index α is yet different across the reconnection event: α � 0.4 and
α � 0.7 before and after the reconnection, respectively [24]. Just
before reconnection occurs, the two vortex filaments form a co-
planar configuration with the opposite sense of vortex (in other
words, anti-parallel filaments) by tilting the axes of filaments
locally [65]. When many vortex filaments exists, reconnection
occurs in a successive fashion. Reconnection rate ν can then be
scaled to the vortex line density � by the relation ν ∝ �5/2 [70].
No wave activity is observed before the reconnection event, and
waves are observed together with the reconnection event. This
result indicates that the waves are the product of reconnection.

5.2. AFTER RECONNECTION
Figure 4 displays the evolution of vortex filaments (or bun-
dles) before and after reconnection [71]. The Kelvin waves are
excited when the bundles reconnect, as visualized by oscillation

or entanglement of the vortex filaments. The generated Kelvin
waves develop into turbulence [72]. Moreover, recent experiment
by Fonda et al. [73] provides for the first time the evidence that
the Kelvin waves are excited by quantum vortex reconnection. Not
only the Kelvin waves but also the sound waves are excited after
reconnection as a pulse, propagating in the radial direction away
from the reconnection point [24, 29, 74]. Wave emission means
the energy loss. Quantum vortex reconnection is an asymmet-
ric process with respect to the time reversal, i.e., the reconnected
vortex filaments cannot simply be put back to the initial un-
reconnected state because the filament distortion (by the Kelvin
waves) and the pulse emission (by the sound waves) carry the
energy away from the reconnection point. In addition, the dis-
tance scaling index α is different across the reconnection time
(α � 0.4 and α � 0.7 before and after reconnection, respectively)
[24] such that the reconnected filaments deviate from each other
more rapidly than they approach to reconnection.

6. LESSONS
On one hand, one may critically view that the comparison
between vortex reconnection in the superfluid and magnetic
reconnection in the plasma might not be useful in the first place
because of the lack of internal degree of freedom in the super-
fluid. In fact, on the microscopic scale, the vorticity is strictly zero
due to the nature of the potential flow. On the other hand, one
can find similarities in the reconnection process between the two
media both on the microscopic and the macroscopic levels. To
summarize, the lessons from quantum vortex reconnection are as
follows.

1. Quantum vortex reconnection is controlled by the physics of
topological defects on the microscopic scale, and by the physics
of turbulence on the macroscopic scale.

2. Due to the irrotational property of the superfluid motion, the
quantum pressure or stress forces cannot trigger reconnec-
tion by themselves. Non-zero flow circulation in the superfluid
comes from the topological defects (such as impurity or break-
down of the superfluidity). The quantized magnetic flux may
be compared with the topological defects in the superfluid.
Physics of reconnection trigger reduces to physics of topologi-
cal defects on a microscopic scale.

3. On the larger scales, the dynamics of smoothed vorticity can
be compared with the generalized Ohm’s law for the plasma.
The existence of turbulence is important in that the turbulent
fluctuation serves an effective dissipation mechanism.

4. Non-linearity is sufficiently small and the linearization of the
fundamental equation is a valid approach. Quantum vor-
tex reconnection can be obtained as an analytic solution of
the linearized GP equation, and there, the dispersion effect
(broadening of the wave packets or the density in the direction
of propagation) is essential in the analytic solution of quantum
vortex reconnection.

5. Waves themselves are not likely the primary mechanism caus-
ing reconnection. However, wave emission (Kelvin waves and
sound waves) are observed together with the vortex recon-
nection. Furthermore, the excitation of sound waves serves as
an effective dissipation mechanism. It is possible that waves
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excitation is involved on a fundamental level in magnetic
reconnection.

6. Waves carry a portion of the energy away from the reconnec-
tion site and make reconnection asymmetric to time reversal.
The question remains, however, as to the exact timing of
wave emission. Waves may be excited at the same time as
reconnection or may be after reconnection.

What is the implications of quantum vortex reconnection to mag-
netic reconnection in space plasmas? The generalized Ohm’s law
in plasmas shows different possible causes of the breakdown of
the frozen-in magnetic field condition: Hall effect, anisotropic
pressure and stress of the electron fluid, electron inertia, and
anomalous resistivity. Even though the fluid equations for the
superfluidity has the pressure-gradient term and the divergence of
the stress tensor, they cannot induce the quantum vortex recon-
nection on the microscopic scale. Theoretical consideration of
anomalous resistivity in plasmas leads to the conclusion that
waves or turbulent fluctuations are one of the likely candidates
to trigger magnetic reconnection. Various kinds of wave modes
are proposed as the mechanism of the anomalous resistivity, e.g.,
Buneman wave, ion acoustic wave, Langmuir wave, lower-hybrid
drift wave, and cyclotron wave as reviewed in Treumann [48].
For a proper evaluation of the generalized Ohm’s law, it is nec-
essary to identify wave modes and their interaction with particles,
and to compare with these other contributions. In the spacecraft
observations in situ in space, wave modes can unambiguously
be determined by investigating the existence of dispersion rela-
tion, namely, the energy spectrum in the wavevector-frequency
domain. Multi-spacecraft missions provide us with the very
opportunity for such a task, and the combination between the
wave analysis and the evaluation of the generalized Ohm’s law will
serve as a powerful tool to solve the reconnection onset problem
in collisionless magnetic reconnection.

Turbulence has dual effects. That is, turbulence serves not
only as an effective dissipation mechanism (through eddy viscos-
ity) but also as a mechanism of transport suppression or even
large-scale structure formation. A typical situation is the turbu-
lent dynamo in which the helicity quantities (magnetic helicity,
kinetic helicity, and cross helicity) play an essential role when
symmetries in the system such as rotation or magnetic field
topology (e.g., spatial inversion or non-mirror symmetry) break
down. The structure formation (or the magnetic field genera-
tion) proceeds in a turbulent medium while the primary effect
of turbulence still lies in enhancing the magnetic diffusion. Such
dual effects of turbulence are indeed presented in recent stud-
ies of turbulent magnetic reconnection [47, 75] While we have
compared the generalized Ohm’s law in a plasma with the vor-
tex equation in a superfluid, such a comparison work should
be extended to the symmetry breakdown associated with the
helicity quantities (kinetic helicity evolution across vortex fila-
ment reconnection, magnetic and cross helicities across magnetic
reconnection).
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APPENDIX: DERIVATION OF FLUID EQUATIONS
The set of the fluid equations is obtained from the
GP equation as follows (see also [76]). We apply the
Madelung transformation (Equation 13) to the GP equation
(Equation 5):

ih̄

[
ḟ + im

h̄
f φ̇

]
= − h̄2

2m

[
∇2f + im

h̄
f ∇2φ + 2

im

h̄

(∇f
) · (∇φ)

−
(

m

h̄

)2

f (∇φ)2
]

− E0f + V0f 3, (A1)

where the dot operation such as ḟ or φ̇ means the time deriva-
tive. The imaginary part of the above equation (Equation A1)
reads

h̄ḟ = − h̄

2
f ∇2φ − h̄

(∇f
) · (∇φ) . (A2)

The real part reads

−mf φ̇ = − h̄2

2m

[
∇2f −

(
m

h̄

)2

f (∇φ)2
]

− E0f + V0f 3 (A3)

or, after arrangement,

φ̇ + 1

2
(∇φ)2 − E0

m
+ V0

m
f 2 − h̄2

2m

1

f
∇f = 0 (A4)

The continuity equation (Equation 14) is obtained by using the
variables for the density n (Equation 16) and the flow velocity
u (Equation 17). The momentum equation is obtained by taking
the gradient of Equation (A4).
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