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Molecular crowding occurs when the total concentration of macromolecular species
in a solution is so high that a considerable proportion of the volume is physically
occupied and therefore not accessible to other molecules. This results in significant
changes in the solution properties of the molecules in such systems. Macromolecular
crowding is ubiquitous in biological systems due to the generally high intracellular
protein concentrations. The major hindrance to understanding crowding is the lack
of direct comparison of experimental data with theoretical or simulated data.
Self-diffusion is sensitive to changes in the molecular weight and shape of the diffusing
species, and the available diffusion space (i.e., diffusive obstruction). Consequently,
diffusion measurements are a direct means for probing crowded systems including
the self-association of molecules. In this work, nuclear magnetic resonance (NMR)
measurements of the self-diffusion of four amino acids (glycine, alanine, valine and
phenylalanine) up to their solubility limit in water were compared directly with molecular
dynamics simulations. The experimental data were then analyzed using various models
of aggregation and obstruction. Both experimental and simulated data revealed that
the diffusion of both water and the amino acids were sensitive to the amino acid
concentration. The direct comparison of the simulated and experimental data afforded
greater insights into the aggregation and obstruction properties of each amino acid.
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INTRODUCTION
Macromolecular crowding effects have traditionally been over-
looked in many biophysical studies with discussion based on
concentration instead of activity, but in the last 20 years there
has been resurgence of interest in this important but less under-
stood effect [1–7]. It is well known that in biological systems there
are many compartments where macromolecular crowding occurs.
The cytoplasm, for example, is a crowded mixture of compo-
nents such as proteins/soluble macromolecules, small molecules
and membranes. Cell membranes also constitute crowded envi-
ronments with carbohydrates and proteins being “dissolved” in
the membrane lipid “solvent.” Similarly polysaccharides and col-
lagen influence crowding effects, particularly in the extracellular
matrix of tissues [8, 9]. Minton and Zimmerman [6, 10] showed
that the concentration of proteins inside Escherichia coli is in
the range 200–300 mg/ml, whereas that of RNA is in the range
75–150 mg/ml. Therefore, the total cytoplasmic concentration of
protein and RNA molecules is in the range of 300–400 mg/ml
and they occupy of 20–30% of the total cellular volume. In con-
trast, red blood cells contain about 350 mg/ml of hemoglobin
while blood plasma contains 80 mg/ml of protein. In general, the
macromolecules occupy between 20 and 30% of the total cell

volume and hence this volume is unavailable to other molecules
in the system [6, 10].

In many cases the macromolecular components in the cellu-
lar systems exist as “background molecules” and do not directly
interact with the reactants or products of particular reactions
[11]. However, the net effect of all the inert background macro-
molecules on a particular process may be quite significant, espe-
cially in a crowded environment. In this situation, the excluded
volume stimulates the macromolecules to bind with each other
[2, 11–13]. Crowding is responsible for macromolecular associa-
tion (protein association or self-association) and conformational
changes (rate of folding or refolding, stability of proteins) [5, 14–
17]. As the number of macromolecules (or small molecules)
increase, the placement of molecules is less likely to be random
as compared to an ideal uncrowded solution. This results in a
decrease in configurational entropy and increases in both the free
energy and the chemical potential of each macromolecule (dilute
as well as concentrated macromolecules) present in the system
[12, 18]. Consequently, equilibria in the system are affected and
this favors the reactants or products that exclude the least vol-
ume. Zhou et al. [1] have considered a number of biological
systems which demonstrate the effects of volume exclusion on
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conformational effects and free energy of macromolecules in
crowded and confined systems.

Since volume exclusion and obstruction are intimately related,
macromolecular crowding also affects thermodynamics and dif-
fusion processes in the cellular system [13, 19]. Diffusion is a
natural method to study the effects of crowded solutions [19–
21]. A number of diffusion studies have been used to characterize
aggregation in amino acids [22–25]. The diffusion coefficient of
both small and large molecules inside a cell has been found to be
smaller compared to their infinite dilution diffusion coefficient
due to crowding effects [17, 19, 21, 26, 27]. The rate of diffusion
limited reaction in biochemical solutions inside cells decreases,
irrespective of the size of molecules involved in the reaction
[1, 19]. The activity coefficient of hemoglobin has been found
to vary non-linearly with increasing hemoglobin concentration
[13]. Schnell and Turner [18] have explained the major difference
between cytoplasmic and test tube biochemical kinetics using
the law of mass action, power-law approximation and fractal-
like kinetics under in vivo conditions. Crowding also affects the
diffusion processes of solutes by increasing the solution viscosity
[28, 29]. At high concentrations of macromolecules, in addition
to solvent interactions, the motion of particles also reflects inter-
action with macromolecules. At time scales much smaller than
the collision time, the inter particle interactions do not signif-
icantly disturb the diffusive path. However, at long time scales,
such interactions are significant leading to lengthened diffusive
paths [20, 30]. The diffusion coefficient (D) is related to the
mean squared displacement (MSD) via the Einstein relationship
[31–33]:

D(t) = MSD(t)

nt
, (1)

where n = 2, 4, or 6 for one, two or three dimensions,
respectively.

Nuclear magnetic resonance (NMR) based measurement of
self-diffusion (i.e., NMR diffusometry) is a powerful tool for
studying associating biomolecular systems including ligand bind-
ing and protein self-association [17, 27]. Amino acids, being
simpler than proteins, are a logical stepping stone toward under-
standing crowded biological systems. The clustering of amino

acids such as glycine has been studied using NMR diffusion exper-
iments and molecular dynamics (MD) simulations as a function
of concentration, pH and temperature [22–24, 34–38]. Hughes
et al. [23] used a multidisciplinary approach (i.e., NMR diffusion,
MD simulations and small-angle neutron scattering) to investi-
gate the crystallization of glycine in aqueous solutions. Hamad
et al. [34] have attempted to explain the size of glycine clus-
ters using radial distribution functions (RDFs) and hydrogen
bonding. Campo et al. [35] used MD simulations to study the
modifications of the glycine structure with changes in solution
pH, and observed changes in the diffusion coefficient of glycine
solutions. Ma et al. [24] investigated the diffusion coefficients
of valine, isoleucine, serine, threonine and arginine in aque-
ous solutions at 298 K using a holographic technique. However,

FIGURE 2 | Simulated 1H echo attenuation plots for a fast diffusing

species ( ) such as water (2.3 × 10−9 m2s−1) in hemoglobin

solution, a slowly diffusing species ( ) with a diffusion coefficient of

(6.8 × 10−11 m2s−1) [62]. Also shown is the sum of the attenuation values
of the two species ( ) if the signals of fast and slow diffusion species are
overlapped and in equal concentration. The simulation was performed with
γ = 2.67× 108 rad s−1 T−1, � = 200 ms and δ = 6 ms and g ranging from
0 to 0.20 T m−1.

FIGURE 1 | Depiction of molecules in a supersaturated solution with

increasing aggregation and their visibility in an NMR diffusion

measurement. Dimers and higher oligomers (some have complex shapes)

form with increasing concentration. As the oligomeric size increases the T2

value becomes shorter, consequently according to Equation (4) the oligomer
becomes increasingly NMR invisible.

Frontiers in Physics | Biophysics February 2015 | Volume 3 | Article 1 | 2

http://www.frontiersin.org/Biophysics
http://www.frontiersin.org/Biophysics
http://www.frontiersin.org/Biophysics/archive


Virk et al. MD and NMR studies of amino acids

despite the significance of crowding on solution thermodynam-
ics, the molecular level mechanism of crowding including how
it influences diffusion remains to be clarified [19, 36–38]. The
major hindrance to understanding crowding is the lack of a direct
comparison of experimental data with theoretical data for the
same system [39].

In this work, the diffusion of four amino acids (glycine, ala-
nine, valine and phenylalanine) was investigated up to their
solubility limit in water using NMR. The solubility of glycine, ala-
nine, valine and phenylalanine in water at 298 K is about 249.9,
166.5, 88.5, and 29.65 mg/ml, respectively [40]. The experimental
data was then analyzed using various aggregation and obstruction
models. MD simulations of the amino acids were also performed
to enable comparison with the experimental diffusion results to
give a clearer understanding of the molecular level solution inter-
actions in crowded systems. This work is organized as follows: In
the theoretical background section, the analysis of NMR diffu-
sion data of associated systems using aggregation distribution and
obstruction models are discussed. In the Materials and Methods
section, the experimental and simulations details are provided.
In the Results and Discussion section, NMR diffusion results of
amino acids with aggregation and obstruction models are dis-
cussed. This section also includes MD simulation results analyzed
using radial distribution functions, hydrogen bonding and diffu-
sion coefficients in different force fields. Concluding remarks are
presented in the final section.

THEORETICAL BACKGROUND
DIFFUSION MEASUREMENTS OF ASSOCIATING SYSTEMS
Polydisperse systems are formed with increasing concentration
in associating systems and at least in principle the diffusion
data obtained by experimentation can be used to calculate the
degree of polydispersity. However, in reality, the size of the
different molecules and calculated degree of polydispersity in
these complicated systems are difficult to separate from diffusion

FIGURE 3 | Mole fraction plots of alanine aggregate species in 0.2 ( )

and 1.669 M ( ) solutions calculated from the isodesmic model (i.e.,

Equation 11) with Ke = 1.39 (equilibrium constant from Table 1). The
simulations reveal that large oligomers are present at high concentrations.

measurements [41–43]. The infinite dilution diffusion coeffi-
cient of a molecule is related to its molecular weight through its
effective hydrodynamic radius via the Stokes-Einstein-Sutherland
equation [33, 44–46]:

D0 = kT

f
, (2)

FIGURE 4 | Simulations of the obstruction factor, OD , as a function of

the concentration of glycine in water, using the models of Jönsson

et al. ( ) [65], Han and Herzfeld ( ) [48], Lekkerkerker and Dhont

( ) [71], T and O short ( ) and long ( ) range hydrodynamic

interactions [70, 73]. Note: while glycine is only soluble up to ∼5 M under
standard conditions, the graph depicts obstruction up to much higher
concentration. The equivalent volume fractions (vp ) are shown in the
secondary x-axis.

FIGURE 5 | Experimentally measured (i.e., NMR) derived diffusion

coefficients of the residual water molecules in D2O as a function of the

concentration of glycine ( ), alanine ( ), valine ( ) and phenylalanine

( ). The error bars for the measurements are also included; however, the
errors are much smaller than the drawn symbols.
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where k is the Boltzmann constant, T (K) is temperature and f
(kg s−1) is the friction coefficient of the diffusing molecule. In the
case of a spherical particle with an effective hydrodynamic radius
rS (m) in a solvent of viscosity η (Pa s), f = cπηrS where the con-
stant c characterizes the interaction between the solute and the
solvent with c = 4 or 6 denoting the “slip” and “stick” conditions
respectively. However, the Stokes-Einstein-Sutherland equation
(Equation 2) [33, 44–46] is derived under many assumptions
related to the size, shape and concentration of the solute and
solvent molecules [31, 47]. The Stokes-Einstein-Sutherland equa-
tion (Equation 2) is only valid at infinite dilution such that
interactions between solute particles can be ignored. It is fur-
ther assumed that the solute is much larger than the solvent
molecules so that the solute sees the solvent as a continuum.
These assumptions reduce the system to a one body problem [48].
Correspondingly, when large particle interactions are significant
(e.g., in highly concentrated solutions) and cannot be ignored
(e.g., in cell cytoplasm), this corresponds to a complicated many
body problem [31]. In this situation, the diffusive path of smaller
molecules (e.g., water, glucose) increases as they have to diffuse

around the larger and generally irregularly shaped and tumbling
“obstructing” molecules (e.g., macromolecular components of
cell cytoplasm) [6, 20, 49].

Magnetic field gradient based NMR diffusion measurements
[e.g., the pulsed gradient spin-echo method (PGSE)] are non-
invasive in nature and do not disturb the thermodynamics of the
system [17, 27, 50–53]. In this method, magnetic gradients and
rf (radio-frequency) pulses are applied to nuclei (usually 1H) in a
pulse sequence to measure the attenuation of the spin-echo signal
due to self-diffusion. A detailed description of the technique can
be found elsewhere [31, 51, 53–55]. The NMR echo signal of a
single freely diffusing species attenuates according to [55, 56]:

E(g,�) = exp(− γ 2g2Dδ2(�− δ/3)),
= exp(− bD)

(3)

where b = −γ 2g2δ2(�− δ/3), γ is the gyromagnetic ratio (rad
s−1 T−1), g is the magnitude of the magnetic gradient pulse (T
m−1), δ is the duration of the gradient pulse (s), and � is the
diffusion time (s).

FIGURE 6 | The measured diffusion coefficients (•) of glycine, alanine,

valine, and phenylalanine in D2O at 298 K as a function of amino acid

concentration modeled using obstruction and aggregation models

separately (i.e., Equation 12 with N = 1). Clearly, none of the current
obstruction models [i.e., Lekkerkerker and Dhont ( ) [72], Han and
Herzfeld ( ) [49], T and O’s short interactions model ( ), T and O’s long
interactions model ( ) [71], and Jönsson et al. ( ) [66], fit to the
experimental data well. Also shown is the fitting of the isodesmic (i.e.,
Equation 11) aggregation model ( ) [65] to the experimental data. The
measured diffusion coefficients are lower than those predicted by the

obstruction models which imply that an additional process such as
aggregation is likely to be present. The isodesmic association model
doesn’t fit or provide cogent information if obstruction is unaccounted for.
On the basis of the poor fit of the T and O long range interaction model,
one may conclude that aggregation is not occurring. However, in this
model the diffusion coefficient is reduced due to the presence of non-local
hydrodynamic interactions and the absence of direct interactions-meaning
that aggregation might still be occurring. The error bars for the
measurements are also included; however, the errors are typically much
smaller than the symbols.
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Concomitant with the improved technical abilities of mod-
ern NMR spectrometers to measure diffusion, there has been
increased awareness of the experimental limitations and the need
for more realistic models for analyzing diffusion data from asso-
ciating systems [43, 50, 57]. The NMR visibility of the various
oligomeric species present changes with aggregation state in an
NMR diffusion measurement. As aggregation increases, higher
oligomers become partially or completely NMR invisible due to
relaxation weighting thereby leaving only the small oligomers vis-
ible in the spectrum (Figure 1). In solutions containing highly
aggregated species, the visible NMR species will diffuse faster
(more free path to move) due to less obstruction from other par-
ticles. In a polydisperse sample formed from a single monomer
species, the magnetization of the ith species is directly propor-
tional to MWini, where MWi is the molar mass of the ith aggregate
species, and ni is the number of such aggregates present. The
resultant echo signal amplitude of N freely diffusing species with
individual diffusion coefficient Di, and spin-spin relaxation time,
T2i, is given by [17, 51]:

Table 1 | Summary of the fitting results from regressing Equation (12)

including the isodesmic association model and various obstruction

models [48, 65, 70, 71, 73] on to the experimental glycine, alanine,

and valine and phenylalanine diffusion data.

Amino acid Obstruction model D0
1 (10−10 × m2s−1) Ke (M−1)

Glycine None 8.92 1.07

Han and Herzfeld 9.10 0.02

T and O’s long interaction 9.26 0.01

T and O’s short interaction 8.61 0.07

Lekkerkerker and Dhont 8.61 0.03

Jönsson et al. 8.81 0.67

Alanine None 7.37 1.39

Han and Herzfeld 7.17 0.10

T and O’s long interaction 7.64 0.01

T and O’s short interaction 7.21 0.26

Lekkerkerker and Dhont 7.12 0.19

Jönsson et al. 7.32 0.98

Valine None 6.40 1.90

Han and Herzfeld 6.34 0.68

T and O’s long interaction 6.31 0.13

T and O’s short interaction 6.35 0.86

Lekkerkerker and Dhont 6.34 0.73

Jönsson et al. 6.39 1.56

Phenylalanine None 6.02 4.22

Han and Herzfeld 5.95 2.16

T and O’s long interaction 5.91 1.06

T and O’s short interaction 5.96 2.48

Lekkerkerker and Dhont 5.95 2.22

Jönsson et al. 5.99 3.66

The infinite dilution diffusion coefficient was also calculated from the fitted data.

S(g,�)=
N∑
i

MWini exp

(−2τ

T2i

)
exp(− γ 2g2δ2(�− δ/3)Di),

(4)

where 2τ is the length of the pulse sequence.
Normalization with the g = 0 case removes the effects of relax-

ation from the analysis. The normalized spin-echo attenuation
[i.e., E(g,�)] of a polydisperse species undergoing diffusion is
[31, 58]:

E(g, �) = S(g, �)

S(0, �)

=
∑N

i MWini exp
(−2τ

T2i

)
exp (− γ 2g2δ2(�− δ/3)Di)

∑N
i MWini exp

(−2τ
T2i

) (5)

In the simplest case when the signals from the different species
are distinct, the diffusion coefficients determined from each NMR
signal can be used to differentiate between different species which
can be used to resolve the spectra of such a mixture of solutes
[59–61]. However, in most real systems (e.g., aggregating pro-
teins and other polymers) the signals of different sized species
are overlapped thereby complicating the analysis [41–43]; thus,
the echo signal attenuation from a polydisperse system (i.e.,
Equation 5) will be multiexponential. Since, for many associat-
ing systems the experimentally observed attenuation is usually
single exponential (i.e., “linear” when plotted on a log scale). It
can be assumed that there is a process which results in ensemble
averaging of the diffusion coefficients of the aggregated systems
(e.g., [17, 41, 58]). An example of a non-linear attenuation plot
on log scale for overlapped signals for two species is shown in
Figure 2.

Ignoring the relaxation terms (i.e., assuming that any dif-
ference in relaxation properties of different sized aggregates is
negligible), Equation (5) gives the combined diffusion averaging
effects for the different oligomers. The averaging effect is approx-
imated by taking the cumulant expansion of Equation (5) to
second order [31, 58]:

1n(E) = −b 〈D〉w + b2

2

(〈D〉2w − 〈
D2〉

w −
〈
D2〉

w

)
, (6)

where〈D〉w, is the weight-averaged diffusion coefficient:

〈D〉w =
∑N

i MWiniDi∑N
i MWini

. (7)

If the quadratic terms are ignored in Equation (6), the experimen-
tally determined diffusion will then give an apparent diffusion
coefficient which also includes the effect of obstruction. The
resulting NMR signal attenuation is defined by [17, 31, 50, 58]:

E(g,�) = exp(− b 〈D〉CW ), (8)

where the superscript C denotes the effects of obstruction
(i.e., obstruction from crowding). Thus, the measured diffusion
coefficient inherently contains the effects of polydispersity and
obstruction.
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AGGREGATE DISTRIBUTION
In a given aggregation model, the exact populations of the aggre-
gates in a distribution of different sized oligomers can be derived.
Many models exist for calculating the distribution of the differ-
ent sized oligomers [63]. In an attenuated K model, the addition
of a molecule to an oligomer has been proposed to occur with
constant enthalpy. However, successive additions become less
probable and hence less favored entropy, and decreasing equi-
librium constant [63]. The attenuated K model requires iterative
solutions making it more difficult to use in practice. On the other
hand, an isodesmic model is a simpler and more general approach
for assigning the equilibrium constant for the self-association
of proteins. In an isodesmic model aggregation leads to equal
free energy and equilibrium constant [63]. Here we consider an
isodesmic model [63, 64] for analysing experimental diffusion
data (Figure 3). This distribution model has been used in char-
acterizing protein association [17, 51]. The aggregate propagates
by addition of a monomer unit, M1, as described by [17, 64]:

Mi−1 +M1
Ke←→ Mi i = 2...∞, (9)

where Ke (= K2 = K3 = · · · = Ki) is the equilibrium constant
(M−1). The total concentration of aggregates in the system

(in units of monomers) is given by [17, 64]:

C =
∞∑

i=1

cii, (10)

where ci is the concentration of the ith oligomer state. Hence, the
mole fraction of oligomer is given by [17, 64]:

αi = i(KeC)i−1
(

2KeC + 1−√1+ 4KeC

2(KeC)2

)
i. (11)

The apparent diffusion coefficient of the oligomeric system
including the effects of aggregation and obstruction can be
defined by [17, 51]:

〈D〉CW = OD(C)D0
1

N∑
i=1

αii
−1/3, (12)

where D0
1 is the infinite dilution diffusion coefficient of the

monomer and OD represents a suitable expression for self-
obstruction as a function of concentration. The effects of obstruc-
tion or volume exclusion are present even in the absence of
aggregation [17, 27]. Therefore, when measuring diffusion in
solutions with increasing concentration it is necessary to be able

FIGURE 7 | The various obstruction models fitted to the experimental

data with the isodesmic model using Equation (12). Lekkerkerker and
Dhont’s ( ), Han and Herzfeld’s ( ) and T and O’s short interactions model

( ) best fit to experimental data. Also shown are Jönsson et al. ( ) and T
and O’s long interactions model ( ). The error bars for the measurements
are also included; however, the errors are much smaller than symbols.
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to differentiate between the effects of association and obstruc-
tion in order to accurately model and account for changes in the
diffusive behavior.

OBSTRUCTION
Obstruction can be quantified by introducing an obstruction
factor which is defined as the ratio, D(t)/D0, of the observed
diffusion coefficient and the local diffusion coefficient D0 (bulk
diffusion coefficient). The obstruction factor depends on the
shape, volume fraction, and spatial and orientation distribution
of the obstructing molecules [48, 65–67]. The simple obstruc-
tion models derived to date assumed that all of the obstructing
particles have the same size and shape (generally taken to be

spheres) and are only valid at very low concentrations [48, 65–
71]. Furthermore, these obstruction models do not account for
the effects from electrostatic interactions. In reality, the shapes of
diffusing particles are much more complex than spheres or ellip-
soids and the effects of hydration, charge and rugosity of their
surfaces also need to be considered [17, 31]. Additionally, none
of these models account for the presence of aggregation which is
important since even with the same total concentration (expres-
sion as monomers), the degree of obstruction will change with
the degree of polydispersity. A number of different obstruction
models are used to simulate obstruction in glycine solution as a
function of concentration in Figure 4. Jönsson et al. [65] derived
the obstruction factor for a system containing evenly spaced

FIGURE 8 | RDFs of the carboxylate oxygen and amine nitrogen of each amino acid at different amino acid concentrations [i.e., 50 ( ), 100 ( ), 200

( ), and 300 mg/ml ( )] and different force fields at 298 K.
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monodisperse spherical particles in a cell including the bind-
ing effects from solvent molecules [72]. Lekkerkerker and Dhont
[71], on the other hand, provided the obstruction factor using
the MSD of interacting Brownian particles. Han and Herzfeld
[48] derived a relationship for a hard sphere diffusing among
hard spherocylinders while Tokuyama and Oppenheim (T and O)
[70, 73] used the Navier-Stokes equation to develop a model for
the dynamics of concentrated hard-sphere suspensions of inter-
acting Brownian particles with both hydrodynamic and direct
interactions.

NMR diffusion measurements are usually carried out with
solutes or macromolecules present in the millimolar range or
above, yet most of the theory used to analyse the diffusion data
has been derived on the assumption that diffusion is occurring
at infinite dilution. Clearly, cellular milieu are never at infinite
dilution and they are almost always crowded systems. Thus, diffu-
sion measurements of biological systems can be reporting on true
self-diffusion, obstruction and molecular association simultane-
ously. Without cogent models it is extremely difficult to separate
these effects. Yet, the ability to separate them would provide a
huge increase in the amount of information that can be available.
Mathematically it is very difficult to develop analytical models
for such systems without numerous simplifying assumptions. For
example, obstruction is a many-body problem and in general a
numerical solution of the obstruction factor is the only practi-
cable approach. MD simulations for these systems can provide
valuable information on the solute-solute, solvent-solvent and
solute-solvent interactions at the atomic level [37, 38, 74–76].

MD SIMULATIONS
In MD simulations, the force field is a sum of different forces
responsible for bonded and non-bonded interactions between
molecules in a solution. A number of force fields have been devel-
oped to study a variety of different systems or properties by
computer simulation [77–80]. These force fields have the same
interaction sites of molecules but differ in the Lennard-Jones
and Coulombic terms, which give significant differences in calcu-
lated properties for the molecules of interest [37, 81]. Hence, the
choice of force fields plays a crucial role in determining different

interactions between molecules for a particular system. Elcock
et al. [37] investigated the performance of different force fields
on highly crowded amino acid solutions. Note that the effect of
different force fields on the simulated diffusion coefficients of
water and amino acids also needs to be compared with exper-
imental results. Accurate values for the diffusion coefficients of
complex molecules are very difficult to obtain using MD sim-
ulations [35, 82]. However, MD simulations have continuously
been improved to study the dynamics and structure properties
of complex systems [83–85]. There are two methods to calculate
diffusion coefficients from MD simulations: (i) using the veloc-
ity auto-correlation function and (ii) from determination of the
MSD. All diffusion coefficients in this study were determined
using MSD analysis.

The diffusion coefficient of water simulated using different
water models [i.e., SPC (simple point charge), SPC/E (extended
simple point charge), TIP3P (transferable intermolecular
potential 3P)] with different velocity rescaling methods and
other simulation parameters has been examined at 298 K
[81, 86, 87]. In this work, three different force field and water
model combinations were used in the MD simulations: GROMOS
53A6 [79] with the SPC/E water model [88], OPLS-AA/L [80]
with the TIP3P water model [89], and AMBER ff99SB-ILDN
[77, 78] with the TIP3P water model [89].

MATERIALS AND METHODS
MATERIALS
The following amino acid solutions at various concentrations
were prepared in D2O (99.9%, Cambridge Isotope Laboratories):
Glycine (99.0%, Sigma) from 0.01 to 3.72 M, alanine (99.0%,
Fluka) from 0.006 to 1.69 M, valine (99.5%, Sigma) from 0.018
to 0.43 M and phenylalanine (99.0%, Sigma) from 0.02 to 0.17
M. No visible precipitation of the amino acids was observed in
the NMR tubes (5 mm, Wilmad Lab Glass) during any of the
experiments.

NMR EXPERIMENTS
1H NMR diffusion experiments were performed at 298 K on
a Bruker Avance 400 MHz NMR spectrometer with a 5 mm

FIGURE 9 | RDFs of amino acid aggregates at different amino acid concentrations [i.e., 50 ( ), 100 ( ), 200 ( ), and 300 mg/ml ( )] and different

force fields at 298 K.

Frontiers in Physics | Biophysics February 2015 | Volume 3 | Article 1 | 8

http://www.frontiersin.org/Biophysics
http://www.frontiersin.org/Biophysics
http://www.frontiersin.org/Biophysics/archive


Virk et al. MD and NMR studies of amino acids

broadband BBO probe equipped with a z-axis magnetic field
gradient. The z-axis gradient strength was calibrated by mea-
suring the known diffusion coefficient of residual water (1.9×
10−9 m2s−1) [90] in D2O at 298 K. The maximum gradient
strength was found to be 0.55 T m−1. The PGSTE sequence [55]
with rectangular gradients was used for all translational diffu-
sion measurements. Typical acquisition parameters were gradient
pulse duration δ = 1.5 ms, diffusion measurement timescale � =
0.2 s with g varied from 0.005 to 0.253 T m−1 in increments of
0.017 T m−1 to give 16 data points for each attenuation curve.
The values δ, g, and � were selected so that the echo signal
was attenuated by at least 80% with the largest value of g. In all
cases the spectral width was 5.58 kHz and a total of 22 k data
points were acquired. Each spectrum was averaged at least over 8

scans depending on the signal-to-noise ratio. Recycle delays were
chosen to achieve five times spin-lattice relaxation time between
scans. The NMR diffusion data were analyzed by non-linear
least squares regression of the appropriate attenuation expres-
sion using OriginPro 9 (OriginLab) software. The error estimates
given in the figures are those from the data fitting. The true error
will be typically of the order of 1% or more [91].

MD SIMULATION DETAILS
All MD simulations were performed using GROMACS software
version 4.6.3 [92, 93]. The systems studied in the simulation
consisted of glycine, alanine, valine and phenylalanine zwitteri-
ons immersed in a cubic box of water with periodic conditions.
Simulations were performed at solute concentrations of 50, 100,

FIGURE 10 | Aggregate size distribution for each amino acid as a function of concentration [i.e., 50 ( ), 100 ( ), 200 ( ), and 300 mg/ml ( )]

determined using different force fields at 298 K.
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200, and 300 mg/ml. The solutions were modeled by cubic simu-
lation cells (with lengths between 31.35 and 32.86 Å for glycine,
31.38 and 33.09 Å for alanine, 31.43 and 33.22 Å for valine and
31.50 and 33.34 Å for phenylalanine depending on concentra-
tion) in which the 1000 water molecules were kept constant. The
box dimensions were fixed by the corresponding densities at 298
K and 1 atm. All systems were first minimized using steepest
decent minimization for 1000 steps. The temperature was then
equilibrated using an NVT ensemble with temperature at 298 K
using the v-rescale thermostat at 0.1 ps. The NVT ensemble was
carried out for 400 ps. After temperature equilibration, the pres-
sure was equilibrated using an NPT ensemble at 1 atm using the
Parrinello-Rahman barostat [94] at 0.1 ps. The NPT ensemble
was carried out for 1 ns. During the simulations, the Lennard-
Jones forces were cut off at 12 Å and electrostatic forces were
treated by the particle mesh Ewald (PME) method [95]. The equa-
tions of motion were integrated using the Leapfrog algorithm
with a 1 fs time step for 10 ns and the covalent bonds were restored
using the LINCS algorithm [96]. The coordinates and energy val-
ues were saved at 5 ps intervals. MSD plots of water models were
used to confirm the stability of the simulations.

RESULTS AND DISCUSSION
NMR DIFFUSION MEASUREMENTS
It was observed that the diffusion coefficient of the residual pro-
tonated water (i.e., HOD) in the amino acid solutions was lower
than that of neat water [90] (i.e., 1.9× 10−9 m2s−1) (Figure 5).
In crowded solutions, the available volume for solvent molecules
will be restricted leading to excluded volume effects, thus, the
solvent diffusion coefficient should decrease with amino acid
concentration.

The results of the diffusion measurements performed on
glycine, alanine, valine and phenylalanine in D2O are summa-
rized in Figure 6. The diffusion coefficients of the amino acids
were concentration dependent and decreased with amino acid
concentration. Extrapolation of the measured diffusion coeffi-
cients using a linear function gave the diffusion coefficient of each
amino acid at infinite dilution. The diffusion coefficient of the
smallest amino acid (glycine) was the largest and phenylalanine

the slowest amongst the amino acids at the same concentration.
The extrapolated infinite diffusion coefficients of alanine and
phenylalanine were in agreement with previous NMR diffusion
studies [22].

The decrease in the obtained amino acid diffusion coefficients
can be explained by analyzing the data using aggregation and
obstruction models. The extrapolated infinite dilution diffusion
coefficients of the amino acids were used to predict the obstruc-
tion factors of the amino acids. Equation (12) with N set to 1 (i.e.,
assuming no aggregation and all amino acids present in monomer
form) was fitted to the experimental data and the values of
the fitted parameters are given in Table 1. The results presented
in Figure 6 clearly show that none of the obstruction models
(i.e., Figure 4) were able to accurately describe the decrease with
concentration of the experimental amino acid diffusion data.
Similarly, the isodesmic association model (i.e., Figure 3) also
poorly described the experimental amino acid diffusion data. The
poor fitting from both aggregation and obstruction models to the
experimental amino acid diffusion data indicates that amino acids
are undergoing self-aggregation in the presence of obstruction
from other amino acid molecules. Hence, both aggregation and
obstruction models need to be taken into account to explain the
decreased amino acid diffusion coefficients.

The experimentally determined amino acid diffusion coeffi-
cients were then analyzed by fitting aggregation and obstruction
models (i.e., Equation 12). The maximum oligomeric state of the
amino acids was limited to a pentamer. The fitting results are
summarized in Figure 7 and Table 1. Comparison of Figures 6, 7
reveals that the amino acids are likely subject to both associa-
tion and obstruction in solution. The best fit to the experimental
data was obtained with Lekkerkerker and Dhont’s, T and O’s
short interactions, and Han and Herzfeld’s model together with
the isodesmic association model. The fitting of the obstruction
model of Jönsson et al. to the diffusion data in highly concen-
trated solutions was reasonable as it includes the solvation effects
from the solvent molecules. On the other hand, that T and O’s
long range interaction model gave a poor fit to the experimen-
tal data implies the absence of direct interactions between small
amino acid molecules.

FIGURE 11 | MSD vs. time calculated from water molecules in

different alanine and valine concentrations [i.e., 50 ( ), 100

( ), 200 ( ), and 300 mg/ml ( )] with SPC/E and TIP3P

models respectively. The linearity of MSD plots decrease with
concentration and similar graphs were also obtained for other
amino acid solutions.
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It is important to note that amino acids also exist as zwitte-
rions and that these obstruction models do not account for the
effects of electrostatic interactions between molecules. It would
be interesting therefore to perform a similar study of amino acid
solutions at different pH values using MD simulations and to
experimentally observe the effects of electrostatic interactions on
the diffusion coefficient.

RADIAL DISTRIBUTION FUNCTION ANALYSIS
RDFs are used to understand the size and shape of different clus-
ters formed by association of amino acid molecules. The RDF
between different amino acid molecules is defined by [92]:

gAB(r) = 〈ρB(r)〉
〈ρB〉local

,

= 1
〈ρB〉local

1
NA

NA∑
i=A

NB∑
j=B

δ(rij−r)

4πr2 ,
(13)

where 〈ρB(r)〉 is the particle density of type B at a distance r
around particles A and 〈ρB〉local the particle density of type B
averaged over all spheres around particles A with radius rmax.

The value of g (r) was calculated for each amino acid at differ-
ent concentrations by splitting each amino acid into a number
of groups. The carboxylate oxygen and the amine nitrogen of
each amino acid were used to obtain information about changes
in salt bridge interactions with solute concentration. RDF plots
were obtained for all solutions but, as examples, glycine and
alanine solutions with GROMOS 53A6, and valine and pheny-
lalanine solutions with OPLS-AA/L and AMBER ff99SB-ILDN
are shown in Figure 8. The RDF plots clearly show that peak
heights are affected by increasing solute concentration resulting
in different strengths of salt bridge interactions. The RDF peak
heights increase with molecular size but are the same for dif-
ferent force fields. It was evident from all force fields that salt

FIGURE 12 | Amino acid concentration dependence of water (left

column) and amino acid (right column) diffusion coefficients using

GROMOS 53A6 and the SPC/E water model, OPLS-AA/L and the TIP3P

water model and AMBER ff99SB-ILDN and the TIP3P water model

obtained from the MD simulations with concentration of glycine ( ),

alanine ( ), valine ( ), and phenylalanine ( ) molecules at 298 K.
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bridge interactions do not affect the separation distance between
molecules with concentration and are independent of molecular
size. This suggests that salt-bridge interactions are independent of
Lennard-Jones parameters from different force fields. The results
presented here are in agreement with previous simulated results
[37] excluding the variation in the GROMOS 53A6 salt bridge
interactions. Elcock et al. [37] found that GROMOS 53A6 salt
bridge interactions are of marginal stability compared to other
force fields. However, present results indicate that salt bridge
interactions are not affected by the force fields. The only differ-
ence between the two simulations is the use of different water
models. It has previously been shown that the salt bridge inter-
actions can be affected by the choice of different water models
with force field [97].

In previous studies, the results from small-angle X-ray stud-
ies and simulations have been used to explain the RDF peaks in
terms of the polydispersity of amino acids [34, 98, 99]. The dif-
ferent RDF peaks provide information about hydrogen bonded
oligomers. The RDF peaks for all aggregates (monomers, dimers,
trimers, etc.) forming in the simulations are shown in Figure 9.
The largest peak corresponds to monomers at 0.10 nm, dimers at
0.115 nm, and trimers at 0.15 nm and followed by high oligomers.
The separation distance between molecules was not affected by
solute concentration but the probability of finding a molecule
increased with concentration. The analysis of hydrogen bonded
oligomers from RDF peaks becomes very complex due to the
single large peak for monomers. Hence, the hydrogen bonding
was analyzed to obtain aggregate distribution of amino acids at
different concentrations.

HYDROGEN BONDING
The amino acid clusters formed in the MD simulations were
analyzed by examination of hydrogen bonding interactions. The
numbers of aggregates in different amino acid simulations were
classified on the basis of the hydrogen bonds between two
molecules. All amino acid molecules that form hydrogen bonds
less than 0.35 nm were considered to be in contact with each
other. The percentage of amino acid molecules that exist as
monomers (i.e., no hydrogen bond to any other molecule),
dimers (i.e., one hydrogen bond between a pair of molecules)
and other higher oligomers were calculated from the simulations
for each concentration. The results obtained from the MD sim-
ulations for glycine and alanine solutions with GROMOS 53A6
and AMBER ff99SB-ILDN force fields, valine and phenylalanine
solutions with OPLS-AA/L force field are shown in Figure 10.

Using GROMOS 53A6 force field, monomers are found to
be the dominant species at the amino acid concentrations stud-
ied. However, the number of higher oligomers also increases with
concentration. The numbers of monomers decreases with molec-
ular size predicting that large hydrogen bonded oligomers are
formed for large molecules. For the AMBER ff99SB-ILDN force
field, monomers were dominant at low concentrations followed
by higher oligomers. In simulations using the OPLS-AA/L force
field, higher oligomers with much greater size were predicted than
when other force fields were used. In fact for 300 mg/ml pheny-
lalanine solutions most of the aggregates were trimers or larger.
Similar results from OPLS-AA/L have been noted in the literature

[37]. The aggregate size at each concentration was found to be
limited by the total number of amino acid molecules added
to the solution, but none of the simulations reached that limit
of aggregation (i.e., the maximum aggregate size in 50 mg/ml
phenylalanine solution is a hexamer).

MD SIMULATED DIFFUSION COEFFICIENTS
The stability of the MD simulation was confirmed by the linearity
of the MSD plots of different water models as a function of amino
acids concentration (see Figure 11).

The MD simulations were performed in normal water whereas
the NMR experiments were performed in D2O. From Equation
(2) the diffusion coefficient varies according to the inverse of the
viscosities, hence using the known viscosities of H2O and D2O
[100], the diffusion is expected to be faster in the MD simulations.
Crowding effects on water can be seen by comparing the change
in the water diffusion coefficient with amino acid concentration
in both the experimental and simulation studies. The diffusion
coefficients of water and amino acids in different force fields as
a function of amino acid concentration are shown in Figure 12.
For all force fields, the water diffusion coefficient decreases as a
function of concentration (as seen experimentally in Figure 5). In
our simulations, at low concentration (50 mg/ml, alanine) there
were 100 water molecules per alanine molecule and at high con-
centration (300 mg/ml, alanine) there were 16 water molecules
per alanine molecule. So, crowding effects from amino acids on
water molecules were not expected at low amino acid concen-
trations. The diffusion coefficient of water from the GROMOS
53A6 force field at low amino acid low concentration (50 mg/ml)
was close to the experimental value of 2.3× 10−9 m2s−1 of pure
water [81, 101]. For the TIP3P water model, the diffusion coef-
ficient was also in agreement with simulated literature values of
pure water [81].

The variation of the water diffusion coefficient using differ-
ent models from different velocity scaling methods was expected
to be around 2–7% [81]. Each simulation run was repeated to
check the stability of the diffusion coefficients. Using the same
water model (TIP3P), the diffusion coefficient of water changed
depending on the force field. The diffusion coefficient of water
in amino acid solution was dependent on its interaction with the
amino acids. As the Lennard-Jones parameters were different for
each force field this led to a deviation in the diffusion coefficient
of water in different force fields.

It can be argued that the change in diffusion coefficient of
the amino acids with concentration from different force fields
is linked to the number of oligomers formed in the simula-
tion. Interestingly, the diffusion coefficient of the amino acids
calculated with GROMOS 53A6 and SPC/E didn’t decrease signif-
icantly with concentration. Previous simulation results for glycine
molecules using GROMOS 53A6 force field by Campo et al. [35]
were much higher than the present results. However, the results
of Campo et al. [35] were more focused on the incorporation of
ions into the solution. It is worth stressing that crowding effects
from different force fields are dependent on the strength of the
interactions (i.e., Lennard-Jones parameters) between molecules.
But, results from GROMOS 53A6 have revealed large differ-
ences in salt-bridge interactions and the presence of oligomers

Frontiers in Physics | Biophysics February 2015 | Volume 3 | Article 1 | 12

http://www.frontiersin.org/Biophysics
http://www.frontiersin.org/Biophysics
http://www.frontiersin.org/Biophysics/archive


Virk et al. MD and NMR studies of amino acids

with concentration indicating a stable force field. The fluctuating
behavior of diffusion coefficients in amino acid solutions calcu-
lated with the GROMOS 53A66 force field might be linked to
the water model used with the force field. Hence, it would be
very interesting to compare diffusion coefficients using different
water models with GROMOS 53A66. On the other hand, AMBER
ff99SB-ILDN overestimated the amino acid diffusion coefficients.
Hamad et al. [34] have also calculated diffusion coefficients of
glycine using the AMBER force field and our results for glycine
molecules were higher than theirs. Diffusion coefficients were
highly dependent on the fluctuations in MSD with time and diffu-
sion coefficients reported by Hamad et al. cannot be considered as
accurate as their MSD curves appear to fluctuate greatly [34, 82].

There was strong evidence in experimental data to suggest that
the diffusive path of amino acids changed with the formation
of higher oligomers. Similarly, simulations using the OPLS-AA/L
force field showed greater formation of higher oligomers as com-
pared to AMBER ff99SB-ILDN or GROMOS 53A6 (Figure 10).
Therefore, a change in diffusion coefficient with concentration in
OPLS-AA/L could be linked to the presence of higher oligomers in
amino acid solutions. In addition, the diffusion coefficient results
from OPLS-AA/L fit best to the experimental data. OPLS-AA/L
optimization simulations with different water models did not
result in change in the diffusion coefficient [102]. Hence, it seems
that OPLS-AA/L is the best current force field for predicting
changes in diffusive behavior in crowded solutions.

CONCLUSIONS
From the experimental and simulated results presented here of
amino acids in water, it can be concluded that diffusion studies
can be used to differentiate between the effects of aggregation and
obstruction. There was strong evidence to suggest that the dif-
fusive path of water molecules in these systems was obstructed
by the presence of amino acids. The experimental amino acid
diffusion coefficients showed the presence of aggregation and
obstruction at all amino acid concentrations. The analysis of
the NMR diffusion data was strongly dependent on the aggre-
gation and obstruction model used. The relative contribution of
obstruction and aggregation for different amino acids at different
concentrations can be seen by comparing Figures 6, 7. Figure 6
shows the change in diffusion coefficient due only to obstruction,
whereas Figure 7 shows the change in diffusion coefficient due to
aggregation and obstruction.

On the other hand, MD simulations showed a considerable
difference in salt bridge interactions with different concentrations
with all three force fields and indicated that the interactions are
dependent on the choice of water models used. The stability of
the MD simulations in various force fields was verified by com-
parison with previous experimental and simulation studies. The
diffusion coefficients of the amino acids calculated with differ-
ent force fields are not in agreement with each other but all force
fields have shown the presence of aggregation and obstruction.
The simulation results showed different polydispersity profiles for
all amino acid solutions but all force fields predicted a decrease in
the water diffusion coefficient with increasing amino acid con-
centration. The decrease in water diffusion coefficient was found
to be different for each amino acid and each force field. It is clear

that current force fields need to be balanced between the different
interaction sites present for different species in the solution. In
summary, the simulations and experimental diffusive studies of
the amino acids presented here provided a clearer understanding
of the changes in molecular dynamics due to crowding in amino
acid solutions.
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