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We detailedly describe a recently-developed semi-analytical method to quantitatively

calculate light transmission properties of hollow-core anti-resonant fibers (HC-ARFs).

Formation of equiphase interface at fiber’s outermost boundary and outward light

emission ruled by Helmholtz equation in fiber’s transverse plane constitute the basis

of this method. Our semi-analytical calculation results agree well with those of precise

simulations and clarify the light leakage dependences on azimuthal angle, geometrical

shape and polarization. Using this method, we show investigations on HC-ARFs

having various core shapes (e.g., polygon, hypocycloid) with single- and multi-layered

core-surrounds. The polarization properties of ARFs are also studied. Our semi-analytical

method provides clear physical insights into the light guidance in ARF and can play as a

fast and useful design aid for better ARFs.

Keywords: fiber design and fabrication, microstructured fibers, fiber properties

Introduction

Hollow-core optical fibers can be used as hosts for light [1], matter [2], and their interactions [3, 4].
In a piece of hollow-core fiber (HCF), the large overlap of laser light and studied matter leads to sig-
nificant advantages in applications known as lab-on-a-fiber. Such applications require a fiber with
merits of broadband light confinement, low transmission attenuation, high damage threshold, and
effective modal control. The first requirement enables light-matter interactions to occur at differ-
ent spectral lines, the second one guarantees the efficiency of such interactions, the third one allows
high power laser getting access to the fiber, and the fourth one allows atoms or molecules to act
with controlled light modes. All these requirements help to duplicate an environment similar to or
even better than optical bench inside a HCF.

Aiming at these attractive applications, several methods of guiding light in HCF have been
explored. By opening an out-of-plane photonic bandgap (PBG) below the air-line, all the
outwardly-propagating passageways are blocked in the periodical cladding region, which enables
light confinement in the air core defect. This mechanism has been explicitly demonstrated in the
density of optical states (DOS) plot [5, 6]. The PBG-induced light confinement becomes stronger
as the number of cladding layer increases and thus, in principle, the confinement loss of hollow-
core photonic bandgap fiber (HC-PBGF) can reach ultimate low value until the surface scattering
loss dominates [7]. To our understanding, this unambiguous and quantitative interpretation on the
guidancemechanism results in the fast development of HC-PBGF in the first decade of Twenty First
century. The optical attenuation has reached a record of 1.2 dB/km [7]; entire fabrication procedure
of a HC-PBGF can be completed within 1 day; the anti-crossing between the core mode and the sur-
face mode has been clearly identified [8, 9] and can be deliberately engineered for specific purposes,
e.g., polarization maintaining in HC-PBGF [10, 11]. However, the intrinsic ∼70 Thz transmission
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bandwidth originating from the PBG guidance mechanism and
the low damage threshold caused by large spatial overlap of the
core mode with the glass cladding [7, 12] limit the lab-on-a-fiber
applications in this kind of HCFs.

Another way to guide light in HCF is to utilize the anti-
resonant reflecting effect of the glass wall [13]. Actually, the
hollow-core anti-resonant fiber (HC-ARF) and its leaky core
mode have been investigated for decades [14–16]. However, only
in recent years, the introduction of hypocycloid [17] or nega-
tive curvature [18] core-surround structures revived the devel-
opment of HC-ARF since it enables coexistence of broadband
light confinement (200–800 THz) and low transmission atten-
uation (20–100 dB/km depending on the wavelength) [19, 20].
Furthermore, the spatial overlap of the core mode with the
glass material is universally one order of magnitude smaller in
HC-ARF than in HC-PBGF [21]. Having fulfilled the first three
requirements proposed above [22], HC-ARF looks very promis-
ing for the lab-on-a-fiber applications. Meanwhile, unlike HC-
PBGF, which has a typical honeycomb cladding structure [23],
the HC-ARF catalog contains a great number of structure selec-
tions including Kagome lattice [17], square lattice [24], multi-
fold circular arrangement of capillary tubes [18], nested capillary
tubes [25, 26], etc. . .With continuous appearance of new ARF
structures, more and more researchers realize that the degree of
freedom of the cladding arrangement possesses great engineering
potentials for attractive fiber properties, while, the basic anti-
resonant reflecting optical waveguide (ARROW) principle [13]
only cares about individual cladding elements and ignores their
arrangement.

To better understand HC-ARF, many theoretical efforts
have been implemented, such as low DOS interpretation [27],
inhibited coupling between the core mode and the circulating
resonances along the glass web [28], radial light confinement by
concentric glass rings [29], and overall spatial overlap between
the core mode and the glass [30]. However, only qualitative con-
clusions can be drawn from these models. Lack of an analytical or
semi-analytical but quantitative model for HC-ARF has resulted
in severe reliance on simulation and empirical guess in search-
ing better-performance fiber. Therefore, a method, which can
explicitly calculate the influences of different geometries on the
properties of HC-ARFs and can act as a design aid in the context
of comparative study, is highly demanded.

In this paper, we give a detailed description of our recently-
developed semi-analytical method [31]. Its capability of quan-
titatively calculating light transmission properties of HC-ARFs
is manifested in the search of better-performance ARF. Being
aware that the discrete translational symmetry of the periodic
cladding structures cannot be utilized here as in HC-PBGF, we
abandon the conventional method of calculating DOS. We start
from the simplest cladding structure, i.e., the single-wall ARF,
and focus on the light leakage process in fiber’s transverse plane.
Formation of equiphase interface at fiber’s outermost boundary
and outward light emission in fiber’s environment area ruled
by a Helmholtz equation constitute the basis of our method.
Many mathematical approximations are adopted to estimate the
quantities needed in our calculations. Utilizing this mothod, we
calculate the HC-ARFs having various shapes of single- and

multi-layered core-surrounds. Good agreements are obtained
between our model and numerical simulation. Our model is
also used to calculate the hypocycloid-shape ARF and the polar-
ization properties. As mentioned above, the hypocycloid-shape
ARF has excellent properties of low attenuation and the polar-
ization control in ARF, which is part of the modal control, is
an important requirement for lab-on-a-fiber applications. For
all these aspects, i.e., the geometry tunability (including hypocy-
cloidal ARF shape), the layered core-surround structure, and the
polarization properties, our semi-analytical model provides clear
physical insights and could play as a fast and useful design aid.

This paper is organized as follows. In Section Leaky Mode in
M-type Slab Waveguide, the leaky mode of a one-dimensional
(1D) slab waveguide is solved. The relationship between the
attenuation coefficient and the field amplitude at the outermost
boundary is derived. In Section Geometry Transformation from
Fiber to Slab, the mathematical problem of the 2D ARF is sim-
plified to a 1D problem by using a hypothetical geometry trans-
formation andmany approximate relationships. The quantitative
calculation capability of our model is demonstrated in varieties
of single-wall ARFs. In Section Geometry Dependence of ARF
Attenuation, our model is used to study the geometry tunabil-
ity of the transmission properties in single-wall ARFs, including
polygon and hypocycloid-shape ARFs. The multi-layered core-
surrounds and the polarization properties of ARFs are investi-
gated in Sections Multi-Layered Core-Surround and Polarization
Properties of ARF respectively. The last section summarizes the
fundamental principles and future developments of our model.

Leaky Mode in M-Type Slab Waveguide

To begin with, we consider the leaky mode in a 1D waveguide
[14]. The core (with the thickness of 2r’) and the environment of
this slab waveguide are filled with air (n1 = 1), while the cladding
consists of one layer of glass with the refractive index n2 = 1.45
and the thickness t = 0.67µm (Figure 1A). The electric field
distributions of the fundamental core mode, whose field profile is
peaked at the central axis, can be written as,

s/p-Pol. : Ey,x(z,x) = exp(iβz) ·




cos
(
kx1 |x|

)
, (Core)

A
(s,p)

cl
cos

(
kx2 |x| + ϕ(s,p)

)
, (Cladding)

A
(s,p)
env exp[ikx1(|x| − r′ − t)], (Environment)

(1)

where z (x) represents the direction along (transverse to)
the propagation, the s and p polarizations are denoted in
Figure 1A. The propagation constant β is equal to k0Re(neff )
with k0 the propagation constant in vacuum and neff the effec-
tive modal index. The transverse wave-vector kxj is defined as

k0

√
nj2 − Re(neff )

2. The field amplitudes, A’s, the phases, ϕ’s, and

the complex effective index, neff , can be derived from boundary
continuity conditions by using a simple root-finding algorithm
[32].

With respect to the leaky mode characteristics, Equation (1)
shows that the field in the environment only possesses the
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FIGURE 1 | (A) Schematic of an M-type slab waveguide.

(B) Distributions of the amplitudes (logarithmic scale) and the phases of

the major electric field components in the s and p polarizations (Ey and

Ex , respectively). r′ = 2µm, t = 0.67µm, n2 = 1.45, and λ0 = 0.938µm.

(C) Phase of electric field at the outermost boundary (the pink lines in

the insert) and attenuation of the fundamental core mode as a function

of the wavelength. The gray lines in (C) stand for the resonant

wavelengths.

outward-propagating wave, whereas the fields in the core and
in the cladding form standing waves. Moreover, the transverse
wave-vector, kx1, has a positive imaginary part, leading to an
exponential growth of field amplitude as x → ±∞ [14]. Strictly
speaking, for a waveguide made from lossless dielectric, a finite
number of guided modes and a continuum of radiation modes
constitute the complete set of orthogonal basis. Leaky modes,
which are mathematical solutions under the assumption that no
inward-propagating wave exists in the outermost layer, are not
members of this orthogonal basis. However, detailed analyses
have verified equivalence between this mathematical simplifica-
tion and realistic physical process of energy diffusion in a radia-
tion mode continuum [14]. Figure 1B plots the amplitudes and
the phases of the leaky modes of an M-type slab waveguide. The
field amplitude in the environment grows exponentially as indi-
cated by the blue dashed line. The attenuation coefficient of the

leaky mode can be derived from, α
[
dB
m

]
= 8.69k0Im(neff ).

Field distribution of leaky mode can also be understood in
the context of energy conservation [14]. The energy decrease
in the longitudinal direction, owing to attenuation, should be
equal to the energy leakage in the transverse directions. As illus-
trated in the insert of Figure 1C, many outward-inclined plane
waves propagate in the environment region of the waveguide, and
their oblique angles can be estimated from longitudinal phase-
matching conditions. Actually, from Equation (1), we can derive
an approximate relationship between the complex effective index
and the field amplitude at the outermost boundary of the slab
waveguide,

Im
(
neff

)
=

n1
∣∣E(x = r′ + t+)

∣∣2
√
n12 − [Re(neff)]

2

2k0 · Re(neff) ·
∫ r′+t
0

∣∣E(x)
∣∣2dx

≈
n1

∣∣E(x = r′ + t+)
∣∣2

√
n12 − [Re(neff)]

2

∣∣E(x = 0)
∣∣2 · k0r′ · Re(neff)

(2)

Here, only the transverse field components, i.e., the major

field components, are employed, E(x+) is defined as

lim△x→0+ E(x+△x), and the fundamental core mode requires

Re(kx1) ≈ π/2r′. To check the accuracy of Equation (2),

we read out the field amplitudes at the outermost bound-

ary from Figure 1B (marked by the blue circles), estimate

Re
(
neff

)
≈

√
1− (λ0/4r′)

2 = 0.9931, and deduce the imaginary

parts of the effective indices for the s and p polarizations to

be 1.08 × 10−4 and 4.77 × 10−4, respectively. These two

numbers match well with the precisely calculated results based

on standard root-finding algorithm [Im
(
neff

)
= 1.08 × 10−4

and 4.73 × 10−4, respectively]. Moreover, Equation (2) hints

that the complex effective index of the leaky mode can help us

to estimate electric field amplitude at the outermost boundary

in the circumstance of slab waveguide. Equation (2) bypasses

the profile of the field distribution and straightly relates the

field amplitude at one specific position with the effective modal

index.

Figure 1B also plots the phase profile of the leaky modes.

Reading out the phase values at the outermost boundary (marked

by the blue circles), Figure 1C plots their variations with the

wavelength. Surprisingly, these phases seem to be locked to some

certain numbers determined by the anti-resonant order of the

transmission band. Indeed, this phase-locking effect is irrelevant

to the polarization and the geometrical dimension, and can be

derived from the continuity conditions of the tangential field

components at the outermost boundary under the condition of∣∣kx2
∣∣ ≫

∣∣kx1
∣∣.

Figure 1C also plots the attenuation spectra. Apart from a
set of identical resonant wavelengths λ0 ∼ 0.7 and 1.4µm,
which are approximately determined by the ARROW formula of

2t
√
n22 − n12/m with m being an integral [13], different polar-

izations exhibit different attenuations. Inside every transmission
band, the p polarization shows much worse light confinement
than the s polarization, implying that, in the case of a hybrid
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polarization, the p-polarization component perhaps plays the
primary role in light leakage.

Altogether, in 1D, the leaky mode of a hollow-core waveg-
uide can be easily solved. All the information about the electric
field, i.e., amplitude, phase, and polarization, at the outermost
boundary can be approximately derived from either the com-
plex effective index (Equation 2) or some basic properties, like the
phase-locking effect exhibited in Figure 1C. To solve the effective
index of the leaky mode, we need to use numerical approach, but
only to the extent of finding roots of a differential equation with
one variable.

Geometry Transformation from Fiber to
Slab

Transverse cross section of generic HC-ARF is a 2D geometry.
Increase of dimensionality causes decrease of geometrical sym-
metry, making analytical modeling more difficult. In order to
simplify this problem, a proper geometry transformation from
fiber to slab waveguide may be helpful. We start this attempt in
the most symmetric 2D structure, i.e., single-wall circular ring
fiber.

Figure 2A depicts a circular ring ARF with the inner radius
r = a and the glass thickness t. We argue that the radial light
leakage at one azimuthal angle φ (defined by the green arrow)
is equivalent to that in a slab waveguide having the inner radius
r′ and the same glass thickness t. Since the transverse light con-
finement is now relaxed from 2D (the x-y plane) to 1D (the x
direction), we hypothesize r′ = r (φ)/

√
2. Meanwhile, the cor-

responding segment of the fiber needs to be rotated till it is par-
allel with the y axis. The electric field vector of the fiber mode
also needs to be rotated by the same degree. After the geome-
try transformation, the electric field amplitude at the outermost
boundary of the fiber can be approximately obtained from the

complex effective indices neff (s,p)(φ) of the leaky modes in the
corresponding slab waveguide,

∣∣∣E(s, p)(at fiber’s outer boundary )
∣∣∣

=




|E0|2k0a

2
·
Im

[
neff(

s, p) (φ)

]
· Re

[
neff(

s, p) (φ)

]

√
1− Re[neff(

s, p)(φ)]2





1/2

(3)

Here, the superscripts represent the s and p polarizations. Equa-
tion (3) is the same as Equation (2) except the empirical adjust-
ment from r′ to a/2. Meantime, the proportions of the s and p
polarization components in each angular segment (cos2φ and
sin2φ, respectively) can be directly obtained from the geometry
transformation (Figure 2A). The phases of the electric fields at
the outermost boundary are set to be a fixed number like what
does in the slab waveguide.

Now, the overall modal index of the fiber, which is com-
posed of different angular segments, is approximately calculated
by arithmetically averaging the real parts of the effective indices
of the leaky modes in all the generated slab waveguides over both
polarizations,

Re
(
neff

)
=

1

2π

∫ 2π

0

{
Re

[
neff

(s) (φ)

]
· cos2φ

+Re
[
neff

(p) (φ)

]
· sin2φ

}
· dφ (4)

This overall modal index leads to an estimate of the transverse k-

vector, kT = k0

√
1− Re

(
neff

)2
. The electric field in the environ-

ment of the fiber should obey a 2D scale Helmholtz equation in
the x-y plane defined as∇T

2Ex,y
(
x, y

)
+ kT

2Ex,y
(
x, y

)
= 0. Note

that both the x and y electric field components are the scale solu-
tions of this Helmholtz equation. The transverse-wave nature of a
propagating electromagnetic wave is maintained in three dimen-
sions. However, in the case of glancing incidence, the transverse
k-vector and the transverse electric field vector can be in the same
direction. Now, we introduce a 2D Green’s function, G(x, y) =
i
4 ·H

(1)
0 (kT

∣∣r− r
′∣∣), which satisfies∇T

2G+kT
2G = δ(r−r

′) with
δ(·) being the Dirac delta function. Here, the Hankel function of

FIGURE 2 | (A) Geometry transformation from a circular ring ARF to a series of slab waveguides. r and r′ represent the inner radii’s of the fiber and the slab

respectively. (B) Evaluating and integrating the outward-propagating electromagnetic waves in the transverse plane by using Green’s theorem.
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the first kind of order zero,H
(1)
0 (kTs), has the asymptotic formula

of
√

2
πkT s

exp[i(kTs − π
4 )] as s goes to infinity. Utilizing Green’s

theorem, the electric field components in the environment area
of the fiber can be expressed as an integral [33],

Ex,y (r) =
∮

[G(∂Ex,y/∂n)− Ex,y (∂G/∂n)]dl (5)

Here, the outermost boundary of the fiber forms a closed inte-
gral path, whose normal direction is defined by n. All the symbols
used here are denoted in Figure 2B.

If we assume fiber’s outermost boundary forms an equiphase
interface for both s and p polarizations, this boundary also consti-
tutes an equiphase interface for the x/y-components of the elec-
tric field, the normal derivatives of Ex,y can be approximated to

be
∂Ex,y
∂n ≈ ikTEx,y. Using the asymptotic expression of the Han-

kel function,−∂G
∂n ≈ cos(̂n, ŝ) · (ikT − 1

2s )G ≈ cos(̂n, ŝ) · ikTG as s
goes to infinity. Substituting all these formulae into Equation (5)
yields the electric field in the far-field region,

Ex,y(r) ≈ e3π i/4

√
kT

2πR

∮
Ex,y(r

′) ·

1+ cos (̂n, ŝ)

2
· exp(ikTs)dl (6)

where [1+ cos(̂n, ŝ)]/2 is the Kirchhoff’s inclination factor in the
Huygens-Fresnel principle, and Ex,y at fiber’s outermost bound-
ary can be simply derived from the s/p-components,





Ex
(
r′
)
=

∣∣∣E(p)
∣∣∣ sinφcosφ −

∣∣∣E(s)
∣∣∣ cosφsinφ

Ey
(
r′
)
=

∣∣∣E(s)
∣∣∣ cos2φ +

∣∣∣E(p)
∣∣∣ sin2φ

(7)

Based on Equation (6), we further integrate all the outward-
propagating energy flows in the transverse plane, which should
be equal to the energy attenuation in the longitudinal direction.

F = [2k0Im(neff)1z] · k0Re(neff)|E0|2πA2

= kT1z ·
kT

2π

∫ 2π

0
[|Ex (ξ)|2 +

∣∣Ey(ξ )
∣∣2]dξ





Ex (ξ) ≡
∮ [∣∣∣E(p)

∣∣∣
−

∣∣E(s)
∣∣]sinφcosφ · 1+cos(̂n,̂s)

2 · exp(ikTs)dl
Ey (ξ) ≡

∮ [∣∣E(s)
∣∣ cos2φ

+
∣∣∣E(p)

∣∣∣ sin2φ
]
· 1+cos(̂n,̂s)

2 · exp(ikTs)dl

(8)

Here, 1z is the differential distance in the propagation direction,
the radiation angle in the transverse plane is represented by ξ,
the integration is implemented in the far-field region (s→ +∞),
and the field distribution inside fiber’s core is approximated to
be a Gaussian function of

∣∣E(x, y)
∣∣ = |E0| · exp(−r2/2A2) with

A ≈ a/
√
2.

Finally, the fundamental core mode requirement of kT · a ≈
π/2 and the Equation (3) yield,

Im(neff) ≈

√
1− Re(neff)

2

8πa2 · Re(neff)

∫ 2π

0
[|ex (ξ)|2 +

∣∣ey (ξ)
∣∣2]dξ





ex (ξ) ≡
∮
(e(p) − e(s))sinφcosφ·
1+cos(̂n,̂s)

2 · exp(ikTs)dl
ey (ξ) ≡

∮
(e(s)cos2φ

+ e(p)sin2φ) · 1+cos(̂n,̂s)
2 · exp(ikTs)dl

(9)

e(s,p) ≡





Im
[
n
(s,p)
eff (φ)

]
· Re

[
n
(s,p)
eff (φ)

]

√
1− Re

[
n
(s,p)
eff (φ)

]2





1/2

It is noteworthy, in deriving Equation (9), we use many approx-
imate relationships. The purpose is to simplify mathematical
treatments and to highlight physics underneath the light leak-
age process. Detailed derivation can be found in our recent paper
[31]. Below, this approximate method will be compared with
precise calculation and simulation in several ARF structures.

The first example is the single-wall circular ring fiber, which
can be precisely calculated by using transfer matrix technique
and Bessel functions in cylindrical coordinates [34]. For the leaky
core mode, the environment of the fiber only contains outward-
propagating Hankel functions. Figure 3 shows the modeled and
the precisely calculated propagation constants and attenuations
for three fiber core sizes. A good agreement between two cal-
culations is found in a broad wavelength range and implies that

FIGURE 3 | (A) Propagation constants (the real parts of the effective indices)

and (B) attenuations of three circular ring ARFs as a function of the

wavelength. The precisely calculated results (the hollow squares) are from a

transfer matrix approach [34], and the modeled results (the solid lines) are from

Equation (9). t = 0.67µm.
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our semi-analytic method grasps the physical essence and may be
useful in treating more complicated ARF structures.

The fact that our semi-analytical method can deal with more
complicated structures promptly is demonstrated in the sec-
ond example. In Figure 4A, a single-wall square ARF having
4 rounded corners is calculated by both the numerical simula-
tion and semi-analytical modeling. Note that the latter is much
faster than the former. For the numerical simulation, a full-vector
finite-element method (FEM) solver (Comsol Multiphysics) and
a proper mesh size and perfectly matched layer (PML) configu-
ration [35] guarantee a less than 0.5% uncertainty. The rounded
corners ensure the smoothness of the simulated spectra, because
any knot structure on glass web, like corner apex or touching
point, will deteriorate the transmission property [36]. On the
other hand, in semi-analytical modeling, the fiber-to-slab geome-
try transformation is used and decreases the complexity of treat-
ment by converting the mathematical problem from 2D to 1D
(Figure 4A). Taking into account the varied inner radius with the
azimuthal angle, r(φ), Equation (3) needs to be multiplied by an
additional factor κ (φ) =

√
sin(θ − φ) · a/r(φ), and the differen-

tial length along the outermost boundary needs to be modified to
dL = dl′ = dl/sin(θ − φ). All these symbols have been defined
in Figure 4A. Figure 4B shows that our semi-analytical modeling
agrees well with the numerical simulation in a broad wavelength
range.

FIGURE 4 | (A) Geometry transformation from a square ARF to a series of

slab waveguides. (B) Semi-analytically modeled (the solid lines) and

numerically simulated (the hollow squares) attenuations and propagation

constants of the fundamental core mode as a function of the wavelength

(logarithmic scale). a = 9.76µm, t = 0.67µm, and rc = 2.5µm.

Our next example is a single-wall triangle ARF. In this struc-
ture (Figure 5A), we examine the distribution of the electric field
amplitude and the phase at the outermost boundary (0.5µm
offset outwards). At the anti-resonant wavelength of 910 nm,
Figure 5B compares the results of our semi-analytical model and
numerical simulation. Two orthogonal polarizations are consid-
ered, and only the major electric field components are plotted.
In Figure 5C, the intensities of the major electric field com-
ponents are also plotted at a far-distance circle R. Both semi-
analytical modeling and numerical simulation are employed,
and Fraunhofer far-field criterion (R= 90µm ≈ 2D2/λT [37],
where D is the largest transverse dimension and λT is equal to

λ0/

√
1− Re(neff )

2 with neff the effective index) is used to guar-

antee the validity of our model (i.e., the far-field requirement
of Equation 6). Note that, in calculating Figure 5C, our semi-
analytical model uses the accurate neff obtained from the sim-
ulation (rather than the estimated one from Equation 4). Other
parameters in Equation (6) are obtained from our approximate
approach.

It is seen that, with regard to both near field and far field,
our semi-analytical model agrees well with the simulation. The
azimuthal angle dependence of the light leakage is strongly influ-
enced by the shape of the ARF. The phase-locking effect and the
2D Helmholtz equation play the primary roles in the light leak-
age process. In specific, the light radiations pointing at the corner
apexes are suppressed, whereas those in the directions normal to

FIGURE 5 | (A) Schematics of a single-wall triangle ARF and two orthogonal

polarizations. (B) Semi-analytically modeled (the red lines) and numerically

simulated (the black lines) electric field amplitudes and phases at the

outermost boundary (0.5µm offset outwards). (C) Modeled (the red lines) and

simulated (the black lines) electric field intensities at a far-distance circle R. a =
9.76µm, t = 0.67µm, R = 90 µm, and λ0 = 0.91µm.
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the triangle sides are enhanced. Most energy is escaped from the
sides nearly vertical to the polarization direction, where more p
polarization components interact with the glass wall. With this
understanding, in order to decrease attenuation, more light con-
finement structures should be deployed in these heavily leaking
directions. With regard to the near field amplitude distributions,
our modeling explicitly interprets the polarization dependence,
like what exhibits in slab waveguide (Figure 1C), however, over-
estimates the field amplitude around the corner apexes. This may
be attributed to the fact that our model ignores the influences
from adjacent angular segments.

Shortly speaking, in this section, we describe an approxi-
mate but semi-analytical model for solving the complex effective
index of the leaky mode in a 2D single-wall ARF. Our method
exhibits very good quantitative calculation characteristic, which
may provide us a powerful tool to unveil the light confinement
mechanism of ARF.

Geometry Dependence of ARF Attenuation

Transmission properties of ARF are very sensitive to its geom-
etry. Indeed, recent intense study of this type of HCF should
be partly attributed to the recognition that some geometries
can effectively ameliorate transmission properties [17, 18]. To
elucidate this geometry dependence, below, we will apply our
semi-analytic method to more interesting single-wall ARF struc-
tures, i.e., regular polygon and hypocycloid shape. Numerical
simulations will be accompanied with.

Figure 6 plots the attenuation spectra of several single-wall
polygon ARFs. Square, hexagon, octagon, dodecagon, and cir-
cle stand for the typical core shapes that have been realized at
present [17, 24, 28]. For all these fibers, the inscribed radius is
fixed to be a = 9.67µm. From Figure 6, it is seen that, apart from

FIGURE 6 | Simulated and modeled attenuations of single-wall square

(black), hexagon (red), octagon (green), dodecagon (blue), and circular

(gray) fiber. a = 9.76µm, t = 0.67µm.

some spiky features, our semi-analytical model agrees well with
the simulation, especially with regard to the variation tendency
of different fiber shapes. As the number of the polygon edges
increases, the ARF shape becomes more and more alike a circle
and the light confinement becomes worse and worse. From the
viewpoint of equiphase interface, a convex outer-most boundary
is inclined to leak more light into the environment.

We therefore study a concave ARF shape, i.e., the hypocy-
cloid shape [17]. In Figure 7A, our semi-analytical model and
numerical simulation both give evidences that a hypocycloid-
shape square ARF has better light confinement than a square ARF
if their inscribed radii’s are the same. As discussed above, the
phase-locking effect of fiber’s outermost boundary should play
some roles. Figures 7B,C plot the simulated phase distributions
of these two fibers at the working wavelength of 0.91µm. The
phases at fiber’s central axes (0, 0) are set to be zero, and the
dark red lines in two plots represent the contours of 20◦. It is
clearly seen that the 20◦ equiphase interface of the square fiber
has been converted to a circular one because of light diffraction.
While the phase-locking effect causes the 20◦ equiphase interface
of the hypocycloidal fiber to move toward the direction pointing
at the corner (Note that the dashed dark red line in Figure 7C is
a copy of the dark red line in Figure 7B). Additionally, the phase

FIGURE 7 | (A) Simulated and modeled attenuations of a single-wall square

ARF (the black lines) and its hypocycloidal variant (the red lines). (B,C) Phase

distributions of these two fibers. The phases at fiber’s central axes (0, 0) are

set to 0◦, and the dark red lines represent the contours of 20◦. The dashed

dark red line in (C) is a copy of the dark red line in (B). a = 9.76µm, t =
0.67µm, and λ0 = 0.91µm.
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increase in the radial direction (Figures 7B,C) is a typical feature
of leaky mode (see Figure 1B for the 1D slab case).

We notice that there exist fast phase oscillations along
glass webs in Figures 7B,C. These represent some evanescent
field components, which do not contribute to far-field light
emissions. For an effective transverse wavelength of λT =
λ0/

√
1− Re(neff )

2 ≈ 30µm, these fast oscillatory field com-

ponents cannot satisfy phase-matching condition with outward-
propagating waves. A short offset in the outward direction, e.g.,
0.5µm, is sufficient to get rid of these oscillation components.

Multi-Layered Core-Surround

A realistic ARF possesses more complicated core-surround.
Extending our semi-analytical model to multi-layered struc-
tures is therefore important. Here we consider an ARF having
a high/low/high-index trilayer (H/L/H) outside its air core. For
the structure shown in Figure 8A (also known as Bragg fiber
[34]), our semi-analytical method regards the H/L/H trilayer as
a whole core-surround. When implementing the fiber-to-slab
geometry transformation, the core radius is converted to a/

√
2,

while other geometrical parameters are preserved. The electric
field distributions in the resulted slab waveguide can be written
as [14, 16],

s/p− Pol. : Ey,x (z,x) =

exp(iβz) ·





cos
(
kx1 |x|

)
(Core)

A
(s,p)

cl1
cos

(
kx2 |x| + ϕ1(s,p)

)
(Cl.1)

A
(s,p)

cl2
cos

(
kx1 |x| + ϕ2(s,p)

)
(Cl.2)

A
(s,p)

cl3
cos

(
kx2 |x| + ϕ3(s,p)

)
(Cl.3)

A
(s,p)
env exp

[
ikx1

(
|x| − r′ − 2th − tl

)]
(Env)

(10)

Here, th (tl) represents the thickness of the high (low) index

layer, and the transverse wave-vectors are kxj = k0

√
nj2 − neff 2.

Searching complex effective index and approximately estimating
electric field amplitude at the outermost boundary can be done by
using the standard eigenvalue-finding algorithm in this new slab
structure [31, 32]. Section LeakyMode inM-type SlabWaveguide
has described this method.

For a circular ARF shown in Figures 8A,B compares our
semi-analytically modeled results with the precisely calculated
ones [34]. Very good agreement is obtained, albeit the thickness
of the low-index layer varies largely. Figure 8B also shows the
necessity of a more accurate prediction to the resonant wave-
lengths (marked by the vertical lines). The approximate formula

of the resonant wavelength, λm ≈ 2t
√
n22 − 1/m, obviously can-

not distinguish the discrepancy between tl = 2µm and tl =
10µm.

Complying with the ARROW picture, the whole H/L/H core-
surround plays the role of a medium, which transfers light energy
from inside to outside of the air core. We argue that this energy
transfer effect is maximized when the field distribution inside the
core-surround forms a standing wave with the antinodes appear-
ing at both ends. Firstly, the field distributions inside the H/L/H

FIGURE 8 | (A) Geometry transformations from a circular ARF having an

H/L/H core-surround to a series of slab waveguides. The core-surround

structures in the fiber and in the slab are identical. (B) Precisely calculated (the

hollow squares) and semi-analytically modeled (the solid lines) attenuations of

the fiber for the thickness of the low-index layer, tl , to be 2µm or 10µm. a =
15µm, and th = 0.67µm.

trilayer should be written as,

s/p− Pol. : Ey/Hy

(
x′

)
=





cos
(
kx2x

′) 0 < x′ < th1
cos(kx2th1)·cos(kx1x′+81)

cos(kx1th1+81)
x′ < th1 + tl

cos(kx2th1)·cos[kx1(th1+tl)+81]·cos(kx2x′+82)
cos(kx1th1+81)·cos[kx2(th1+tl)+82]

x′ < th1 + tl + th2

(11)

where a H/L/H slab structure is considered, and the origin of the
coordinate x′ is defined at one end of this trilayer. Secondly, in
order to determine the phases 81,2, the continuity conditions of
the tangential field components and the antinode requirements
of the standing wave at both ends are used,

s− Pol.:





kx2tan
(
kx2th1

)
= kx1tan

(
kx1th1 + 81

)

kx1tan[kx1 (th1 + tl) + 81] =
kx2tan[kx2 (th1 + tl) + 82]

kx2 (th1 + tl + th2) + 82 = mπ

(12a)
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p− Pol.:





kx2
n22

· tan
(
kx2th1

)
= kx1

n12
· tan

(
kx1th1 + 81

)
kx1
n12

· tan[kx1 (th1+tl) + 81] =
kx2
n22

· tan[kx2 (th1 + tl) + 82] (12b)

kx2 (th1 + tl + th2) + 82 = mπ

and yield,

s− Pol.:
kx2tan

(
kx2th1

)
+ kx1tan

(
kx1tl

)

kx1 − kx2tan
(
kx2th1

)
tan

(
kx1tl

)

=
−kx2

kx1
tan

(
kx2th2

)
(13a)

p− Pol.:
kx2n2

−2tan
(
kx2th1

)
+ kx1n1

−2tan
(
kx1tl

)

kx1n1−2 − kx2n2−2tan
(
kx2th1

)
tan

(
kx1tl

)

=
−kx2n2

−2kx1n1
−2

tan

(
kx2th2

)
(13b)

Finally, using the approximate relationship of kz =√
(2n1π/λ0)

2 − (π/2r′)2 and the definitions of kx1,2 (see

the text below Equation 1), the new resonant wavelength formula
can be expressed as,





tan
(
tlπ

2r
′

)
+ Y1 + Y2 = tan

(
tlπ
2r′

)
· Y1 · Y2

(
s− Pol.

)

n2
2

n12
· tan

(
tlπ

2r
′

)
+Y1+Y2 = n2

2

n12
· tan

(
tlπ

2r
′

)
· Y1 · Y2

(
p−Pol.

)

Y1,2(λm) ≡ X(λm) · tan[X(λm) · th1,2π/(2r′)] (14)

X(λm) ≡
√(

n22−n12
) (
4r

′
/λm

)2+1

This new formula has been used across this paper and exhibits
good accuracy in determining the transmission bands. For a
single-wall ARF (tl = 0, th2 = 0, th1 = t), the resonant wave-
lengths of the s and p polarizations are identical and converted
to the expression in Ref. [15]. For H/L/H-layered ARF, differ-
ent polarizations and parities give rise to four sets of resonant
wavelengths as exhibited in Figure 8B.

Incorporating the H/L/H core-surround into the hypocycloid-
shape ARF, we model and simulate the square ARF again
(Figure 9B). The results in Figure 7A are re-plotted for compari-
son (Figure 9A). Many discrepancies in terms of shape and mag-
nitude of the attenuation spectra emerge between the single-wall
and multi-layered ARFs. Hypocycloidal core-surround seems
helpful to lower attenuation. Our semi-analytical model cor-
rectly predicts the variation tendencies from the single-wall to
the H/L/H-trilayer and from the square shape to the hypocycloid
shape. It is noteworthy the H/L/H hypocycloid geometry is sim-
ilar with a recently proposed nested ARF structure [25, 26] (see
Figure 9C).

Polarization Properties of ARF

Next, we discuss another important issue about ARF, i.e., the
polarization properties. It is recently aware that polarization con-
trol in ARF is different from that in PBGF, where the anti-crossing
between the core mode and the surface mode can be purposely
utilized in a narrow wavelength range at the expense of fiber’s

FIGURE 9 | Semi-analytically modeled attenuations of (A) a single-wall

square ARF (the black lines) against its hypocycloidal variant (the red

lines) and (B) a H/L/H square fiber (the blue lines) against its

hypocycloidal counterpart (the magenta lines). a = 9.76µm, th =
0.67µm, and tl = 1.5µm. The agreement of modeling and simulation is

manifested in the two zoom in plots. (C) Structural comparison between the

ARF in (B) and the nested ARF in [25, 26].

transmission properties, e.g., attenuation and transmission band-
width [11]. In ARF, the broadband transmission requirement
restrains the utilization of the anti-crossing effect. Below, we
present a study of the polarization properties of ARFs.

Two types of geometric asymmetries [38] are incorporated
into an H/L/H-layered ARF. In Figure 10A, the air core radius
(inner radius) is set to be r(φ) = a = 15 µm, the glass
thicknesses vary from the vertical direction (tV = 0.67µm)
to the horizontal direction (tH = 0.6µm), and φ stands for
the azimuthal angle. On the other hand, in Figure 10B, an
elliptical air core (aV = 15µm, aH = 17µm) is surrounded
by a uniform H/L/H-trilayer. Figure 10 compares the modeled
and simulated polarization properties, i.e., birefringence and
polarization dependent loss (PDL). Both modeling and sim-
ulation reveal that different geometric asymmetries give rise
to different polarization properties. Note that the formula of
the resonant wavelengths (Equation 14) precisely determines
the transmission bands. Varying glass thickness, t, results in
remarkable shift of the resonant wavelengths, whereas varying
air core radius, r, results in very few change of the resonant
wavelengths.

Replacing H/L/H-trilayer with twelve capillary tubes, we
design two realistic ARFs (Figure 11). The similarity between
Figures 10, 11 is manifest. Interestingly, in Figure 11, the
numerical simulations also exhibit two kinds of polarization
properties, just like what happens in Figure 10. Inside each trans-
mission band, Figure 11A shows a larger propagation constant
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FIGURE 10 | Modeled and simulated birefringence and PDL of ARFs

having H/L/H core-surrounds. In (A), the glass thicknesses vary from

0.67µm (in the vertical direction) to 0.6µm (in the horizontal direction),

whereas the inner radius (15µm) and the outer radius (26.34µm) keep

unchanged. The modeled and simulated zero-PDL wavelengths both appear

at 885 nm. In (B), an elliptical air core (15µm × 17µm) is surrounded by an

H/L/H trilayer with th = 0.67µm and tl = 10µm. The black lines in schematic

define the angular segment employed in the fiber-to-slab geometry

transformation, i.e., the green arrow in Figure 8.

for the vertical polarization, whereas, only in the shorter wave-
length half of the transmission band, the loss of the vertical
polarization is higher than the horizontal polarization. On the
other hand, in Figure 11B, the propagation constant of the
vertical polarization is larger than the horizontal one in the
shorter wavelength half of the transmission band, whereas the
loss of the vertical polarization is always higher than the hor-
izontal polarization. Additionally, the transmission bands in
Figure 11A are narrower than those in Figure 11B because of
the non-uniformity of glass thickness. In calculating these res-
onant wavelengths (the gray lines), we use Equation (14) and
an equivalent H/L/H trilayer with the tl being either the inner
diameter of the capillary or 2µm (a typical chord length of the
capillary).

Slightly modifying the geometries in Figure 11, we design
another HC-ARF having a jacket tube and a more elliptical air
core (Figure 12). Simulation reveals that most features about
birefringence and PDL are retained. The attenuation of the verti-
cal polarization is higher than that of the horizontal polarization
by 2–3 times within a transmission band wider than 100 nm. In
the same wavelength range, the sign of the birefringence keeps
unchanged. The relatively lower birefringence comparing with
a recently reported HC-PBGF (1n ∼ 2 × 10−4) [11] should be
attributed to the fact that the transmission bands of our ARF stay

FIGURE 11 | Simulated birefringence and PDL of ARFs composed of 12

capillary tubes. In (A), an air core with the radius of 15µm is surrounded by

two types of capillaries. The six yellow ones have an outer diameter of 10.2µm

and a glass thickness of 0.67µm. The other six pink capillaries have the same

outer diameter but a thinner glass thickness (0.6µm). In (B), an elliptical air

core (15µm × 17µm) is surrounded by identical capillaries (dout = 10.2µm,

t = 0.67µm). All the capillaries are untouched with each other, and the

distances between adjacent capillaries are the same. Note that the gray vertical

lines obtained from Equation (14) define the transmission bands accurately.

far away from any mode anti-crossing. Larger birefringence in
ARF may be possible, if mode anti-crossing is carefully intro-
duced. However, the narrow bandwidth attribute of the anti-
crossing effect perhaps deteriorate the property of broadband
guidance of ARF.

Discussions and Conclusions

In summary, a recently-developed approximate but semi-analytic
method has exhibited quantitative calculation capability for a
variety of HC-ARFs. Our calculation reproduces the attenuation
and the polarization properties of ARF over broad wavelength
range. Thanks to the following three newly-identified character-
istics, our method points out some important effects occurring
in the light leakage process of ARF, which provides deep physical
insights and may play as an aid to both intuition and design.

• For single-wall or multi-layered ARFs, the phase of the elec-
tric field at the outermost boundary is determined by the order
of the anti-resonant transmission band, irrespective of polar-
ization, geometrical dimension and working wavelength. We
tentatively introduce this attribute, derived in a slab waveg-
uide, into 2D ARF structures. Fortunately, our conjecture is
verified by the simulation results (Figure 5B) and leads to a
very simple picture of equiphase interface. Using this a pri-
ori hypothesis, the evaluation of the complex electric field at
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FIGURE 12 | Simulated birefringence and PDL of a realistic HC-ARF.

aV = 13µm, aH = 19µm, dout = 10.2µm, tV = 0.67µm (for the yellow

capillaries), and tH = 0.6µm (for the pink capillaries). All the center-to-center

distances between adjacent capillaries are 3 = 10.96µm > dout.

fiber’s outermost boundary is simplified to the estimation of
its amplitude.

• The relationship between the longitudinal and the transverse
k-vectors, k0

2neff
2 + kT

2 = k0
2n2, together with the leaky

mode characteristics provide us additional means to deal with
the light leakage problem. First, the real part of the longitudi-
nal k-vector, k0Re(neff ), stands for the propagation constant;
and the real part of the transverse k-vector, Re(kT), defines
a 2D Helmholtz wave equation in the cross section plane,
∇T

2E+Re(kT)
2E = 0. Second, the imaginary part of the longi-

tudinal k-vector, k0Im(neff ), is relevant to the attenuation, α, in
the fiber waveguide and has relationship with the field ampli-
tude at the outermost boundary in the slab waveguide. Third,
once the electric fields at fiber’s outermost boundary, rather
than the entire field distribution in the whole cross section, is
obtained, the light leakage energies in all the transverse direc-
tions can be integrated fromGreen’s theorem. The shape of the
fiber’s outermost boundary influences the light leakage process
via diffraction and will determine the overall attenuation.

• In order to simplify treatments, we proposed a fiber-to-slab
geometry transformation, which converts the mathematical
problem from 2D to 1D. By splitting fiber’s cross section to
different angular segments and converting them to a series of
slab waveguides, the effective indices and the fields at slab’s
outermost boundary can be promptly and semi-analytically
quantified. In this process, different polarization components

should be separately dealt with. Additionally, based on the fun-
damental core mode property, the transverse field distribution
inside fiber’s air core is approximated to be a linearly polar-
ized Gaussian beam. Every fiber’s angular segment and the
corresponding slab waveguide should contribute to the overall
propagation constant and the light leakage equally.

However, we have to admit our model still contains some draw-
backs. The first one is about the geometry transformation. As

shown in Figure 4A, every fiber’s angular segment is treated inde-
pendently. The influences from adjacent segments are not taken
into account, which may explain why the field amplitude in
Figure 5B is over-estimated as the observation point approaches
the corner apexes. The second drawback is that, at current stage,
our model is only suitable for single- and multi-layered core-
surrounds. Incorporating more complicated cladding structures
into our model is demanded from the application viewpoint. We
hope our current model can play as a platform for more pow-
erful functionality in the future. The third drawback is that our
method ignores the influences from corner apexes. Although the
field amplitudes in these apexes are relatively weak according to
simulation (Figure 5B), many spiky features in the attenuation
spectramay be relevant to these components. The fourth problem
of current model is the inaccuracy of the estimation to the over-
all propagation constant (Figures 3A, 4B). Altogether, if we can
improve the evaluation accuracy of the electric field amplitude
at the outermost boundary and the overall propagation constant,
our model can be applied to more complicated and more realistic
structures.

In principle, our method can be regarded as numerical,
but only to the extent of root-finding of the differential equa-
tion with one variable. Utilizing a simple and clear picture of
equiphase interface and outward light emission governed by a
2D Helmholtz wave equation, our model grasps the physical
essences of the light leakage process in HC-ARF. Additionally, we
simplify the mathematical treatments by having adopted many
approximate relationships. Such a model has exhibited the capa-
bility of quantitatively calculating attenuation and polarization
properties. More interesting applications are in prospect.
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