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The topology of two discrete fracture network models is compared to investigate the

impact of constrained fracture growth. In the Poissonian discrete fracture network model

the fractures are assigned length, position and orientation independent of all other

fractures, while in the mechanical discrete fracture network model the fractures grow

and the growth can be limited by the presence of other fractures. The topology is found

to be impacted by both the choice of model, as well as the choice of rules for the

mechanical model. A significant difference is the degree mixing. In two dimensions the

Poissonian model results in assortative networks, while the mechanical model results

in disassortative networks. In three dimensions both models produce disassortative

networks, but the disassortative mixing is strongest for the mechanical model.
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1. Introduction

Fluid transport in bedrock is of interest for a wide range of studies, from subsurface water reservoirs
to exploitation of petroleum resources. Whether one aims at optimizing hydraulic fracturing, or
to estimate flow in the bedrock, one wants a description of the bedrock which is as accurate as
possible. An important part is the description of the fracture network, which plays an important
part in fluid transport in geological media [1]. It is however impossible to detect the full fracture
network. Information can be obtained through seismic or well logging, but this information has to
be expanded with the use of a model to fully describe the network [2–4].

Since the transport properties of fracture networks are closely related to their topology, it is of
great importance to be able to describe it quantitatively. Describing the topology of networks, or
graphs, consisting of nodes and links, has been at the focal point of a huge research effort over the
last 20 years [5, 6].

Fracture networks consist of intersecting sheetlike fractures — sheetlike since the fractures
typically are very extended in two directions compared to the third. The ensuing networks have
per se little to do with the graphs. Andresen et al. [7] proposed a transformation where the
fracture sheets were represented by nodes and their intersections as links between them. This
transformation is one-to-one and the resulting equivalent graphs give access to the plentiful and
powerful tools that have been developed under the umbrella of modern network theory. Andresen
et al. [7] went on to quantitatively compare fracture outcrops with a two-dimensional Discrete
Fracture Network [8, 9] (DFN) model.

Andresen et al. [7] found fracture outcrops to form disassortative networks, that is fractures tend
to connect to fractures with different degree, while the DFNmodel resulted in assortative networks
where fractures tended to be connected with fractures of similar degree.
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A noteworthy simplification in the DFN model studied by
Andresen et al. [7] is that the fractures are placed independently
of each other and that they are free to cross each other. An
improvement of the DFN model has been based on the idea that
large fractures can stop the propagation of smaller fractures [3].
This mechanical DFN model is based on simplified mechanical
rules which produce a fracture network formation that includes
fracture nucleation, growth and arrest [3]. For three-dimensional
models, the mechanical DFN model has been shown to
give much higher flow channeling than the Poissonian DFN
model [10].

This paper presents a topological analysis of both two-
and three-dimensional fracture networks based on the
transformation proposed by Andresen et al. [7] to evaluate
the impact of the constrained fracture growth in the mechanical
DFN model compared to the Poissonian DFN model. The
two-dimensional models are also compared against the outcrops
studied by Andresen et al. [7].

Ideally, the results presented in the paper should have been
compared to measured three-dimensional fracture networks.
Unfortunately, no data set of sufficient quality exists that
makes this possible. There are, however, other systems where
a comparison between model and nature is possible. For
example, the mineral desert rose consists of intersecting sheetlike
crystals. Recently, an analysis of this system has been presented,
see Hope et al. [11]. Another system where a comparison
should be possible is slow drainage in layered porous media
which produces multiple sheetlike structures. A model exists
[12], but to our knowledge no experimental results have been
produced so far. In this case, data of sufficient quality should be
obtainable.

Both the Poissonian and mechanical DFN models are found
to generate networks, in both two and three dimensions, that
transform into small-world graphs. The models are found to
differ when it comes to degree mixing. For two dimensions,
the Poissonian model is found to be assortative, while the
mechanical model is disassortative. In three dimensions both
models are found to be disassortative, and the difference between
the models is limited to the strength of the disassortative
mixing. As such the two-dimensional model is found
to reproduce the disassortative degree mixing found by
Andresen et al. [7] for the outcrop data. However, it should
be noted that there is individual differences between the
outcrops, and their general classification as disassortative is
uncertain.

There is also a difference between the networks generated
in two and three dimensions with respect to the size of the
largest component in the network. In three dimensions the
models tend to generate well connected networks where the
largest component make up a larger part of the network, for
the Poissonian model this differs from the situation in two
dimensions.

This article is structured as follows. Section 2 presents
the DFN models before the basis for the network analysis is
presented in Section 3. Results are presented and discussed
in Section 4 before concluding remarks are drawn in
Section 5.

2. Discrete Fracture Network Model

Most fractured reservoirs can only be given a statistical
description. A common method of introducing such a
description when investigating flow properties of geological
sites is to use the consecutive stochastic, or Poissonian DFN
model [1, 8, 13]. Generally, DFN models do not use the
mechanical relation between fractures. However, distribution of
fracture intersections and flow channeling are critical parameters
in the hydraulic properties of the fractured reservoirs. Both
aspects are likely related to spatial correlations and interactions
between fractures [14]. The capacity of DFNmodels to reproduce
flow channeling is essential for a good estimation of hydraulic
properties [15–17].

The Poissonian DFN model generally does not produce T-
shaped intersections where a fracture terminates at another
fracture. Instead the model creates X-shaped intersections since
the fractures are free to cross each other. This could be
addressed by integration of simplified mechanical rules to take
into account the fracture interaction and their consequences on
the distribution of intersection and spatial organization of the
network fracture [3, 18–20]. Building on simplified mechanical
rules Davy et al. have introduced a mechanical DFN model
[3, 20].

2.1. Poissonian DFN Model
Orientation, position and length or diameter the fractures are
assigned independently in the Poissonian DFN model [21, 22],
and the properties of any fracture is blind to all other fractures.

The fracture length distribution is a critical parameter in
controlling connectivity and permeability [23, 24]. Observations
of fracture traces in outcrops show that fracture lengths follow
power-laws [25, 26].

p(l) ∼ l−αl . (1)

From observations andmechanical/geometrical arguments, Davy
et al. [20] suggest that the power-law exponent should tend to
the self-similar case at large fracture lengths, which fixes the
exponent αl to 4 for three-dimensional networks.

For this paper the model is considered in the most simplified
form. The fracture centers are randomly distributed, given a
fracture density. The orientation of each fracture is drawn from a
uniform random distribution. Hence, no assumptions are made
with respect to the stress field direction that has generated the
fractures.

2.2. Mechanical DFN Model
In the mechanical DFN model, the generation of the fracture
networks occurs in three steps; fracture nucleation, fracture
growth and fracture arrest [3].

Nucleation gives the fractures an initial position as well as an
orientation. As in the Poissonian model, the position is random
and no preferential orientation is assumed. Nucleation centers
are randomly generated at a rate

ṅN =
dnN

dt
, (2)
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where nN is the number of nuclei, and t the time [3].
Once created, a fracture grows at a rate given by

dl

dt
= Gla, (3)

where l is the fracture length or diameter, G the growth rate and
a the growth exponent [3].

Arrest of a fracture is caused by the fracture growth being
hindered by mechanical interactions with other fractures. This
occurs when a fracture gets close to a larger fracture and a
simplified arrest rule prevents fractures from crossing larger
fractures. This imitates the interaction between real fractures and
results in a self-similar power-law distribution of fracture sizes
[3, 20].

The ratio G/ṅN can be used to separate between two different
versions of the mechanical model [10]. If G ≫ ṅN the time for
a fracture to grow is short compared to the time between the
appearance of successive nuclei. Thus, fractures grow one by one
in a sequential mode [10]. On the other hand, if G≪ ṅN fractures
will grow simultaneously in a competitive mode [10].

The two models will have different structures since the ratio
of X-type and T-type intersections will depend on whether the
fractures grow sequentially or not [10].

The mechanical model can also make use of two different
stop criteria. When a fracture meets a larger fracture the smallest
fracture can stop completely (mode A) or it can be free to grow
in the opposite direction (mode B) up to the point when it meets
another large fracture [3].

2.3. Compared Models
In the present study, topology is compared for both competitive
(C) and sequential (S) mechanical models for both mode A and
mode B stop criteria. Hence, the mechanical DFN model should
be studied in four different limits; C or S and A or B. For each
model, the eventual fracture density is different.

As a comparison to the mechanical models, the Poissonian
DFN model has been generated for two different fracture
densities, based on the maximum and minimum densities from
the mechanical model. The high density case (P-H-D) has the
same density as (M-C-B), while the low density case (P-L-D) is
similar in density to (M-A-S).

3. Network Analysis

Transforming the fracture network into a graph is done as
suggested by Andresen et al. [7]. As shown in Figures 1 and 2,
each fracture is defined as a node and nodes are linked if they
represent intersecting fractures.

To evaluate the properties of a graph, it is useful to compare
against randomized versions of the same graph [6]. For this
purpose two randomized versions of each of the graphs are
made. The first is a completely random model with the same
number of nodes and links as the original graph [27], while the
second is a rewired version of the original graph which preserves
the degree of each node, but randomizes which nodes that are
connected [28].

Clustering, C, is a measure of the local connectivity of a graph.
For a specific node the coefficient, Ci, gives the ratio between
the number of connections between the ki neighbors of node

FIGURE 1 | (A) Representation of a two-dimensional fracture network. (B) Equivalent graph placed on top of fracture network. (C) Equivalent graph representation of

(A). (Figure from Andresen et al. [7].)

FIGURE 2 | (A) Representation of a three-dimensional fracture network. (B) Equivalent graph placed on top of fracture network. (C) Equivalent graph representation

of (A).
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i and the ki(ki − 1)/2 possible ways they could be connected
[29, 30]. In terms of the original fracture network, the number
of connections, or degree, of a given node ki in the graph is the
number of fractures that intersect the fracture represented by the
node.

The average over the clustering coefficients of all nodes gives
a measure of the clustering in the entire graph and can be
expressed as

C =
1

N

N∑

i= 1

Ci =
1

N

N∑

i= 1

2Ki

ki(ki − 1)
. (4)

whereN is the number of nodes in the graph andKi is the number
of connections between node i’s neighbors [30].

In the case where a node has less than two neighbors, the local
clustering coefficient is defined to be zero [31].

Efficiency, E, is a measure of the long range connectivity of
a network. High efficiency indicates that one can expect to go
from a given fracture to any other fracture without having to
go through many intermediate fractures. Given all possible paths
between nodes i and j the shortest path, dij, is found based on
the fewest number of links traversed. The efficiency can then be
defined as [32, 33]

E =
1

N(N − 1)

∑

(i,j)∈N,i 6= j

1

dij
. (5)

In the case were nodes i and j are unconnected dij = ∞ [32].
A measure of degree mixing is the assortativity coefficient r,

which for a graph withM links can be expressed as follows [34]

r =
M−1 ∑

i k1ik2i − [M−1 ∑
i
1
2 (k1i + k2i)]2

M−1
∑

i
1
2 (k1i

2 + k2i
2)− [M−1

∑
i
1
2 (k1i + k2i)]2

, (6)

where k1i and k2i are the degrees of the nodes linked by the ith
link. Assortative mixing is indicated by r > 0, while r < 0
indicates disassortative mixing.

An estimate of the variance of the assortative coefficient for a
single sample can be found using the jackknife estimate

σ 2
j =

M − 1

M

M∑

i= 1

[ri − r]2 , (7)

where M is the number of links in the network and ri is
the assortative coefficient when excluding the ith link in the
calculation [31, 35].

Community detection identifies parts of the network which
are highly interconnected but have relatively few connections
to other parts of the network. What is found to constitute a
community structure will depend on the algorithm used as well
as the number of communities one divide the network into [6].
This work make use of the Girvan-Newman algorithm [36]. The
number of communities is chosen to maximize modularity, Q.
The modularity measures the fraction of links in a network that
connects nodes of the same type minus the expected value for
a network with the same community divisions but with random
connections between the nodes [37]. If the number of links within
the communities is not higher than in the random case random,
then Q = 0, while Q = 1 is the maximum limit for extremely
strong community structure [37]. Newman and Girvan report
that typical values for networks with strong community structure
are in the range from 0.3 to 0.7 and that higher values are
rare [37].

4. Results and Discussion

As was to be expected, the stop criteria in the two limits of the
mechanical models has a significant impact on the ratio between
links and nodes in the corresponding graphs, as well as degree
distribution (as shown in Tables 1, 2 and Figures 3, 4). This
is caused by the higher number of connections in the mode
B versions of the models resulting from the fact that fractures
are only arrested in the direction where they intersect larger
fractures. With regard to the ratio between links and nodes the
two mechanical models with stop criterion B have a much higher
number of links than nodes. However, themechanicalmodel with
stop criterion A results in either a similar number of nodes and
links (M-C-A) or a higher number of nodes than links (M-S-
A). As such the mechanical model offers a large diversity when
it comes to the number of intersections per fracture. It should
be noted that there is a difference between two-dimensional
and three-dimensional networks and as seen in Tables 1, 2, the
number of links in the Poissonian model is much closer to the
number of nodes in two dimensions than what is the case for

TABLE 1 | Averaged values of the number of nodes, links, maximum degree kmax, average degree kavg, clustering coefficient C, clustering coefficient for

rewired graphs CRW , clustering coefficient for random graphs CRA, efficiency E, efficiency for rewired graphs ERW , efficiency for random graphs ERA,

assortativity coefficient r with its standard deviation σr for 50 samples of each of the different limits of the two DFN models in two dimensions.

Model (2D) Nodes Links kmax kavg C CRW CRA E ERW ERA r σr

DFN-M-C-A 1066 1190 30 2.23 0.083 0.0029 0.0010 0.087 0.12 0.10 −0.10 0.028

DFN-M-C-B 1274 2381 45 3.74 0.27 0.0070 0.0029 0.15 0.21 0.18 −0.08 0.020

DFN-M-S-A 924 873 27 1.89 0.045 0.0023 0.0011 0.052 0.083 0.071 −0.08 0.036

DFN-M-S-B 936 1376 34 2.94 0.17 0.0057 0.0022 0.13 0.18 0.15 −0.09 0.031

DFN-P-H-D 1344 1793 24 2.67 0.27 0.0022 0.0014 0.016 0.13 0.13 0.11 0.049

DFN-P-L-D 805 642 14 1.60 0.17 0.0014 0.0010 0.0055 0.056 0.045 0.14 0.067

The mechanical (M) model is compared for the competitive (C) and sequential (S) versions for both stop criteria A and B. The Poissonian (P) model is compared for two densities
matching the highest (H-D) and lowest (L-D) densities created by the mechanical models.
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TABLE 2 | Averaged values of the number of nodes, links, maximum degree kmax, average degree kavg, clustering coefficient C, clustering coefficient for

rewired graphs CRW , clustering coefficient for random graphs CRA, efficiency E, efficiency for rewired graphs ERW , efficiency for random graphs ERA,

assortativity coefficient r with its standard deviation σr for 50 samples of each of the different limits of the two DFN models in three dimensions.

Model(3D) Nodes Links kmax kavg C CRW CRA E ERW ERA r σr

DFN-M-C-A 980 969 48 1.98 0.055 0.0049 0.00084 0.097 0.10 0.079 −0.13 0.024

DFN-M-C-B 1349 2202 98 3.26 0.19 0.014 0.0018 0.18 0.20 0.16 −0.10 0.020

DFN-M-S-A 913 621 36 1.36 0.013 0.0025 0.00069 0.028 0.040 0.021 −0.11 0.025

DFN-M-S-B 1312 1990 94 3.03 0.16 0.013 0.0015 0.16 0.18 0.15 −0.09 0.016

DFN-P-H-D 1550 3648 111 4.71 0.36 0.015 0.0030 0.16 0.22 0.21 −0.03 0.030

DFN-P-L-D 887 1209 54 2.73 0.26 0.011 0.0024 0.086 0.15 0.14 −0.04 0.026

FIGURE 3 | Cumulative degree distribution for the two-dimensional DFN models. Results are based on 50 samples of each model. (A) Results for the

mechanical model in all limits. (B) Results for the Poissonian model in both limits as well as for the outcrops.

FIGURE 4 | Cumulative degree distribution for the three-dimensional DFN models. Results are based on 50 samples of each model. (A) Results for the

mechanical model in all limits. (B) Results for the Poissonian model in both limits.

three dimensions. For the low density case in two dimensions,
the Poissonian model in fact shows fewer links than nodes.

The difference in the stop criteria also has an impact on
clustering, which is up to an order of magnitude higher in
the mode B cases. However, when comparing the clustering
against rewired and random versions of the networks, all models,
mechanical and Poissonian, are similar in having clusteringmuch

higher than in their randomized versions. Broadly speaking, the
clustering is an order of magnitude higher than the closest of
the randomized networks (as shown in Tables 1, 2). With an
efficiency of the same order as the randomized network, this
indicates that all models form small-world networks [29, 33].
This is consistent with previous results for both DFNmodels and
outcrops by Andresen et al. [7].

Frontiers in Physics | www.frontiersin.org 5 September 2015 | Volume 3 | Article 75

http://www.frontiersin.org/Physics
http://www.frontiersin.org
http://www.frontiersin.org/Physics/archive


Hope et al. Topological impact of constrained fracture growth

With regard to the degree distribution for the three-
dimensional models, Figure 4 shows similar results for the
competitive and sequential models when stop criterion B is used,
but that the models differ when making use of stop criterion A.
Sequential and competitive models differ both when it comes
to density and ratio of X- and T- intersections. The sequential
model with stop criteria A differs from the others and is close to
critical organization with both low density and high number of
T-intersections.

It should be noted that connectivity increases with increasing
dimensionality. This is e.g. illustrated by the site percolation
threshold being around 0.592 for the square lattice and 0.246 for
the cubic lattice [38].

Themain difference between the DFNmodel and the outcrops
found by Andresen et al. was in the degree mixing [7]. While the
DFN model resulted in assortative mixing, the outcrops resulted
in disassortative mixing. The analysis of the mechanical DFN
model shows disassortative mixing, as shown in Tables 1, 2,
indicating that the limitations on fracture propagation have a
significant impact on the degree mixing.

This is consistent with a previous study of fractures in sea
ice by Vevatne et al. where it was shown that a simple growing
fracture network model could produce disassortative mixing if
existing fractures could stop the propagation of fractures growing
into them [39]. In the model by Vevatne et al. the fractures ability
to arrest intersecting fractures was a fixed probability, equal for
all fractures [39].

The assortative coefficient indicates a clear difference between
the two-dimensional models. While all limits of the mechanical
model result in disassortative networks, the Poissonian model
results in assortative networks. For three-dimensional networks
all models result in disassortative networks and the difference
between the models is limited to the mechanical model showing
stronger disassortative mixing than the Poissonian model.

Another noticeable difference between the two-dimensional
and three-dimensional DFN models is the size of the largest
component. With the exception of the mechanical DFN model
in the (M-S-A) limit where the largest component only makes
up 40% of the nodes in the graph, all three-dimensional models
appear, as shown in Table 3, to be highly connected with
the largest component making up from 69 to 92 % of the
network. The mechanical model is still well connected in two
dimensions, as shown in Table 4, but the Poissonian model
results in the largest component making up only 7–28 % of
the network. Comparing the two-dimensional models to the
outcrops, indicates that the mechanical model is closest, but that
the model is too connected.

The networks generated by the DFN models are compared
against the same outcrops which Andresen et al. [7] used in their
topological comparison. The outcrops are from two locations on
the Swedish south-east coast, namely Simpevarp and Laxemar
[40, 41]. The outcrops cover between 215 and 524 m2 and all
visible fractures with length over 0.5 m have been recorded
[40, 41]. Detailed descriptions of the bedrock composition and
geological history are given in Hermanson et al. [40, 41] and
Strøm et al. [42].

The average assortativity coefficient of the outcrops is found
to be r = −0.02 with σr = 0.058. The individual samples

TABLE 3 | Average values for number of nodes Nlc, links Mlc, average

ratio of nodes in the largest component and the entire graph Nlc/N, as

well as assortativity coefficient rlc with its standard deviation σlc, for the

largest component for 50 samples of each of the different limits of the two

DFN models in three dimensions.

Model (3D) Nlc Mlc Nlc/N rlc σ lc

DFN-M-C-A 765 909 0.78 −0.15 0.026

DFN-M-C-B 1237 2192 0.92 −0.11 0.021

DFN-M-S-A 362 378 0.40 −0.18 0.035

DFN-M-S-B 1150 1978 0.88 −0.09 0.016

DFN-P-H-D 1395 3620 0.90 −0.04 0.026

DFN-P-L-D 616 1108 0.69 −0.06 0.027

TABLE 4 | Average values for number of nodes Nlc, links Mlc, average

ratio of nodes in the largest component and the entire graph Nlc/N, as

well as assortativity coefficient rlc with its standard deviation σlc, for the

largest component for 50 samples of each of the different limits of the two

DFN models in two dimensions.

Model (2D) Nlc Mlc Nlc/N rlc σ lc

DFN-M-C-A 845 1045 0.79 −0.13 0.030

DFN-M-C-B 1242 2372 0.98 −0.08 0.021

DFN-M-S-A 592 676 0.64 −0.11 0.038

DFN-M-S-B 867 1337 0.93 −0.09 0.031

DFN-P-H-D 381 653 0.28 0.03 0.061

DFN-P-L-D 60 87 0.07 −0.1 0.11

TABLE 5 | Number of nodes N, links M, assortativity coefficient r with its

jackknife-based standard deviation σj , and the same for the largest

component (lc) for each outcrop.

Outcrop N M r σj Nlc Mlc rlc σlc,j

ASM000025 787 858 −0.05 0.031 449 665 −0.12 0.033

ASM000026 716 520 −0.11 0.031 224 273 −0.18 0.040

ASM000205 973 1188 0.02 0.026 385 683 −0.08 0.030

ASM000206 737 487 −0.01 0.042 40 49 −0.20 0.010

ASM000208 955 1297 −0.06 0.022 693 1174 −0.10 0.023

ASM000209 955 1162 0.04 0.029 637 1021 −0.02 0.031

ASM100234 946 1549 −0.05 0.023 756 1501 −0.07 0.023

ASM100235 785 1392 0.05 0.026 628 1366 0.04 0.027

span, as shown in Table 5, from r = −0.11 to r = 0.05 and
weakens the general conclusion of disassortative outcrops. An
overview of the assortativity coefficient for all outcrops and their
largest components are given in Table 5. Further studies of more
outcrops could clarify the question of the degree mixing behavior
in outcrops.

As shown in Figures 5, 6 both models and the outcrops show
a strong correlation between degree and fracture length. As such
the difference in degree mixing is closely related to whether
fractures intersect fractures of similar or dissimilar length. The
stop criteria clearly separates the mechanical models and the use
of stop criterion B, as expected, generate fractures with more
intersections than the models using stop criterion A. In addition,
the area belonging to a fracture of a given degree tends to be
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FIGURE 5 | Averaging the area for all fractures with similar degree shows a clear connection between length and degree. Results are based on 50

samples of each two-dimensional DFN model. (A) Results for the mechanical model in all limits. (B) Results for the Poissonian model in both limits as well as the

outcrops.

FIGURE 6 | Averaging the area for all fractures with similar degree shows a clear connection between area and degree. Results are based on 50 samples

of each three-dimensional DFN model. (A) Results for the mechanical model in all limits. (B) Results for the Poissonian model in both limits.

larger for the models using stop criterion A, than for the models
using criterion B, reflecting density differences between the
models.

The difference between networks displaying assortative degree
mixing and those displaying disassortative degree mixing has
been attributed to the existence of communities with strong
internal connectivity in assortative networks [43]. However, the
presence of community structure also in disassortative networks
has been suggested by Radicchi et al. [44]. To investigate the
community structure of the fracture networks, the analysis is
limited to the largest component of each of the two-dimensional
networks.

It is noted that the largest clusters generally are more
disassortative than the whole samples. In fact the average
assortativity coefficient for the largest cluster in each sample
of the two-dimensional Poissonian DFN model in the low
density case shows disassortative mixing, as shown in Table 4.
The largest component in the two-dimensional Poissonian DFN
model however, makes up a relative small part of the network.

As shown in Figures 7, 8, the existence of community
structure is not limited to the assortative networks, but also exist
in the disassortative networks.

Figure 7 shows the community structure of the largest
component in samples of the Poissonian DFN model and the
mechanical DFN model. The component from the Poissonian
model has an assortativity coefficient of r = 0.12 and when
divided into communities by maximize modularity, it shows 7
different groups and a resulting modularity of Q = 0.69. The
component from the mechanical DFNmodel has an assortativity
coefficient of r = −0.18 and shows a community structure with
20 different groups and corresponding modularity of Q = 0.86.

The most disassortative outcrop, ASM000026, has an
assortativity coefficient of r = −0.18 for the largest component.
However, as shown in Figure 8 a strong community structure
is found with 14 different groups and a modularity as high as
Q = 0.84.

Even though a clear community structure is found for both the
assortative and disassortative networks, there are clear differences
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FIGURE 7 | (A) Community structure of the largest component (r = 0.12) of a sample of the Poissonian DFN model shows seven distinct groups. (B) Community

structure of the largest component (r = −0.18) of a sample of the mechanical DFN model shows 20 distinct groups. The different groups or communities are identified

by the color of the nodes.

FIGURE 8 | (A) Community structure of the largest component (r = −0.18) of outcrop ASM000026 shows 14 distinct groups. (B) The groups in (A) plotted as they

are positioned in the fracture network.

between them. While the number of nodes in the largest
components is a dominant difference as shown in Figure 7, it
is also worth noticing the tree-structure for both disassortative
samples (Figures 7B, 8A). While there are few links between the
communities, the tree-structure shows that there are relatively
few interconnections in the communities as well.

The low number of links connecting the different
communities results, as illustrated in Figure 8B, in a few
fractures being the only connections between different parts
of the network. As such, these few fractures are the only
flow channels between their community and the connected
communities.

As they are likely to be important flow channels, the largest
fractures are of special interest. When looking at how the ten
largest fractures connect to each other in the three-dimensional
model, there is trend for the number of connection to increase
with density and for the variants of the Poissonian DFN model
to show more connections between these fractures than the
variants of the mechanical DFN model do. The least dense
of the mechanical DFN models (S-A) typically does not show
connections between the largest fractures, while the densest
version (C-B) typically shows that the longest fractures connect
to one of the other longest fractures. This is comparable to the
low density case for the Poissonian model, while the high density
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case shows the longest fractures linking on average to 1.5 of the
other longest fractures. The Poissonian model could probably
approach the mechanical model on this point by the introduction
of a correlation between fracture length and orientation.

5. Conclusion

The mechanical DFN model, and its implementation of fractures
acting as barriers for smaller fractures, has significant impact
on the topology of the generated fracture networks. For two-
dimensional fracture networks the mechanical DFN model,
independent of the limit used, generates disassortative degree
mixing, while the Poissonian model generates assortative degree
mixing. For three-dimensional fracture networks there is also a
clear separation between the different limits of the mechanical
DFN model on one hand, and their Poissonian counterparts
on the other hand. However, in three dimensions both models
generate disassortative networks, and the difference is limited to
the strength of the disassortative mixing.

The assortativity coefficient for the outcrops shows individual
differences between the samples when it comes to whether they
are assortative or disassortative, with the average leaning toward
disassortative. Further study of more samples could clarify the
matter.

The Poissonian model in its two limits tends to be much more
connected in three dimensions than in two dimensions. This
results in the largest component making up a much larger part
of the network in the three-dimensional case than in the two-
dimensional case. Comparing the two-dimensional models to the

outcrops shows that the mechanical model is the closest, but that
the model is too connected. This could possibly be addressed by
introducing a threshold of available energy for each fracture so
that fractures could stop propagating even if they do not meet
other fractures.

The difference between the Poissonian and mechanical DFN
models in how the fractures connect is likely to have an impact
on the flow properties of the networks. The existence of such
differences has been identified by Maillot et al. [10] who showed
that the mechanical DFN model in the different limits results
in more flow channeling, or localization of the flow, than the
Poissonian DFN model.
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